1
|
Xu L, Ren W, Long Y, Yang B, Chen L, Chen W, Chen S, Cao Y, Wu D, Qu J, Li H, Yu Y, Zhang A, Wang S, Wang H, Chen T, Fan G, Li Q, Chen Z. Antisenescence Expansion of Mesenchymal Stem Cells Using Piezoelectric β-Poly(vinylidene fluoride) Film-Based Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63207-63224. [PMID: 39503875 DOI: 10.1021/acsami.4c12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Regenerative therapies based on mesenchymal stem cells (MSCs) show promise in treating a wide range of disorders. However, the replicative senescence of MSCs during in vitro expansion poses a challenge to obtaining a substantial quantity of high-quality MSCs. In this investigation, a piezoelectric β-poly(vinylidene fluoride) film-based culture plate (β-CP) was developed with an antisenescence effect on cultured human umbilical cord-derived MSCs. Compared to traditional tissue culture plates (TCPs) and α-poly(vinylidene fluoride) film-based culture plates, the senescence markers of p21, p53, interleukin-6 and insulin-like growth factor-binding protein-7, stemness markers of OCT4 and NANOG, and telomere length of MSCs cultured on β-CPs were significantly improved. Additionally, MSCs at passage 18 cultured on β-CPs showed significantly better multipotency and pro-angiogenic capacities in vitro, and higher wound healing abilities in a mouse model. Mechanistically, β-CPs rejuvenated senescent MSCs by improving mitochondrial functions and mitigating oxidative and glycoxidative stresses. Overall, this study presents β-CPs as a promising approach for efficient and straightforward antisenescence expansion of MSCs while preserving their stemness, thereby holding great potential for large-scale production of MSCs for clinical application in cell therapies.
Collapse
Affiliation(s)
- Liuyue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenxiang Ren
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaoying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bianlei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Chen
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wenlan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Chen
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anyuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ting Chen
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Guifen Fan
- School of Optical and Electronic Information, Key Lab of Functional Materials for Electronic Information(B), MOE, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Vieira T, Silva JC, Kubinova S, Borges JP, Henriques C. Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells. Macromol Biosci 2024; 24:e2400014. [PMID: 39072995 DOI: 10.1002/mabi.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Collapse
Affiliation(s)
- Tânia Vieira
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - João P Borges
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Ciência dos Materiais, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Célia Henriques
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
3
|
Yoo JU, Kim DH, Choi TM, Jung ES, Lee HR, Lee CY, Pyo SG. Advancements in Flexible Nanogenerators: Polyvinylidene Fluoride-Based Nanofiber Utilizing Electrospinning. Molecules 2024; 29:3576. [PMID: 39124980 PMCID: PMC11313764 DOI: 10.3390/molecules29153576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
With the gradual miniaturization of electronic devices and the increasing interest in wearable devices, flexible microelectronics is being actively studied. Owing to the limitations of existing battery systems corresponding to miniaturization, there is a need for flexible alternative power sources. Accordingly, energy harvesting from surrounding environmental systems using fluorinated polymers with piezoelectric properties has received significant attention. Among them, polyvinylidene fluoride (PVDF) and PVDF co-polymers have been researched as representative organo-piezoelectric materials because of their excellent piezoelectric properties, mechanical flexibility, thermal stability, and light weight. Electrospinning is an effective method for fabricating nanofibrous meshes with superior surface-to-volume ratios from polymer solutions. During electrospinning, the polymer solution is subjected to mechanical stretching and in situ poling, corresponding to an external strong electric field. Consequently, the fraction of the piezoelectric β-phase in PVDF can be improved by the electrospinning process, and enhanced harvesting output can be realized. An overview of electrospun piezoelectric fibrous meshes composed of PVDF or PVDF co-polymers to be utilized is presented, and the recent progress in enhancement methods for harvesting output, such as fiber alignment, doping with various nanofillers, and coaxial fibers, is discussed. Additionally, other applications of these meshes as sensors are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Gyu Pyo
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-U.Y.); (D.-H.K.); (T.-M.C.); (E.-S.J.); (H.-R.L.); (C.-Y.L.)
| |
Collapse
|
4
|
Forouharshad M, Raspa A, Fortino G, Ciulla MG, Farazdaghi A, Stolojan V, Stendardo L, Bracco S, Gelain F. Biomimetic electrospun PVDF/self-assembling peptide piezoelectric scaffolds for neural stem cell transplantation in neural tissue engineering. RSC Adv 2024; 14:21277-21291. [PMID: 38974226 PMCID: PMC11225063 DOI: 10.1039/d4ra02309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Piezoelectric materials can provide in situ electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration. We investigated the morphology and crystalline polymorphs of the electrospun scaffolds. Morphological studies demonstrated the benefit of using mixed sodium dodecyl sulfate (SDS) and SAPs as additives to form thinner, uniform, and defect-free fibers. Regarding electroactive phases, β and γ phases-evidence of electroactivity-were predominant in aligned scaffolds and scaffolds modified with SDS and SAPs. In vitro studies showed that neural stem cells (NSCs) seeded on electrospun PVDF with additives exhibited desirable proliferation and differentiation compared to the gold standard. Furthermore, the orientation of the fibers influenced scaffold topography, resulting in a higher degree of cell orientation in fiber-aligned scaffolds compared to randomly oriented ones.
Collapse
Affiliation(s)
- Mahdi Forouharshad
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Andrea Raspa
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| | - Giuseppe Fortino
- Department of Biotechnology and Bioscience, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Maria Gessica Ciulla
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
| | - Arman Farazdaghi
- Chemical and Biomolecular Engineering Department, Whiting School of Engineering, Johns Hopkins University MD USA
| | - Vlad Stolojan
- Advanced Technology Institute, Electrical and Electronic Engineering, University of Surrey Guildford GU2 7XH UK
| | - Luca Stendardo
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca via R. Cozzi 55 20125 Milano Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda 20162 Milan Italy
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza 71013 San Giovanni Rotondo Italy
| |
Collapse
|
5
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
6
|
Sun W, Gao C, Liu H, Zhang Y, Guo Z, Lu C, Qiao H, Yang Z, Jin A, Chen J, Dai Q, Liu Y. Scaffold-Based Poly(Vinylidene Fluoride) and Its Copolymers: Materials, Fabrication Methods, Applications, and Perspectives. ACS Biomater Sci Eng 2024; 10:2805-2826. [PMID: 38621173 DOI: 10.1021/acsbiomaterials.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tissue engineering involves implanting grafts into damaged tissue sites to guide and stimulate the formation of new tissue, which is an important strategy in the field of tissue defect treatment. Scaffolds prepared in vitro meet this requirement and are able to provide a biochemical microenvironment for cell growth, adhesion, and tissue formation. Scaffolds made of piezoelectric materials can apply electrical stimulation to the tissue without an external power source, speeding up the tissue repair process. Among piezoelectric polymers, poly(vinylidene fluoride) (PVDF) and its copolymers have the largest piezoelectric coefficients and are widely used in biomedical fields, including implanted sensors, drug delivery, and tissue repair. This paper provides a comprehensive overview of PVDF and its copolymers and fillers for manufacturing scaffolds as well as the roles in improving piezoelectric output, bioactivity, and mechanical properties. Then, common fabrication methods are outlined such as 3D printing, electrospinning, solvent casting, and phase separation. In addition, the applications and mechanisms of scaffold-based PVDF in tissue engineering are introduced, such as bone, nerve, muscle, skin, and blood vessel. Finally, challenges, perspectives, and strategies of scaffold-based PVDF and its copolymers in the future are discussed.
