1
|
Tian X, Miao Y, Liu H, Jin C, Liu T, Ding W, He F, Xu Y. Bioinspired hydrogel microspheres enhance nucleus pulposus regeneration through N-cadherin interaction with extracellular matrix mimicry. J Control Release 2025; 383:113771. [PMID: 40288497 DOI: 10.1016/j.jconrel.2025.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of debilitating spinal conditions, necessitating regenerative therapies to restore tissue function. This study explores the potential of enhancing nucleus pulposus cell (NPC) viability and extracellular matrix (ECM) synthesis through surface modification of GelMA microspheres with His-Ala-Val (HAV) peptides. The HAV peptides, mimicking N-cadherin's adhesive properties, aim to promote cell-cell interactions akin to NPCs' native environment. In vitro studies demonstrated enhanced ECM secretion by NPCs cultured on HAV-functionalized GelMA microspheres, suggesting a potential for improved regenerative capacity. The microspheres promoted NP tissue regeneration when implanted in rat tail IVDs post-discectomy, indicating their therapeutic efficacy in vivo. This research provides insights into novel strategies for enhancing cell-material interactions in tissue engineering applications to mitigate IVDD.
Collapse
Affiliation(s)
- Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg 41346, Sweden
| | - Yan Miao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China
| | - Wenge Ding
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
2
|
Ha TY, Chan SW, Wang Z, Law PWN, Miu KK, Lu G, Chan WY. SOX9 haploinsufficiency reveals SOX9-Noggin interaction in BMP-SMAD signaling pathway in chondrogenesis. Cell Mol Life Sci 2025; 82:99. [PMID: 40025280 PMCID: PMC11872873 DOI: 10.1007/s00018-025-05622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Campomelic Dysplasia (CD) is a rare congenital disease caused by haploinsufficiency (HI) in SOX9. Patients with CD typically present with skeletal abnormalities and 75% of them have sex reversal. In this study, we use CRISPR/Cas9 to generate a human induced pluripotent stem cell (hiPSC) model from a heathy male donor, based on a previously reported SOX9 splice site mutation in a CD patients. This hiPSCs-derived chondrocytes from heterozygotes (HT) and homozygotes (HM) SOX9 mutation carriers showed significant defects in chondrogenesis. Bulk RNA profiling revealed that the BMP-SMAD signaling pathway, ribosome-related, and chromosome segregation-related gene sets were altered in the HT chondrocytes. The profile also showed significant noggin upregulation in CD chondrocytes, with ChIP-qPCR confirming that SOX9 binds to the distal regulatory element of noggin. This suggests SOX9 plays a feedback role in the BMP signaling pathway by modulating noggin expression rather than acting solely as a downstream regulator. This provides further insights into its dosage sensitivity in chondrogenesis. Overexpression of SOX9 showed promising results with improved sulfated glycosaminoglycans (GAGs) aggregation and COL2A1 expression following differentiation. We hope this finding could provide a better understanding of the dosage-dependent role of SOX9 in chondrogenesis and contribute to the development of improved therapeutic targets for CD patients.
Collapse
Affiliation(s)
- Tin-Yan Ha
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - See-Wing Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick Wai Nok Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Gang Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Aboushaala K, Chee A, Ko F, Alkhudari J, Sumughan S, An HS, Samartzis D, Oh C. Mechanism of Intervertebral Disc Degeneration via the β-Catenin/CCL2 Pathway in Sox9 Conditional Knockout Mice. JOR Spine 2025; 8:e70053. [PMID: 40012719 PMCID: PMC11864852 DOI: 10.1002/jsp2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Degenerative changes in the intervertebral disc (IVD) are known to be a main cause of low back pain (LBP), oftentimes necessitating interventions that may or may not be successful due to a lack of understanding in the degenerative phenotype and its mechanisms. Understanding the molecular mechanisms of disc degeneration can help design new therapies to induce disc regeneration and reduce back pain. This work aimed to understand the effects of conditional deletion of Sox9 in aggrecan-expressing cells on intervertebral disc degeneration and its underlying mechanisms in mice. Methods This study utilized Agc1-CreERT2;Sox9 flox/flox mice to investigate the effects of SOX9 deletion on IVD degeneration and associated pain behaviors. Mice were administered tamoxifen to induce conditional gene deletion of Sox9. Structural and degenerative phenotypes of the spine were assessed by a histological scoring system and micro-computed tomography (microCT). Pain behaviors were evaluated through mechanical allodynia testing and the LABORAS system for spontaneous behavior assessment. Immunohistochemistry identified the expression of proteins of interest, which were further examined by Western blotting. Lastly, quantitative real-time PCR and promoter assays on IVD cells were used to examine inflammatory and signaling pathways induced by Sox9 deletion. Results Crossing Agc1-CreERT2 mice with Sox9 flox/flox mice revealed that Sox9 conditional deletion (Sox9 cKO ) in cartilage tissues causes IVD degeneration and pain behavior. Sox9 cKO mice spines had narrowed intervertebral disc spaces and disorganized IVD tissues. Sox9 deletion also increased β-catenin, C-C motif chemokine ligand 2 (CCL2), and Glial cell line-derived neurotrophic factor (GDNF) expression in the IVD, suggesting their roles in disc pain and degeneration and the importance of the β-catenin/CCL2 pathway in these processes. Conclusions Deletion of Sox9 in Aggrecan-expressing IVD tissues affects disc degeneration and associated pain behaviors through the β-catenin-CCL2 pathway. Such findings can lead to more targeted, personalized therapeutics in the future to address discogenic origins of LBP.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ana Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frank Ko