Collapse
Affiliation(s)
- Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jianan Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
7
|
Shlapakova LE, Surmeneva MA, Kholkin AL, Surmenev RA. Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: A review. Mater Today Bio 2024; 25:100950. [PMID: 38318479 PMCID: PMC10840125 DOI: 10.1016/j.mtbio.2024.100950] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Nerve injuries pose a drastic threat to nerve mobility and sensitivity and lead to permanent dysfunction due to low regenerative capacity of mature neurons. The electrical stimuli that can be provided by electroactive materials are some of the most effective tools for the formation of soft tissues, including nerves. Electric output can provide a distinctly favorable bioelectrical microenvironment, which is especially relevant for the nervous system. Piezoelectric biomaterials have attracted attention in the field of neural tissue engineering owing to their biocompatibility and ability to generate piezoelectric surface charges. In this review, an outlook of the most recent achievements in the field of piezoelectric biomaterials is described with an emphasis on piezoelectric polymers for neural tissue engineering. First, general recommendations for the design of an optimal nerve scaffold are discussed. Then, specific mechanisms determining nerve regeneration via piezoelectric stimulation are considered. Activation of piezoelectric responses via natural body movements, ultrasound, and magnetic fillers is also examined. The use of magnetoelectric materials in combination with alternating magnetic fields is thought to be the most promising due to controllable reproducible cyclic deformations and deep tissue permeation by magnetic fields without tissue heating. In vitro and in vivo applications of nerve guidance scaffolds and conduits made of various piezopolymers are reviewed too. Finally, challenges and prospective research directions regarding piezoelectric biomaterials promoting nerve regeneration are discussed. Thus, the most relevant scientific findings and strategies in neural tissue engineering are described here, and this review may serve as a guideline both for researchers and clinicians.
Collapse
Affiliation(s)
- Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
| | - Andrei L. Kholkin
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
| |
Collapse
|
8
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Liu Y, Guo Q, Zhang X, Wang Y, Mo X, Wu T. Progress in Electrospun Fibers for Manipulating Cell Behaviors. ADVANCED FIBER MATERIALS 2023; 5:1241-1272. [DOI: 10.1007/s42765-023-00281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/08/2023] [Indexed: 01/06/2025]
|
10
|
Shan Y, Cui X, Chen X, Li Z. Recent progress of electroactive interface in neural engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e01827. [PMID: 35715994 DOI: 10.1002/wnan.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023]
Abstract
Neural tissue is an electrical responsible organ. The electricity plays a vital role in the growth and development of nerve tissue, as well as the repairing after diseases. The interface between the nervous system and external device for information transmission is called neural electroactive interface. With the development of new materials and fabrication technologies, more and more new types of neural interfaces are developed and the interfaces can play crucial roles in treating many debilitating diseases such as paralysis, blindness, deafness, epilepsy, and Parkinson's disease. Neural interfaces are developing toward flexibility, miniaturization, biocompatibility, and multifunctionality. This review presents the development of neural electrodes in terms of different materials for constructing electroactive neural interfaces, especially focus on the piezoelectric materials-based indirect neuromodulation due to their features of wireless control, excellent effect, and good biocompatibility. We discussed the challenges we need to consider before the application of these new interfaces in clinical practice. The perspectives about future directions for developing more practical electroactive interface in neural engineering are also discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China.,Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Xia G, Song B, Fang J. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9896274. [PMID: 36061820 PMCID: PMC9394050 DOI: 10.34133/2022/9896274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Electrical stimulation has demonstrated great effectiveness in the modulation of cell fate in vitro and regeneration therapy in vivo. Conventionally, the employment of electrical signal comes with the electrodes, battery, and connectors in an invasive fashion. This tedious procedure and possible infection hinder the translation of electrical stimulation technologies in regenerative therapy. Given electromechanical coupling and flexibility, piezoelectric polymers can overcome these limitations as they can serve as a self-powered stimulator via scavenging mechanical force from the organism and external stimuli wirelessly. Wireless electrical cue mediated by electrospun piezoelectric polymeric nanofibers constitutes a promising paradigm allowing the generation of localized electrical stimulation both in a noninvasive manner and at cell level. Recently, numerous studies based on electrospun piezoelectric nanofibers have been carried out in electrically regenerative therapy. In this review, brief introduction of piezoelectric polymer and electrospinning technology is elucidated first. Afterward, we highlight the activating strategies (e.g., cell traction, physiological activity, and ultrasound) of piezoelectric stimulation and the interaction of piezoelectric cue with nonelectrically/electrically excitable cells in regeneration medicine. Then, quantitative comparison of the electrical stimulation effects using various activating strategies on specific cell behavior and various cell types is outlined. Followingly, this review explores the present challenges in electrospun nanofiber-based piezoelectric stimulation for regeneration therapy and summarizes the methodologies which may be contributed to future efforts in this field for the reality of this technology in the clinical scene. In the end, a summary of this review and future perspectives toward electrospun nanofiber-based piezoelectric stimulation in tissue regeneration are elucidated.
Collapse
Affiliation(s)
- Guangbo Xia
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Beibei Song
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
14
|
Ge X, Wu S, Shen W, Chen L, Zheng Y, Ao F, Ning Y, Mao Y, Chen Z. Preparation of Polyvinylidene Fluoride-Gold Nanoparticles Electrospinning Nanofiber Membranes. Bioengineering (Basel) 2022; 9:130. [PMID: 35447690 PMCID: PMC9027547 DOI: 10.3390/bioengineering9040130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, gold nanoparticles (AuNPs) and curcumin drug were incorporated in polyvinylidene fluoride (PVDF) nanofibers by electrospinning as a novel tissue engineering scaffold in nerve regeneration. The influence of AuNPs on the morphology, crystallinity, and drug release behavior of nanofiber membranes was characterized. A successful composite nanofiber membrane sample was observed by scanning electron microscopy (SEM). The addition of AuNPs showed the improved as well as prolonged cumulative release of the drug. The results indicated that PVDF-AuNPs nanofiber membrane could potentially be applied for nerve regeneration.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.G.); (L.C.)
| | - Shang Wu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Wen Shen
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.G.); (L.C.)
| | - Yan Zheng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Fen Ao
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Yuanlan Ning
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Yueyang Mao
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Zhong Chen
- College of Biological and Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Xinyang 464000, China;
| |
Collapse
|
15
|
De I, Sharma P, Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur J Pharm Biopharm 2022; 173:73-91. [DOI: 10.1016/j.ejpb.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023]
|
16
|
Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. Methods to Characterize Electrospun Scaffold Morphology: A Critical Review. Polymers (Basel) 2022; 14:467. [PMID: 35160457 PMCID: PMC8839183 DOI: 10.3390/polym14030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Electrospun scaffolds can imitate the hierarchical structures present in the extracellular matrix, representing one of the main concerns of modern tissue engineering. They are characterized in order to evaluate their capability to support cells or to provide guidelines for reproducibility. The issues with widely used methods for morphological characterization are discussed in order to provide insight into a desirable methodology for electrospun scaffold characterization. Reported methods include imaging and physical measurements. Characterization methods harbor inherent limitations and benefits, and these are discussed and presented in a comprehensive selection matrix to provide researchers with the adequate tools and insights required to characterize their electrospun scaffolds. It is shown that imaging methods present the most benefits, with drawbacks being limited to required costs and expertise. By making use of more appropriate characterization, researchers will avoid measurements that do not represent their scaffolds and perhaps might discover that they can extract more characteristics from their scaffold at no further cost.
Collapse
Affiliation(s)
- Alex Lopez Marquez
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Gottingen, Germany; (A.L.M.); (C.G.)
| | - Iván Emilio Gareis
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Fernando José Dias
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Christoph Gerhard
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Gottingen, Germany; (A.L.M.); (C.G.)
| | - María Florencia Lezcano
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
17
|
Maurya AK, Mias E, Schoeller J, Collings IE, Rossi RM, Dommann A, Neels A. Understanding multiscale structure-property correlations in PVDF-HFP electrospun fiber membranes by SAXS and WAXS. NANOSCALE ADVANCES 2022; 4:491-501. [PMID: 35178501 PMCID: PMC8765355 DOI: 10.1039/d1na00503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Electrospinning is a versatile technique to produce nanofibrous membranes with applications in filtration, biosensing, biomedical and tissue engineering. The structural and therefore physical properties of electrospun fibers can be finely tuned by changing the electrospinning parameters. The large parameter window makes it challenging to optimize the properties of fibers for a specific application. Therefore, a fundamental understanding of the multiscale structure of fibers and its correlation with their macroscopic behaviors is required for the design and production of systems with dedicated applications. In this study, we demonstrate that the properties of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) electrospun fibers can be tuned by changing the rotating drum speed used as a collector during electrospinning. Indeed, with the help of multiscale characterization techniques such as scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS), we observe that increasing the rotating drum speed not only aligns the fibers but also induces polymeric chain rearrangements at the molecular scale. Such changes result in enhanced mechanical properties and an increase of the piezoelectric β-phase of the PVDF-HFP fiber membranes. We detect nanostructural deformation behaviors when the aligned fibrous membrane is uniaxially stretched along the fiber alignment direction, while an increase in the alignment of the fibers is observed for randomly aligned samples. This was analyzed by performing in situ SAXS measurements coupled with uniaxial tensile loading of the fibrous membranes along the fiber alignment direction. The present study shows that fibrous membranes can be produced with varying degrees of fiber orientation, piezoelectric β-phase content, and mechanical properties by controlling the speed of the rotating drum collector during the fiber production. Such aligned fiber membranes have potential applications for neural or musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Anjani K Maurya
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern Murtenstrasse 50 3008 Bern Switzerland
| | - Eloïse Mias
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| | - Ines E Collings
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| | - Alex Dommann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern Murtenstrasse 50 3008 Bern Switzerland
| | - Antonia Neels
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Department of Chemistry, University of Fribourg Avenue de l'Europe 20 1700 Fribourg Switzerland
| |
Collapse
|
18
|
Pyrrole Plasma Polymer-Coated Electrospun Scaffolds for Neural Tissue Engineering. Polymers (Basel) 2021; 13:polym13223876. [PMID: 34833176 PMCID: PMC8621862 DOI: 10.3390/polym13223876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Promising strategies for neural tissue engineering are based on the use of three-dimensional substrates for cell anchorage and tissue development. In this work, fibrillar scaffolds composed of electrospun randomly- and aligned-oriented fibers coated with plasma synthesized pyrrole polymer, doped and undoped with iodine, were fabricated and characterized. Infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction analysis revealed the functional groups and molecular integration of each scaffold, as well as the effect of plasma polymer synthesis on crystallinity. Scanning microscopy imaging demonstrated the porous fibrillar micrometric structure of the scaffolds, which afforded adhesion, infiltration, and survival for the neural cells. Orientation analysis of electron microscope images confirmed the elongation of neurite-like cell structures elicited by undoped plasma pyrrole polymer-coated aligned scaffolds, without any biochemical stimuli. The MTT colorimetric assay validated the biocompatibility of the fabricated composite materials, and further evidenced plasma pyrrole polymer-coated aligned scaffolds as permissive substrates for the support of neural cells. These results suggest plasma synthesized pyrrole polymer-coated aligned scaffolds are promising materials for tissue engineering applications.