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoIllinoisUSA
| | - Jad Alkhudari
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Saurav Sumughan
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Howard S. An
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Dino Samartzis
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Chun‐do Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
4
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Feng HC, Bian F, He J, Song CJ, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Qiu G, Wu Z, Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study group, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. Proc Natl Acad Sci U S A 2025; 122:e2313978121. [PMID: 39854231 PMCID: PMC11789016 DOI: 10.1073/pnas.2313978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/30/2024] [Indexed: 01/30/2025] Open
Abstract
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four pathogenic variants of SOX9 identified in a cohort of patients with congenital vertebral malformations. We report a pathogenic missense variant in the transactivation middle (TAM) domain of SOX9 associated with mild skeletal dysplasia and scoliosis. We isolated a Sox9 mutant mouse with an in-frame microdeletion in the TAM domain (Sox9Asp272del), which exhibits skeletal dysplasia including kinked tails, rib cage anomalies, and scoliosis in homozygous mutants. We find that both the human missense and the mouse microdeletion mutations resulted in reduced SOX9 protein stability in cell culture, while Sox9Asp272del mutant mice show decreased SOX9 expression in the growth plate and annulus fibrosus tissues of the spine. This reduction in SOX9 expression was correlated with the reduction of extracellular matrix components, such as tenascin-X and the Adhesion G-protein coupled receptor ADGRG6. In summary, our work identified and modeled a pathologic variant of SOX9 within the TAM domain and demonstrated its importance for SOX9 protein stability. Our work demonstrates that SOX9 stability is important for the regulation of ADGRG6 expression, which is a known regulator of postnatal spine homeostasis, underscoring the essential role of SOX9 dosage in a spectrum of axial skeleton dysplasia in humans.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Valeria Aceves
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Christina J. Song
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Benjamin Troutwine
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Samuel Ma
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Yuchen Niu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Suomao Yuan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Xiaoxin Li
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Lina Zhao
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Xinyu Liu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Zhihong Wu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study group
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Ryan S. Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
5
|
Bian F, Hansen V, Feng HC, He J, Chen Y, Feng K, Ebrahimi B, Gray RS, Chai Y, Wu CL, Liu Z. The G protein-coupled receptor ADGRG6 maintains mouse growth plate homeostasis through IHH signaling. J Bone Miner Res 2024; 39:1644-1658. [PMID: 39236220 PMCID: PMC11523133 DOI: 10.1093/jbmr/zjae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The cartilage growth plate is essential for maintaining skeletal growth; however, the mechanisms governing postnatal growth plate homeostasis are still poorly understood. Using approaches of molecular mouse genetics and spatial transcriptomics applied to formalin-fixed, paraffin-embedded tissues, we show that ADGRG6/GPR126, a cartilage-enriched adhesion G protein-coupled receptor (GPCR), is essential for maintaining slow-cycling resting zone cells, appropriate chondrocyte proliferation and differentiation, and growth plate homeostasis in mice. Constitutive ablation of Adgrg6 in osteochondral progenitor cells with Col2a1Cre leads to a shortened resting zone, formation of cell clusters within the proliferative zone, and an elongated hypertrophic growth plate, marked by limited expression of parathyroid hormone-related protein (PTHrP) but increased Indian Hedgehog (IHH) signaling throughout the growth plate. Attenuation of smoothened-dependent hedgehog signaling restored the Adgrg6 deficiency-induced expansion of hypertrophic chondrocytes, confirming that IHH signaling can promote chondrocyte hypertrophy in a PTHrP-independent manner. In contrast, postnatal ablation of Adgrg6 in mature chondrocytes with AcanCreERT2, induced after the formation of the resting zone, does not affect PTHrP expression but causes an overall reduction of growth plate thickness marked by increased cell death specifically in the resting zone cells and a general reduction of chondrocyte proliferation and differentiation. Spatial transcriptomics reveals that ADGRG6 is essential for maintaining chondrocyte homeostasis by regulating osteogenic and catabolic genes in all the zones of the postnatal growth plates, potentially through positive regulation of SOX9 expression. Our findings elucidate the essential role of a cartilage-enriched adhesion GPCR in regulating cell proliferation and hypertrophic differentiation by regulation of PTHrP/IHH signaling, maintenance of slow-cycle resting zone chondrocytes, and safeguarding chondrocyte homeostasis in postnatal mouse growth plates.