Collapse
|
19
|
Gryshkov O, AL Halabi F, Kuhn AI, Leal-Marin S, Freund LJ, Förthmann M, Meier N, Barker SA, Haastert-Talini K, Glasmacher B. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility. Int J Mol Sci 2021; 22:11373. [PMID: 34768804 PMCID: PMC8583857 DOI: 10.3390/ijms222111373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Fedaa AL Halabi
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Antonia Isabel Kuhn
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Lena Julie Freund
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Nils Meier
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany;
| | - Sven-Alexander Barker
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
20
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Mokhtari F, Azimi B, Salehi M, Hashemikia S, Danti S. Recent advances of polymer-based piezoelectric composites for biomedical applications. J Mech Behav Biomed Mater 2021; 122:104669. [PMID: 34280866 DOI: 10.1016/j.jmbbm.2021.104669] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, electronics have become central to many aspects of biomedicine and wearable device technologies as a promising personalized healthcare platform. Lead-free piezoelectric materials for converting mechanical into electrical energy through piezoelectric transduction are of significant value in a diverse range of technological applications. Organic piezoelectric biomaterials have attracted widespread attention as the functional materials in the biomedical devices due to their advantages of excellent biocompatibility. They include synthetic and biological polymers. Many biopolymers have been discovered to possess piezoelectricity in an appreciable amount, however their investigation is still preliminary. Due to their piezoelectric properties, better known synthetic fluorinated polymers have been intensively investigated and applied in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. Piezoelectric polymers, especially poly (vinylidene fluoride) (PVDF) and its copolymers are increasingly receiving interest as smart biomaterials due to their ability to convert physiological movements to electrical signals when in a controllable and reproducible manner. Despite possessing the greatest piezoelectric coefficients among all piezoelectric polymers, it is often desirable to increase the electrical outputs. The most promising routes toward significant improvements in the piezoelectric response and energy-harvesting performance of such materials is loading them with various inorganic nanofillers and/or applying some modification during the fabrication process. This paper offers a comprehensive review of the principles, properties, and applications of organic piezoelectric biomaterials (polymers and polymer/ceramic composites) with special attention on PVDF-based polymers and their composites in sensors, drug delivery and tissue engineering. Subsequently focuses on the most common fabrication routes to produce piezoelectric scaffolds, tissue and sensors which is electrospinning process. Promising upcoming strategies and new piezoelectric materials and fabrication techniques for these applications are presented to enable a future integration among these applications.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW, Australia
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy; Department. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Samaneh Hashemikia
- Faculty of Textile Engineering, Urmia University of Technology, Urmia, Iran
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy; Department. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
23
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
24
|
Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, Wang Z, Liu H, Ding J, Yang H. Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Adv Healthc Mater 2021; 10:e2000604. [PMID: 33300246 DOI: 10.1002/adhm.202000604] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Conductivity and alignment of scaffolds are two primary factors influencing the efficacy of nerve repair. Herein, conductive composite fibers composed of poly(ɛ-caprolactone) (PCL) and carbon nanotubes (CNTs) with different orientation degrees are prepared by electrospinning at various rotational speeds (0, 500, 1000, and 2000 rpm), and meanwhile the synergistic promotion mechanism of aligned topography and electrical stimulation on neural regeneration is fully demonstrated. Under an optimized rotational speed of 1000 rpm, the electrospun PCL fiber exhibits orientated structure at macroscopic (mean deviation angle = 2.78°) or microscopic crystal scale (orientation degree = 0.73), decreased contact angle of 99.2° ± 4.9°, and sufficient tensile strength in both perpendicular and parallel directions to fiber axis (1.13 ± 0.15 and 5.06 ± 0.98 MPa). CNTs are introduced into the aligned fiber for further improving conductivity (15.69-178.63 S m-1 ), which is beneficial to the oriented growth of neural cells in vitro as well as the regeneration of injured sciatic nerves in vivo. On the basis of robust cell induction behavior, optimum sciatic nerve function index, and enhanced remyelination/axonal regeneration, such conductive PCL/CNTs composite fiber with optimized fiber alignment may serve as instructive candidates for promoting the scaffold- and cell-based strategies for neural repair.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Xi Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Chenyu Wang
- Department of Orthopedics The Second Hospital of Jilin University 218 Ziqiang Street Changchun 130041 P. R. China
| | - Feihan Li
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Ziwen Qiao
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Liangdan Zeng
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Zhonghan Wang
- Department of Orthopedics The Second Hospital of Jilin University 218 Ziqiang Street Changchun 130041 P. R. China
| | - He Liu
- Department of Orthopedics The Second Hospital of Jilin University 218 Ziqiang Street Changchun 130041 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| |
Collapse
|
25
|
Panda AK, K R, Gebrekrstos A, Bose S, Markandeya YS, Mehta B, Basu B. Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:164-185. [PMID: 33356098 DOI: 10.1021/acsami.0c17257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering cellular microenvironment on a functional platform using various biophysical cues to modulate stem cell fate has been the central theme in regenerative engineering. Among the various biophysical cues to direct stem cell differentiation, the critical role of physiologically relevant electric field (EF) stimulation was established in the recent past. The present study is the first to report the strategy to switch EF-mediated differentiation of human mesenchymal stem cells (hMSCs) between neuronal and glial pathways, using tailored functional properties of the biomaterial substrate. We have examined the combinatorial effect of substrate functionalities (conductivity, electroactivity, and topography) on the EF-mediated stem cell differentiation on polyvinylidene-difluoride (PVDF) nanocomposites in vitro, without any biochemical inducers. The functionalities of PVDF have been tailored using conducting nanofiller (multiwall-carbon nanotube, MWNT) and piezoceramic (BaTiO3, BT) by an optimized processing approach (melt mixing-compression molding-rolling). The DC conductivity of PVDF nanocomposites was tuned from ∼10-11 to ∼10-4 S/cm and the dielectric constant from ∼10 to ∼300. The phenotypical changes and genotypical expression of hMSCs revealed the signatures of early differentiation toward neuronal pathway on rolled-PVDF/MWNT and late differentiation toward glial lineage on rolled-PVDF/BT/MWNT. Moreover, we were able to distinguish the physiological properties of differentiated neuron-like and glial-like cells using membrane depolarization and mechanical stimulation. The excitability of the EF-stimulated hMSCs was also determined using whole-cell patch-clamp recordings. Mechanistically, the roles of intracellular reactive oxygen species (ROS), Ca2+ oscillations, and synaptic and gap junction proteins in directing the cellular fate have been established. Therefore, the present work critically unveils complex yet synergistic interaction of substrate functional properties to direct EF-mediated differentiation toward neuron-like and glial-like cells, with distinguishable electrophysiological responses.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravikumar K
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Amanuel Gebrekrstos
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
He Z, Rault F, Lewandowski M, Mohsenzadeh E, Salaün F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers (Basel) 2021; 13:E174. [PMID: 33418962 PMCID: PMC7825031 DOI: 10.3390/polym13020174] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Polyvinylidene fluoride (PVDF) is among the most attractive piezo-polymers due to its excellent piezoelectricity, lightweight, flexibility, high thermal stability, and chemical resistance. PVDF can exist under different forms of films, membranes, and (nano)fibers, and its piezoelectric property related to its β phase content makes it interesting for energy harvesters and wearable applications. Research investigation shows that PVDF in the form of nanofibers prepared by electrospinning has more flexibility and better air permeability, which make them more suitable for these types of applications. Electrospinning is an efficient technique that produces PVDF nanofibers with a high β phase fraction and crystallinity by aligning molecular dipoles (-CH2 and -CF2) along an applied voltage direction. Different nanofibers production techniques and more precisely the electrospinning method for producing PVDF nanofibers with optimal electrospinning parameters are the key focuses of this paper. This review article highlights recent studies to summarize the influence of electrospinning parameters such as process (voltage, distance, flow rate, and collector), solution (Mw, concentration, and solvent), and ambient (humidity and temperature) parameters to enhance the piezoelectric properties of PVDF nanofibers. In addition, recent development regarding the effect of adding nanoparticles in the structure of nanofibers on the improvement of the β phase is reviewed. Finally, different methods of measuring piezoelectric properties of PVDF nanofibrous membrane are discussed.
Collapse
Affiliation(s)
- Zhongchen He
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - François Rault
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - Maryline Lewandowski
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - Elham Mohsenzadeh
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
- Junia, F-59000 Lille, France
- Univ. Lille, F-59000 Lille, France
| | - Fabien Salaün
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| |
Collapse
|
27
|
Guo S, Duan X, Xie M, Aw KC, Xue Q. Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review. MICROMACHINES 2020; 11:E1076. [PMID: 33287450 PMCID: PMC7761858 DOI: 10.3390/mi11121076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 01/20/2023]
Abstract
The technological development of piezoelectric materials is crucial for developing wearable and flexible electromechanical devices. There are many inorganic materials with piezoelectric effects, such as piezoelectric ceramics, aluminum nitride and zinc oxide. They all have very high piezoelectric coefficients and large piezoelectric response ranges. The characteristics of high hardness and low tenacity make inorganic piezoelectric materials unsuitable for flexible devices that require frequent bending. Polyvinylidene fluoride (PVDF) and its derivatives are the most popular materials used in flexible electromechanical devices in recent years and have high flexibility, high sensitivity, high ductility and a certain piezoelectric coefficient. Owing to increasing the piezoelectric coefficient of PVDF, researchers are committed to optimizing PVDF materials and enhancing their polarity by a series of means to further improve their mechanical-electrical conversion efficiency. This paper reviews the latest PVDF-related optimization-based materials, related processing and polarization methods and the applications of these materials in, e.g., wearable functional devices, chemical sensors, biosensors and flexible actuator devices for flexible micro-electromechanical devices. We also discuss the challenges of wearable devices based on flexible piezoelectric polymer, considering where further practical applications could be.
Collapse
Affiliation(s)
- Shuaibing Guo
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (S.G.); (X.D.); (M.X.)
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (S.G.); (X.D.); (M.X.)
| | - Mengying Xie
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (S.G.); (X.D.); (M.X.)
| | - Kean Chin Aw
- Department Mechanical Engineering, University of Auckland, Auckland 1023, New Zealand;
| | - Qiannan Xue
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (S.G.); (X.D.); (M.X.)
| |
Collapse
|
28
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
29
|
Park SE, Yeon GB, Goo HG, Seo DS, Dayem AA, Lee KE, Park HM, Cho SG, Kim DS. Maintenance and differentiation of human ES cells on polyvinylidene fluoride scaffolds immobilized with a vitronectin-derived peptide. J Cell Physiol 2020; 236:3510-3520. [PMID: 33090499 DOI: 10.1002/jcp.30095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022]
Abstract
Polyvinylidene fluoride (PVDF) is biocompatible, easy to fabricate, and has piezoelectric properties; it has been used for many biomedical applications including stem cell engineering. However, long-term cultivation of human embryonic stem cells (hESCs) and their differentiation toward cardiac lineages on PVDF have not been investigated. Herein, PVDF nanoscaled membrane scaffolds were fabricated by electrospinning; a vitronectin-derived peptide-mussel adhesive protein fusion (VNm) was immobilized on the scaffolds. hESCs cultured on the VNm-coated PVDF scaffold (VNm-PVDF scaffold) were stably expanded for more than 10 passages while maintaining the expression of pluripotency markers and genomic integrity. Under cardiac differentiation conditions, hESCs on the VNm-PVDF scaffold generated more spontaneously beating colonies and showed the upregulation of cardiac-related genes, compared with those cultured on Matrigel and VNm alone. Thus, VNm-PVDF scaffolds may be suitable for the long-term culture of hESCs and their differentiation into cardiac cells, thus expanding their application in regenerative medicine.
Collapse
Affiliation(s)
- Sang Eun Park
- AMO Lifescience Co., Ltd., Seoul, Seocho-gu, Republic of Korea
| | - Gyu-Bum Yeon
- Department of Biotechnology, Korea University, Seoul, Seongbuk-gu, Republic of Korea
| | - Hui-Gwan Goo
- AMO Lifescience Co., Ltd., Seoul, Seocho-gu, Republic of Korea
| | - Dong Sik Seo
- AMO Lifescience Co., Ltd., Seoul, Seocho-gu, Republic of Korea
| | - Ahmed A Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center (MCRC), Konkuk University, Seoul, Gwangjin-gu, Republic of Korea
| | - Kyung Eun Lee
- Advance Analysis Center, Korean Institute of Science and Technology, Seoul, Seongbuk-gu, Republic of Korea
| | - Hyun-Mee Park
- Advance Analysis Center, Korean Institute of Science and Technology, Seoul, Seongbuk-gu, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center (MCRC), Konkuk University, Seoul, Gwangjin-gu, Republic of Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Seongbuk-gu, Republic of Korea
- Department of Pediatrics, Guro Hospital, Korea University College of Medicine, Seoul, Guro-gu, Republic of Korea
| |
Collapse
|
30
|
Jiang H, Qian Y, Fan C, Ouyang Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2020; 8:582646. [PMID: 33102465 PMCID: PMC7546820 DOI: 10.3389/fbioe.2020.582646] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are usually caused by trauma, immune diseases, and genetic factors. Peripheral nerve injury (PNI) may lead to limb numbness, muscle atrophy, and loss of neurological function. Although an abundance of theories have been proposed, very few treatments can effectively lead to complete recovery of neurological function. Autologous nerve transplantation is currently the gold standard. Nevertheless, only 50% of all patients were successfully cured using this method. In addition, it causes inevitable damage to the donor site, and available donor sites in humans are very limited. Tissue engineering has become a research hotspot aimed at achieving a better therapeutic effect from peripheral nerve regeneration. Nerve guide conduits (NGCs) show great potential in the treatment of PNI. An increasing number of scaffold materials, including natural and synthetic polymers, have been applied to fabricate NGCs for peripheral nerve regeneration. This review focuses on recent nerve guide conduit (NGC) composite scaffold materials that are applied for nerve tissue engineering. Furthermore, the development tendency of NGCs and future areas of interest are comprehensively discussed.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
31
|
Lins L, Wianny F, Dehay C, Jestin J, Loh W. Adhesive Sponge Based on Supramolecular Dimer Interactions as Scaffolds for Neural Stem Cells. Biomacromolecules 2020; 21:3394-3410. [PMID: 32584556 DOI: 10.1021/acs.biomac.0c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improving cell-material interactions of nonadhesive scaffolds is crucial for the success of biomaterials in tissue engineering. Due to their high surface area and open pore structure, sponges are widely reported as absorbent materials for biomedical engineering. The biocompatibility and biodegradability of polysaccharide sponges, coupled with the chemical functionalities of supramolecular dimers, make them promising combinations for the development of adhesive scaffolds. Here, a supramolecular tactic based on (UPy)-modified polysaccharide associated with three-dimensional structure of sponges was developed to reach enhanced cellular adhesion. For this purpose, three approaches were examined individually in order to accomplish this goal. In the first approach, the backbone polysaccharides with noncell adhesive properties were modified via a modular tactic using UPy-dimers. Hereupon, the physical-chemical characterizations of the supramolecular sponges were performed, showing that the presence of supramolecular dimers improved their mechanical properties and induced different architectures. In addition, small-angle neutron scattering (SANS) measurements and rheology experiments revealed that the UPy-dimers into agarose backbone are able to reorganize in thinning aggregates. It is also demonstrated that the resulted UPy-agarose (AGA-UPy) motifs in surfaces can promote cell adhesion. Finally, the last approach showed the great potential for use of this novel material in bioadhesive scaffolds indicating that neural stem cells show a spreading bias in soft materials and that cell adhesion was enhanced for all UPy-modified sponges compared to the reference, i.e. unmodified sponges. Therefore, by functionalizing sponge surfaces with UPy-dimers, an adhesive supramolecular scaffold is built which opens the opportunity its use neural tissues regeneration.