Collapse
Affiliation(s)
- Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Victoria Hansen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Yanshi Chen
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biology, University of Rochester, Rochester, NY 14642, United States
| | - Kaining Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Brenda Ebrahimi
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Ryan S Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
6
|
Sheng W, Yue Y, Qi T, Qin H, Liu P, Wang D, Zeng H, Yu F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. J Inflamm Res 2024; 17:6619-6633. [PMID: 39329083 PMCID: PMC11424688 DOI: 10.2147/jir.s479186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Hui Zeng
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| |
Collapse
|
7
|
Wang L, Yang H, Wang C, Wang M, Huang J, Nyunt T, Osorio C, Sun SY, Pacifici M, Lefebvre V, Moore DC, Wang S, Yang W. SHP2 ablation mitigates osteoarthritic cartilage degeneration by promoting chondrocyte anabolism through SOX9. FASEB J 2024; 38:e70013. [PMID: 39225365 PMCID: PMC11404350 DOI: 10.1096/fj.202400642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Huiliang Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahui Huang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Thedoe Nyunt
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Camilo Osorio
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Véronique Lefebvre
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Moore
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Zhao L, Lai Y, Jiao H, Li J, Lu K, Huang J. CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis. Mol Ther 2024; 32:2549-2562. [PMID: 38879753 PMCID: PMC11405173 DOI: 10.1016/j.ymthe.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Soni N, Niranjane P, Purohit A. Role of Growth Factors in Nasal Cartilage Development and Molding: A Comprehensive Review. Cureus 2024; 16:e67202. [PMID: 39295663 PMCID: PMC11409944 DOI: 10.7759/cureus.67202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
This review aims to investigate the properties of growth factors concerning the morphogenesis and development of nasal cartilage, which is fundamentally important for facial form and appearance. Since cartilage lacks a blood supply, it is more difficult to regenerate, as cartilage tissue obtains sustenance by diffusion. Cytokines are signalling molecules that control chondrocyte metabolism and extracellular matrix formation, which is required for cartilage development, homeostasis, and healing. Some craniofacial illnesses alter the composition of the cartilage and the structural organization of growth factors, allowing for moulding. TGF-β (transforming growth factor-β) encourages chondrocyte differentiation, whereas IGF-1 (insulin-like growth factor-1) stimulates cartilage-forming collagen synthesis and chondrocyte multiplication. We used the scoping review approach to present current research on the role of growth factors in the creation and architecture of nasal cartilage. We generally observed this structure before conducting specific experiments to determine the impact of growth agents on the development of chondrocytes and cartilage. Prominent findings increase our understanding of how growth factors influence the extracellular matrix, cell activities and features, and cartilage growth rate; all are critical for cartilage tissue development and repair. Research into growth factors and their physiological interactions with cartilage may help improve treatment's functional and aesthetic outcomes and our understanding of the origins and consequences of nasal congenital anomalies. This study emphasizes the importance of expanding knowledge and experience, as well as the use of growth factors in clinical practice, to stimulate cartilage development.
Collapse
Affiliation(s)
- Nikita Soni
- Department of Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Niranjane
- Department of Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akanksha Purohit
- Neglected Tropical Diseases, Global Health Strategies, Delhi, IND
| |
Collapse
|
10
|
Wang L, Chen X, Wang S, Ma J, Yang X, Chen H, Xiao J. Ferrous/Ferric Ions Crosslinked Type II Collagen Multifunctional Hydrogel for Advanced Osteoarthritis Treatment. Adv Healthc Mater 2024; 13:e2302833. [PMID: 38185787 DOI: 10.1002/adhm.202302833] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent and intricate degenerative joint disease affecting an estimated 500 million individuals worldwide. Collagen-based hydrogels have sparked immense interest in cartilage tissue engineering, but substantial challenges persist in developing biocompatible and robust crosslinking strategies, as well as improving their effectiveness against the multifaceted nature of OA. Herein, a novel discovery wherein the simple incorporation of ferrous/ferric ions enables efficient dynamic crosslinking of type II collagen, leading to the development of injectable, self-healing hydrogels with 3D interconnected porous nanostructures, is unveiled. The ferrous/ferric ions crosslinked type II collagen hydrogels demonstrate exceptional physical properties, such as significantly enhanced mechanical strength, minimal swelling ratios, and remarkable resistance to degradation, while also exhibiting extraordinary biocompatibility and bioactivity, effectively promoting cell proliferation, adhesion, and chondrogenic differentiation. Additionally, the hydrogels reveal potent anti-inflammatory effects by upregulating anti-inflammatory cytokines while downregulating pro-inflammatory cytokines. In a rat model of cartilage defects, these hydrogels exhibit impressive efficacy, substantially accelerating cartilage tissue regeneration through enhanced collagen deposition and increased proteoglycan secretion. The innovative discovery of the multifunctional role of ferrous/ferric ions in endowing type II collagen hydrogels with a myriad of beneficial properties presents exciting prospects for developing advanced biomaterials with potential applications in OA.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730030, P. R. China
| | - Xian Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730030, P. R. China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Jianrui Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaxia Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730030, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, 730030, P. R. China
| |
Collapse
|
11
|
ZHANG MINGCAI, CAMPBELL TANNER, FALCON SPENCER, WANG JINXI. Regulatory role of NFAT1 signaling in articular chondrocyte activities and osteoarthritis pathogenesis. BIOCELL 2023; 47:2125-2132. [PMID: 37974562 PMCID: PMC10651080 DOI: 10.32604/biocell.2023.030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/26/2023] [Indexed: 11/19/2023]
Abstract
Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness, and deformity. OA is now considered a whole joint disease; however, the breakdown of the articular cartilage remains the major hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding or reversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development is a critical barrier to progress in OA therapy. Recent studies by the current authors' group and others have revealed that the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulates the expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1 exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. This review mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities of articular chondrocytes and its implication in the pathogenesis of OA.