Collapse
Affiliation(s)
- Luanda Lins
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR12, Bat 563 CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| |
Collapse
|
32
|
Shkarin R, Shkarina S, Weinhardt V, Surmenev RA, Surmeneva MA, Shkarin A, Baumbach T, Mikut R. GPU-accelerated ray-casting for 3D fiber orientation analysis. PLoS One 2020; 15:e0236420. [PMID: 32726324 PMCID: PMC7390437 DOI: 10.1371/journal.pone.0236420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/06/2020] [Indexed: 12/01/2022] Open
Abstract
Orientation analysis of fibers is widely applied in the fields of medical, material and life sciences. The orientation information allows predicting properties and behavior of materials to validate and guide a fabrication process of materials with controlled fiber orientation. Meanwhile, development of detector systems for high-resolution non-invasive 3D imaging techniques led to a significant increase in the amount of generated data per a sample up to dozens of gigabytes. Though plenty of 3D orientation estimation algorithms were developed in recent years, neither of them can process large datasets in a reasonable amount of time. This fact complicates the further analysis and makes impossible fast feedback to adjust fabrication parameters. In this work, we present a new method for quantifying the 3D orientation of fibers. The GPU implementation of the proposed method surpasses another popular method for 3D orientation analysis regarding accuracy and speed. The validation of both methods was performed on a synthetic dataset with varying parameters of fibers. Moreover, the proposed method was applied to perform orientation analysis of scaffolds with different fibrous micro-architecture studied with the synchrotron μCT imaging setup. Each acquired dataset of size 600x600x450 voxels was analyzed in less 2 minutes using standard PC equipped with a single GPU.
Collapse
Affiliation(s)
- Roman Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Svetlana Shkarina
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Venera Weinhardt
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Centre for Organismal Studies, COS, Heidelberg University, Heidelberg, Germany
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Andrei Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
33
|
He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 2020; 12:042002. [PMID: 32615543 DOI: 10.1088/1758-5090/aba1fa] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrohydrodynamic (EHD) printing is a newly emerging additive manufacturing strategy for the controlled fabrication of three-dimensional (3D) micro/nanoscale architectures. This unique superiority makes it particularly suitable for the biofabrication of artificial tissue analogs with biomimetic structural organizations similar to the scales of native extracellular matrix (ECM) or living cells, which shows great potentials to precisely regulate cellular behaviors and tissue regeneration. Here the state-of-the-art advancements of high-resolution EHD bioprinting were reviewed mainly including melt-based and solution-based processes for the fabrication of micro/nanoscale fibrous scaffolds and living tissues constructs. The related printing materials, innovations on structure design and printing processes, functionalization of the resultant architectures as well as their effects on the mechanical and biological properties of the EHD-printed structures were introduced and analyzed. The recent explorations on the EHD cell printing for high-resolution cell-laden microgel patterning and 3D construct fabrication were highlighted. The major challenges as well as possible solutions to translate EHD bioprinting into a mature and prevalent biofabrication strategy were finally discussed.
Collapse
Affiliation(s)
- Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Rapid manufacturing research center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
34
|
Orkwis JA, Wolf AK, Shahid SM, Smith C, Esfandiari L, Harris GM. Development of a Piezoelectric PVDF-TrFE Fibrous Scaffold to Guide Cell Adhesion, Proliferation, and Alignment. Macromol Biosci 2020; 20:e2000197. [PMID: 32691517 DOI: 10.1002/mabi.202000197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Indexed: 12/20/2022]
Abstract
Severe peripheral nervous system injuries currently hold limited therapeutic solutions. Existing clinical techniques such as autografts, allografts, and newer nerve guidance conduits have shown variable outcomes in functional recovery, adverse immune responses, and in some cases low or minimal availability. This can be attributed in part to the lack of chemical, physical, and electrical cues directing both nerve guidance and regeneration. To address this pressing clinical issue, electrospun nanofibers and microfibers composed of piezoelectric polyvinylidene flouride-triflouroethylene (PVDF-TrFE) have been introduced as an alternative template for tissue engineered biomaterials, specifically as it pertains to their relevance in soft tissue and nerve repair. Here, biocompatible scaffolds of PVDF-TrFE are fabricated and their ability to generate an electrical response to mechanical deformations and produce a suitable regenerative microenvironment is examined. It is determined that 20% (w/v) PVDF-TrFE in (6:4) dimethyl formamide (DMF):acetone solvent maintains a desirable piezoelectric coefficient and the proper physical and electrical characteristics for tissue regeneration. Further, it is concluded that scaffolds of varying thickness promoted the adhesion and alignment of Schwann cells and fibroblasts. This work offers a prelude to further advancements in nanofibrous technology and a promising outlook for alternative, autologous remedies to peripheral nerve damage.