Collapse
Affiliation(s)
- MINGCAI ZHANG
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - TANNER CAMPBELL
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - SPENCER FALCON
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| | - JINXI WANG
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
12
|
Michelacci YM, Baccarin RYA, Rodrigues NNP. Chondrocyte Homeostasis and Differentiation: Transcriptional Control and Signaling in Healthy and Osteoarthritic Conditions. Life (Basel) 2023; 13:1460. [PMID: 37511835 PMCID: PMC10381434 DOI: 10.3390/life13071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrocytes are the main cell type in articular cartilage. They are embedded in an avascular, abundant, and specialized extracellular matrix (ECM). Chondrocytes are responsible for the synthesis and turnover of the ECM, in which the major macromolecular components are collagen, proteoglycans, and non-collagen proteins. The crosstalk between chondrocytes and the ECM plays several relevant roles in the regulation of cell phenotype. Chondrocytes live in an avascular environment in healthy cartilage with a low oxygen supply. Although chondrocytes are adapted to anaerobic conditions, many of their metabolic functions are oxygen-dependent, and most cartilage oxygen is supplied by the synovial fluid. This review focuses on the transcription control and signaling responsible for chondrocyte differentiation, homeostasis, senescence, and cell death and the changes that occur in osteoarthritis. The effects of chondroitin sulfate and other molecules as anti-inflammatory agents are also approached and analyzed.
Collapse
Affiliation(s)
- Yara M Michelacci
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Raquel Y A Baccarin
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| | - Nubia N P Rodrigues
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
13
|
Wakale S, Wu X, Sonar Y, Sun A, Fan X, Crawford R, Prasadam I. How are Aging and Osteoarthritis Related? Aging Dis 2023; 14:592-604. [PMID: 37191424 PMCID: PMC10187698 DOI: 10.14336/ad.2022.0831] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/31/2022] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most prevalent degenerative joint disease and one of the leading causes of physical impairment in the world's aging population. The human lifespan has significantly increased as a result of scientific and technological advancements. According to estimates, the world's elderly population will increase by 20% by 2050. Aging and age-related changes are discussed in this review in relation to the development of OA. We specifically discussed the cellular and molecular changes that occur in the chondrocytes during aging and how these changes may make synovial joints more susceptible to OA development. These changes include chondrocyte senescence, mitochondrial dysfunction, epigenetic modifications, and decreased growth factor response. The age-associated changes occur not only in the chondrocytes but also in the matrix, subchondral bone, and synovium. This review aims to provide an overview of the interplay between chondrocytes and matrix and how age-related changes affect the normal function of cartilage and contribute to OA development. Understanding the alterations that affect the function of chondrocytes will emerge new possibilities for prospective therapeutic options for the treatment of OA.
Collapse
Affiliation(s)
- Shital Wakale
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Yogita Sonar
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Antonia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Wu Z, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290174. [PMID: 37398377 PMCID: PMC10312849 DOI: 10.1101/2023.05.29.23290174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
SOX9 is an essential transcriptional regulator of cartilage development and homeostasis. In humans, dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic and acampomelic dysplasia, and scoliosis. The mechanism of how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four novel pathogenic variants of SOX9 identified in a large cohort of patients with congenital vertebral malformations. Three of these heterozygous variants are in the HMG and DIM domains, and for the first time, we report a pathogenic variant within the transactivation middle (TAM) domain of SOX9 . Probands with these variants exhibit variable skeletal dysplasia, ranging from isolated vertebral malformation to acampomelic dysplasia. We also generated a Sox9 hypomorphic mutant mouse model bearing a microdeletion within the TAM domain ( Sox9 Asp272del ). We demonstrated that disturbance of the TAM domain with missense mutation or microdeletion results in reduced protein stability but does not affect the transcriptional activity of SOX9. Homozygous Sox9 Asp272del mice exhibited axial skeletal dysplasia including kinked tails, ribcage anomalies, and scoliosis, recapitulating phenotypes observed in human, while heterozygous mutants display a milder phenotype. Analysis of primary chondrocytes and the intervertebral discs in Sox9 Asp272del mutant mice revealed dysregulation of a panel of genes with major contributions of the extracellular matrix, angiogenesis, and ossification-related processes. In summary, our work identified the first pathologic variant of SOX9 within the TAM domain and demonstrated that this variant is associated with reduced SOX9 protein stability. Our finding suggests that reduced SOX9 stability caused by variants in the TAM domain may be responsible for the milder forms of axial skeleton dysplasia in humans.
Collapse
|
15
|
Zhou Z, Lv C, Wang Y, Zhang B, Liu L, Yang J, Leng X, Zhao D, Yao B, Wang J, Dong H. BuShen JianGu Fang alleviates cartilage degeneration via regulating multiple genes and signaling pathways to activate NF-κB/Sox9 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154742. [PMID: 36893673 DOI: 10.1016/j.phymed.2023.154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is an inflammatory response in chondrocytes, causing extracellular matrix (ECM) degradation and cartilage destruction, affecting millions of people worldwide. Chinese herbal formulae BuShen JianGu Fang (BSJGF) has been clinically applied for treating OA-related syndromes, but the underlying mechanism still unclear. METHODS The components of BSJGF were analyzed by liquid chromatography-mass spectrometry (LC-MS). To make a traumatic OA model, the anterior cruciate ligament of 6-8-week-old male SD rats were cut and then the 0.4 mm metal was used to destroy the knee joint cartilage. OA severity was assessed by histological and Micro-CT. Mouse primary chondrocytes were utilized to investigate the mechanism of BSJGF alleviate osteoarthritis, which was examined by RNA-seq technology combined with a series of functional experiments. RESULTS A total 619 components were identified by LC-MS. In vivo, BSJGF treatment result in a higher articular cartilage tissue area compared to IL-1β group. Treatment also significantly increased Tb.Th, BV/TV and BMD of subchondral bone (SCB), which implied a protective effect on maintaining the stabilization of SCB microstructure. In vitro results indicated BSJGF promoted chondrocyte proliferation, increased the expression level of cartilage-specific genes (Sox9, Col2a1, Acan) and synthesized acidic polysaccharide, while inhibiting the release of catabolic enzymes and production of reactive oxygen species (ROS) induced by IL-1β. Transcriptome analysis showed that there were 1471 and 4904 differential genes between IL-1β group and blank group, BSJGF group and IL-1β group, respectively, including matrix synthesis related genes (Col2a1, H19, Acan etc.), inflammation related genes (Comp, Pcsk6, Fgfr3 etc.) and oxidative stress related genes (Gm26917, Bcat1, Sod1 etc.). Furthermore, KEGG analysis and validation results showed that BSJGF reduces OA-mediated inflammation and cartilage damaged due to modulation of NF-κB/Sox9 signaling axis. CONCLUSION The innovation of the present study was the elucidation of the alleviating cartilage degradation effect of BSJGF in vivo and in vitro and discovery of its mechanism through RNA-seq combined with function experiments, which provides a biological rationale for the clinical application of BSJGF for OA treatment.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Cheng Lv
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yuting Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Binghua Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Lang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Baojin Yao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Jianyu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| |
Collapse
|
16
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
17
|
Cong L, Jiang P, Wang H, Huang L, Wu G, Che X, Wang C, Li P, Duan Q, Guo X, Li P. MiR-1 is a critical regulator of chondrocyte proliferation and hypertrophy by inhibiting Indian hedgehog pathway during postnatal endochondral ossification in miR-1 overexpression transgenic mice. Bone 2022; 165:116566. [PMID: 36152943 DOI: 10.1016/j.bone.2022.116566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Endochondral bone formation from the growth plate plays a critical role in vertebrate limb development and skeletal homeostasis. Although miR-1 is mainly expressed in the hypertrophic region of the growth plate during this process, its role in the endochondral bone formation is unknown. To elucidate the role of miR-1 in cartilage development, chondrocyte-specific transgenic mice with high expression of miR-1 were generated (Col2a1-Cre-ERT2-GFPfl/fl-RFP-miR-1). Transgenic mice showed short limbs and delayed formation of secondary ossification centers. In the tibia growth plate of miR-1-overexpressing transgenic mice, the chondrocytes in the proliferative zone were disorganized and their proliferation decreased, and the ColX, MMP-13 and Indian Hedgehog (IHH) in chondrocytes showed a downward trend, resulting in decreased terminal differentiation in the hypertrophic zone. In addition, the apoptosis index caspase-3 also showed a downward trend in the tibia growth plate. It was concluded that miR-1 overexpression affects chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thereby delaying the formation of secondary ossification centers and leading to short limbs. It was also verified that miR-1 affects endochondral ossification through the IHH pathway. The above results suggest that miR-1 overexpression can affect endochondral osteogenesis by inhibiting chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thus causing limb hypoplasia in mice. This work gives potential for new therapeutic directions and insights for the treatment of dwarf-related diseases.