Collapse
Affiliation(s)
- Jacob A Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ann K Wolf
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Syed M Shahid
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Corinne Smith
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
35
|
Liu H, Wang Y, Yang Y, Wang A, Huang C, Zhao Z, Li P, Liu M, Fan Y. Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons. J Biomed Mater Res A 2020; 109:488-499. [PMID: 32515161 DOI: 10.1002/jbm.a.37031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Graphene, as a highly conducting material, incorporated into silk fibroin (SF) substrates is promising to fabricate an electroactive flexible scaffold toward neural tissue engineering. It is well known that aligned morphology could promote cell adhesion and directional growth. The purpose of this study was to develop aligned conductive scaffolds made of graphene and SF (G/SF) by electrospinning technique for neural tissue engineering applications. The physicochemical characterization of scaffolds revealed that the mechanical and electrochemical property of aligned G/SF scaffolds continually raised with the increasing contents of graphene (A0% G/SF, A1% G/SF, A2% G/SF, and A3% G/SF), but the mechanical property descended when the graphene concentration reached to 4% (the A4% G/SF group). The results of the cell experiment in vitro indicated that all the aligned G/SF scaffolds were no neurotoxic to primary cultured spinal cord neurons. In addition, the neurite elongation in all aligned groups was significantly enhanced by the upregulation of Netrin-1 expression compared to them in the control group. Thus, A3% G/SF scaffolds not only possessed the optimal property based on the mechanical and electrochemical performances but also displayed the beneficial capability to neurite outgrowth, which might perform a suitable candidate to successfully scaffold electrically active tissues during neural regeneration or engineering.
Collapse
Affiliation(s)
- Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yi Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chongquan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhijun Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
36
|
Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S. Electrospinning Piezoelectric Fibers for Biocompatible Devices. Adv Healthc Mater 2020; 9:e1901287. [PMID: 31701671 PMCID: PMC6949425 DOI: 10.1002/adhm.201901287] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022]
Abstract
The field of nanotechnology has been gaining great success due to its potential in developing new generations of nanoscale materials with unprecedented properties and enhanced biological responses. This is particularly exciting using nanofibers, as their mechanical and topographic characteristics can approach those found in naturally occurring biological materials. Electrospinning is a key technique to manufacture ultrafine fibers and fiber meshes with multifunctional features, such as piezoelectricity, to be available on a smaller length scale, thus comparable to subcellular scale, which makes their use increasingly appealing for biomedical applications. These include biocompatible fiber-based devices as smart scaffolds, biosensors, energy harvesters, and nanogenerators for the human body. This paper provides a comprehensive review of current studies focused on the fabrication of ultrafine polymeric and ceramic piezoelectric fibers specifically designed for, or with the potential to be translated toward, biomedical applications. It provides an applicative and technical overview of the biocompatible piezoelectric fibers, with actual and potential applications, an understanding of the electrospinning process, and the properties of nanostructured fibrous materials, including the available modeling approaches. Ultimately, this review aims at enabling a future vision on the impact of these nanomaterials as stimuli-responsive devices in the human body.
Collapse
Affiliation(s)
- Bahareh Azimi
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical Molecular Pathology and Emergency Care, University of Pisa, Pisa, 56124, Italy
| | - Mohammed Jasim Uddin
- Department of Chemistry, Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
37
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
38
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
39
|
Khorshidi S, Ansari S, Naghizadeh Z, Akbari N, Karkhaneh A, Haghighipour N. Concurrent effects of piezoelectricity and hydrostatic pressure on chondrogenic differentiation of stem cells. MATERIALS LETTERS 2019; 246:71-75. [DOI: 10.1016/j.matlet.2019.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
40
|
Li Y, Liao C, Tjong SC. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E952. [PMID: 31261995 PMCID: PMC6669491 DOI: 10.3390/nano9070952] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023]
Abstract
Polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE) with excellent piezoelectricity and good biocompatibility are attractive materials for making functional scaffolds for bone and neural tissue engineering applications. Electrospun PVDF and P(VDF-TrFE) scaffolds can produce electrical charges during mechanical deformation, which can provide necessary stimulation for repairing bone defects and damaged nerve cells. As such, these fibrous mats promote the adhesion, proliferation and differentiation of bone and neural cells on their surfaces. Furthermore, aligned PVDF and P(VDF-TrFE) fibrous mats can enhance neurite growth along the fiber orientation direction. These beneficial effects derive from the formation of electroactive, polar β-phase having piezoelectric properties. Polar β-phase can be induced in the PVDF fibers as a result of the polymer jet stretching and electrical poling during electrospinning. Moreover, the incorporation of TrFE monomer into PVDF can stabilize the β-phase without mechanical stretching or electrical poling. The main drawbacks of electrospinning process for making piezoelectric PVDF-based scaffolds are their small pore sizes and the use of highly toxic organic solvents. The small pore sizes prevent the infiltration of bone and neuronal cells into the scaffolds, leading to the formation of a single cell layer on the scaffold surfaces. Accordingly, modified electrospinning methods such as melt-electrospinning and near-field electrospinning have been explored by the researchers to tackle this issue. This article reviews recent development strategies, achievements and major challenges of electrospun PVDF and P(VDF-TrFE) scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Jenkins TL, Little D. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. NPJ Regen Med 2019; 4:15. [PMID: 31263573 PMCID: PMC6597555 DOI: 10.1038/s41536-019-0076-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering often uses synthetic scaffolds to direct cell responses during engineered tissue development. Since cells reside within specific niches of the extracellular matrix, it is important to understand how the matrix guides cell response and then incorporate this knowledge into scaffold design. The goal of this review is to review elements of cell-matrix interactions that are critical to informing and evaluating cellular response on synthetic scaffolds. Therefore, this review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional (2D) and three dimensional (3D) synthetic scaffolds. Variations in fiber diameter, alignment, and scaffold porosity guide stem cells toward different lineages. Cells generally exhibit rounded morphology on nanofibers, randomly oriented fibers, and low-porosity scaffolds. Conversely, cells exhibit elongated, spindle-shaped morphology on microfibers, aligned fibers, and high-porosity scaffolds. Cells migrate with higher velocities on nanofibers, aligned fibers, and high-porosity scaffolds but migrate greater distances on microfibers, aligned fibers, and highly porous scaffolds. Incorporating relevant biomimetic factors into synthetic scaffolds destined for specific tissue application could take advantage of and further enhance these responses.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Dianne Little
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
42
|
Yildirimer L, Zhang Q, Kuang S, Cheung CWJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards
in vitro
disease models of the central nervous system. Biofabrication 2019; 11:032003. [DOI: 10.1088/1758-5090/ab17aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Shkarin R, Shkarin A, Shkarina S, Cecilia A, Surmenev RA, Surmeneva MA, Weinhardt V, Baumbach T, Mikut R. Quanfima: An open source Python package for automated fiber analysis of biomaterials. PLoS One 2019; 14:e0215137. [PMID: 30973910 PMCID: PMC6459545 DOI: 10.1371/journal.pone.0215137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis.