Collapse
Affiliation(s)
- Linlin Cong
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Pinpin Jiang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hang Wang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Lingan Huang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaige Wu
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xianda Che
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China; The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Penghua Li
- Department of Laboratory Medicine, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, Shanxi, China
| | - Qianqian Duan
- Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Xing Guo
- Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Pengcui Li
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
18
|
Buzzatto-Leite I, Afonso J, Silva-Vignato B, Coutinho L, Alvares L. Differential gene co-expression network analyses reveal novel molecules associated with transcriptional dysregulation of key biological processes in osteoarthritis knee cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100316. [PMID: 36474801 PMCID: PMC9718204 DOI: 10.1016/j.ocarto.2022.100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To compare co-expression networks of normal and osteoarthritis knee cartilage to uncover molecules associated with the transcriptional misregulation compromising biological processes (BPs) critical for cartilage homeostasis. DESIGN Normal and osteoarthritis human knee cartilage RNA-seq GSE114007 dataset was obtained from the Gene Expression Omnibus database. Partial Correlation and Information Theory (PCIT) algorithm was used to build co-expression networks containing all nodes connecting to at least one differentially expressed gene (DEG) in normal and osteoarthritis networks. Hub and hub centrality genes were used to perform functional enrichment analysis. Enriched BPs known to be associated with both healthy and diseased cartilage were compared in depth. RESULTS Differential co-expression network analyses allowed the identification of DDX43 and USP42 as exclusively co-expressed with DEGs in normal and osteoarthritis networks, respectively. The top hub and hub centrality genes of these networks were HIST1H3A and SNHG12 (normal) and TAF9B and OTUD1 (osteoarthritis). Enrichment analysis revealed several shared BPs between the contrasting groups, which are well-known in osteoarthritis pathogenesis. Protein-protein interaction network analysis for these BPs showed a global down-regulation of transcription factors in osteoarthritis. Specific transcription factors were identified as pleiotropic mediators in articular cartilage maintenance since they take part in several BPs. In addition, chromatin organisation and modification proteins were found relevant for osteoarthritis development. CONCLUSION Differential gene co-expression analysis allowed the identification of novel and high priority therapeutic candidate genes that may drive modifications in the transcriptional "status" of cartilage in osteoarthritis.
Collapse
Affiliation(s)
- I. Buzzatto-Leite
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - J. Afonso
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - B. Silva-Vignato
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - L.L. Coutinho
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - L.E. Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,Corresponding author. Department of Biochemistry and Tissue Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato 255, Cx. Postal 6109, CEP 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
19
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Li B, Chen G, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. Integrative Bioinformatics Analysis Revealed Mitochondrial Dysfunction-Related Genes Underlying Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372483. [PMID: 36267810 PMCID: PMC9578809 DOI: 10.1155/2022/1372483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Objective Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based on bioinformatic analyses. Methods Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in intervertebral disc tissues. Results In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs, including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9, FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were consistent with the results of bioinformatics analysis. Conclusion We identified four genes (SOX9, FLVCR1, NR5A1 and UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Guoliang Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
21
|
Terhune EA, Monley AM, Cuevas MT, Wethey CI, Gray RS, Hadley-Miller N. Genetic animal modeling for idiopathic scoliosis research: history and considerations. Spine Deform 2022; 10:1003-1016. [PMID: 35430722 DOI: 10.1007/s43390-022-00488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of musculoskeletal surgery and research. METHODS In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations for researchers. RESULTS Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in humans, scoliosis is a difficult condition to replicate in model organisms. CONCLUSION We advocate careful selection of animal models based on the scientific question and introduce gaps and limitations in the current literature. We advocate future research efforts to include animal models with multiple characterized genetic or environmental perturbations to reflect current understanding of the human condition.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA. .,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 2022; 31:2820-2830. [PMID: 35377455 PMCID: PMC9402238 DOI: 10.1093/hmg/ddac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adetutu T Egunsula
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhiyin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Marya S, Tambe AD, Millner PA, Tsirikos AI. Adolescent idiopathic scoliosis : a review of aetiological theories of a multifactorial disease. Bone Joint J 2022; 104-B:915-921. [PMID: 35909373 DOI: 10.1302/0301-620x.104b8.bjj-2021-1638.r1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article: Bone Joint J 2022;104-B(8):915-921.
Collapse
Affiliation(s)
- Shivan Marya
- Royal Manchester Children's Hospital, Manchester, UK
| | | | | | - Athanasios I Tsirikos
- Scottish National Spine Deformity Centre, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
24
|
Kawata M, Teramura T, Ordoukhanian P, Head SR, Natarajan P, Sundaresan A, Olmer M, Asahara H, Lotz MK. Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis 2022; 81:1179-1188. [PMID: 35534137 PMCID: PMC9643672 DOI: 10.1136/annrheumdis-2021-221867] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis. METHODS Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq). RESULTS Several KLF genes were significantly decreased in OA cartilage. Among them, KLF4 and KLF2 were strong inducers of cartilage collagen genes and Proteoglycan-4. Cartilage-specific deletion of Klf2 in mature mice aggravated severity of experimental OA. Transduction of human chondrocytes with Adenovirus (Ad) expressing KLF4 or KLF2 enhanced expression of major cartilage extracellular matrix (ECM) genes and SRY-box transcription factor-9, and suppressed mediators of inflammation and ECM-degrading enzymes. Ad-KLF4 and Ad-KLF2 enhanced similar protective functions in meniscus cells and synoviocytes, and promoted chondrocytic differentiation of human mesenchymal stem cells. Viral KLF4 delivery into mouse knees reduced severity of OA-associated changes in cartilage, meniscus and synovium, and improved pain behaviours. ChIP-seq analysis suggested that KLF4 directly bound cartilage signature genes. Ras-related protein-1 signalling was the most enriched pathway in KLF4-transduced cells, and its signalling axis was involved in upregulating cartilage ECM genes by KLF4 and KLF2. CONCLUSIONS KLF4 and KLF2 may be central transcription factors that increase protective and regenerative functions in joint tissue cells, suggesting that KLF gene transfer or molecules upregulating KLFs are therapeutic candidates for OA.
Collapse
Affiliation(s)
- Manabu Kawata
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Philip Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Aishwarya Sundaresan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
25
|
Rux D, Helbig K, Han B, Cortese C, Koyama E, Han L, Pacifici M. Primary Cilia Direct Murine Articular Cartilage Tidemark Patterning Through Hedgehog Signaling and Ambulatory Load. J Bone Miner Res 2022; 37:1097-1116. [PMID: 35060644 PMCID: PMC9177786 DOI: 10.1002/jbmr.4506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multizone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis. Although their importance for chondrocyte function is appreciated, their specific roles in postnatal AC morphogenesis remain unclear. To explore these mechanisms, we used a murine conditional loss-of-function approach (Ift88-flox) targeting joint-lineage progenitors (Gdf5Cre) and monitored postnatal knee AC development. Joint formation and growth up to juvenile stages were largely unaffected. However, mature AC (aged 2 months) exhibited disorganized extracellular matrix, decreased aggrecan and collagen II due to reduced gene expression (not increased catabolism), and marked reduction of AC modulus by 30%-50%. In addition, and unexpectedly, we discovered that tidemark patterning was severely disrupted, as was hedgehog signaling, and exhibited specificity based on regional load-bearing functions of AC. Interestingly, Prg4 expression was markedly increased in highly loaded sites in mutants. Together, our data provide evidence that primary cilia orchestrate postnatal AC morphogenesis including tidemark topography, zonal matrix composition, and ambulation load responses. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Courtney Cortese
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
26
|
Yari D, Ebrahimzadeh MH, Movaffagh J, Shahroodi A, Shirzad M, Qujeq D, Moradi A. Biochemical Aspects of Scaffolds for Cartilage Tissue Engineering; from Basic Science to Regenerative Medicine. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:229-244. [PMID: 35514762 PMCID: PMC9034797 DOI: 10.22038/abjs.2022.55549.2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Chondral defects are frequent and important causes of pain and disability. Cartilage has limited self-repair and regeneration capacity. The ideal approach for articular cartilage defects is the regeneration of hyaline cartilage with sustainable symptom-free constructs. Tissue engineering provides new strategies for the regeneration of functional cartilage tissue through optimized scaffolds with architectural, mechanical, and biochemical properties similar to the native cartilage tissue. In this review, the basic science of cartilage structure, interactions between proteins, stem cells, as well as biomaterials, scaffold characteristics and fabrication methods, as well as current and potential therapies in regenerative medicine will be discussed mostly from a biochemical point of view. Furthermore, the recent trends in scaffold-based therapies and supplementary factors in cartilage tissue engineering will be considered.
Collapse
Affiliation(s)
- Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran,Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Shahroodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Katoh S, Yoshioka H, Suzuki S, Nakajima H, Iwasaki M, Senthilkumar R, Preethy S, Abraham SJK. An efficient polymer cocktail-based transportation method for cartilage tissue, yielding chondrocytes with enhanced hyaline cartilage expression during in vitro culturing. J Orthop 2022; 29:60-64. [PMID: 35145328 PMCID: PMC8814592 DOI: 10.1016/j.jor.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco's Modified Eagle's Medium (DMEM) are commonly employed at 4-8 °C. METHODS In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (∼25 °C) and ii) ECS transport at 4 °C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. RESULTS The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. CONCLUSION This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, 254-0075, Kanagawa, Japan
| | - Shoji Suzuki
- Department of Clinical Education, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Nakajima
- II Department of Surgery, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Samuel JK. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan,The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan,Corresponding author. Centre for Advancing Clinical Research (CACR), University of Yamanashi, Faculty of Medicine, 3-8, Wakamatsu, Kofu, 400-0866, Yamanashi, Japan.