Collapse
Affiliation(s)
- Roman Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| | - Andrei Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Svetlana Shkarina
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Angelica Cecilia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Venera Weinhardt
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Centre for Organismal Studies, COS, Heidelberg University, Heidelberg, Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
44
|
Maurya AK, Weidenbacher L, Spano F, Fortunato G, Rossi RM, Frenz M, Dommann A, Neels A, Sadeghpour A. Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. NANOSCALE 2019; 11:7176-7187. [PMID: 30919869 DOI: 10.1039/c9nr00446g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A dedicated nanofiber design for applications in the biomedical domain is based on the understanding of nanofiber structures. The structure of electrospun nanofibers strongly influences their properties and functionalities. In polymeric nanofibers X-ray scattering and diffraction methods, i.e. SAXS and WAXD, are capable of decoding their structural insights from about 100 nm down to the Angström scale. Here, we present a comprehensive X-ray scattering and diffraction based study and introduce new data analysis approaches to unveil detailed structural features in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDFhfp) nanofiber membranes. Particular emphasis was placed on anisotropic morphologies being developed during the nanofiber fabrication process. Global analysis was performed on SAXS data to derive the nanofibrillar structure of repeating lamella crystalline domains with average dimensions of 12.5 nm thickness and 7.8 nm spacing along with associated tie-molecules. The varying surface roughness of the nanofiber was evaluated by extracting the Porod exponent in parallel and perpendicular direction to the nanofiber axis, which was further validated by Atomic Force Microscopy. Additionally, the presence of a mixture of the monoclinic alpha and the orthorhombic beta PVDFhfp phases both exhibiting about 6% larger unit cells compared to the corresponding pure PVDF phases was derived from WAXD. The current study shows a generic approach in detailed understanding of internal structures and surface morphology for nanofibers. This forms the basis for targeted structure and morphology steering and the respective controlling during the fabrication process with the aim to engineer nanofibers for different biomedical applications with specific requirements.
Collapse
Affiliation(s)
- Anjani K Maurya
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, St. Gallen, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arumugam R, Srinadhu ES, Subramanian B, Nallani S. β-PVDF based electrospun nanofibers – A promising material for developing cardiac patches. Med Hypotheses 2019; 122:31-34. [DOI: 10.1016/j.mehy.2018.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
|
46
|
Chaves Lins L, Livi S, Maréchal M, Duchet-Rumeau J, Gérard JF. Structural dependence of cations and anions to building the polar phase of PVDF. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Liu M, Wang Y, Hu X, He W, Gong Y, Hu X, Liu M, Luo G, Xing M, Wu J. Janus N, N-dimethylformamide as a solvent for a gradient porous wound dressing of poly(vinylidene fluoride) and as a reducer for in situ nano-silver production: anti-permeation, antibacterial and antifouling activities against multi-drug-resistant bacteria both in vitro and in vivo. RSC Adv 2018; 8:26626-26639. [PMID: 35541086 PMCID: PMC9083098 DOI: 10.1039/c8ra03234c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022] Open
Abstract
The requirements for anti-permeation, anti-infection and antifouling when treating a malicious wound bed raise new challenges for wound dressing. The present study used N,N-dimethylformamide to treat poly(vinylidene fluoride) (PVDF) in order to obtain a dressing impregnated with in situ generated nano-silver particles (NS) via an immersion phase inversion method. Scanning electron microscopy (SEM) images showed that the film was characterized by a two-layer asymmetric structure with different pore sizes (top layer: ∼0.4 μm; bottom layer: ∼1.8 μm). The moisture permeability test indicated that the film had an optimal water vapor transmission rate (WVTR: ∼2500 g m-2 per day). TEM images revealed the successful formation of spherical NS, and Fourier-transform infrared spectroscopy (FTIR) demonstrated the integration of PVDF and NS (i.e., PVDF/NS). Correspondingly, the water contact angle measurements confirmed increased membrane surface hydrophobicity after NS integration. The inductively coupled plasma (ICP) spectrometry showed that the PVDF/NS displayed a continuous and safe release of silver ions. Moreover, in vitro experiments indicated that PVDF/NS films possessed satisfactory anti-permeation, antibacterial and antifouling activities against A. baumannii and E. coli bacteria, while they exhibited no obvious cytotoxicity toward mammalian HaCaT cells. Finally, the in vivo results showed that the nanoporous top layer of film could serve as a physical barrier to prevent bacterial penetration, whereas the microporous bottom layer could efficiently prevent bacterial infection caused by biofouling, leading to fast re-epithelialization via the enhancement of keratinocyte proliferation. Collectively, the results show that the PVDF/NS25 film has a promising application in wound treatment, especially for wounds infected by multi-drug-resistant bacteria such as A. baumannii.
Collapse
Affiliation(s)
- Menglong Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Xiaodong Hu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Meixi Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Malcolm Xing
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
- Department of Mechanical Engineering, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
- Department of Burns, The First Affiliated Hospital, SunYat-Sen University Guangzhou 510080 China
| |
Collapse
|
48
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
49
|
Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog Biomater 2017; 6:113-123. [PMID: 28895062 PMCID: PMC5597567 DOI: 10.1007/s40204-017-0071-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Smart materials like piezoelectric polymers represent a new class of promising scaffold in neural tissue engineering. In the current study, the fabrication processing parameters of polyvinylidine fluoride (PVDF) nanofibrous scaffold are found as a potential scaffold with nanoscale morphology and microscale alignment. Electrospinning technique with the ability to mimic the structure and function of an extracellular matrix is a preferable method to customize the scaffold features. PVDF nanofibrous scaffolds were successfully fabricated by the electrospinning technique. The influence of PVDF solution concentration and other processing parameters like applied voltage, tip-to-collector distance, feeding rate, collector speed and the solvent were studied. The optimal parameters were 30 w/v% PVDF concentration, 15 kV applied voltage, 18 cm tip-to-collector distance, 0.5 ml/h feeding rate, 2500 rpm collector speed and N,N'-dimethylacetamide/acetone as a solvent. The mean fiber diameter of the obtained scaffold was 352.9 ± 24 nm with uniform and aligned morphology. Finally, the cell viability and morphology of PC-12 cells on the optimum scaffold indicated the potential of PVDF nanofibrous scaffold for neural tissue engineering.
Collapse
Affiliation(s)
- Asma Sadat Motamedi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | | | - Shadab Bagheri-Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | |
Collapse
|
50
|
Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J, Gérard JF. Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules 2016; 17:3172-3187. [DOI: 10.1021/acs.biomac.6b00820] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luanda Chaves Lins
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Florence Wianny
- Inserm,
Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Sébastien Livi
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Idalba Andreina Hidalgo
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Colette Dehay
- Inserm,
Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Jannick Duchet-Rumeau
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-François Gérard
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|