| |
Collapse
|
28
|
Kubo Y, Beckmann R, Fragoulis A, Conrads C, Pavanram P, Nebelung S, Wolf M, Wruck CJ, Jahr H, Pufe T. Nrf2/ARE Signaling Directly Regulates SOX9 to Potentially Alter Age-Dependent Cartilage Degeneration. Antioxidants (Basel) 2022; 11:antiox11020263. [PMID: 35204144 PMCID: PMC8868513 DOI: 10.3390/antiox11020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is implicated in osteoarthritis, and nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway maintains redox homeostasis. We investigated whether Nrf2/ARE signaling controls SOX9. SOX9 expression in human C-28/I2 chondrocytes was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap ‘‘n’’ collar homology-associated protein 1 (Keap1). To verify whether Nrf2 transcriptionally regulates SOX9, putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL–TK for dual-luciferase assays. SOX9 promoter activities without and with Nrf2-inducer methysticin were compared. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Nrf2-specific RNAi significantly decreased SOX9 expression, whereas Keap1-specific RNAi increased it. Putative ARE sites (ARE1, ARE2) were identified in the SOX9 promoter region. ARE2 mutagenesis significantly reduced SOX9 promoter activity, but ARE1 excision did not. Functional ARE2 site was essential for methysticin-mediated induction of SOX9 promoter activity. Young Nrf2-knockout mice revealed significantly lower Sox9-positive chondrocytes, and old Nrf2-knockout animals showed thinner cartilage and more cartilage degeneration. Our results suggest Nrf2 directly regulates SOX9 in articular cartilage, and Nrf2-loss can develop mild osteoarthritis at old age. Pharmacological Nrf2 induction may hold the potential to diminish age-dependent cartilage degeneration through improving SOX9 expression.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
- Correspondence: ; Tel.: +49-24-1808-9525
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Claudius Conrads
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Prathyusha Pavanram
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Uniklinik RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany;
| | - Michael Wolf
- Department of Orthodontics, Uniklinik RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany;
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| |
Collapse
|
29
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
30
|
Liu NQ, Lin Y, Li L, Lu J, Geng D, Zhang J, Jashashvili T, Buser Z, Magallanes J, Tassey J, Shkhyan R, Sarkar A, Lopez N, Lee S, Lee Y, Wang L, Petrigliano FA, Van Handel B, Lyons K, Evseenko D. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol 2022; 5:64. [PMID: 35039652 PMCID: PMC8763901 DOI: 10.1038/s42003-021-02944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.
Collapse
Affiliation(s)
- Nancy Q. Liu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Yucheng Lin
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.263826.b0000 0004 1761 0489Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 China
| | - Liangliang Li
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Jinxiu Lu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Dawei Geng
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Jiankang Zhang
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Tea Jashashvili
- grid.42505.360000 0001 2156 6853Department of Radiology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Zorica Buser
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jenny Magallanes
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jade Tassey
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Ruzanna Shkhyan
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Arijita Sarkar
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Noah Lopez
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Siyoung Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Youngjoo Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Liming Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu 210006 China
| | - Frank A. Petrigliano
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| | - Ben Van Handel
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Karen Lyons
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Denis Evseenko
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| |
Collapse
|
31
|
Marchini M, Ashkin MR, Bellini M, Sun MMG, Workentine ML, Okuyan HM, Krawetz R, Beier F, Rolian C. A Na +/K + ATPase Pump Regulates Chondrocyte Differentiation and Bone Length Variation in Mice. Front Cell Dev Biol 2022; 9:708384. [PMID: 34970538 PMCID: PMC8712571 DOI: 10.3389/fcell.2021.708384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic and developmental mechanisms involved in limb formation are relatively well documented, but how these mechanisms are modulated by changes in chondrocyte physiology to produce differences in limb bone length remains unclear. Here, we used high throughput RNA sequencing (RNAseq) to probe the developmental genetic basis of variation in limb bone length in Longshanks, a mouse model of experimental evolution. We find that increased tibia length in Longshanks is associated with altered expression of a few key endochondral ossification genes such as Npr3, Dlk1, Sox9, and Sfrp1, as well reduced expression of Fxyd2, a facultative subunit of the cell membrane-bound Na+/K+ ATPase pump (NKA). Next, using murine tibia and cell cultures, we show a dynamic role for NKA in chondrocyte differentiation and in bone length regulation. Specifically, we show that pharmacological inhibition of NKA disrupts chondrocyte differentiation, by upregulating expression of mesenchymal stem cell markers (Prrx1, Serpina3n), downregulation of chondrogenesis marker Sox9, and altered expression of extracellular matrix genes (e.g., collagens) associated with proliferative and hypertrophic chondrocytes. Together, Longshanks and in vitro data suggest a broader developmental and evolutionary role of NKA in regulating limb length diversity.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Mitchell R Ashkin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Melina Bellini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew Lloyd Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hamza Malik Okuyan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roman Krawetz
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Affiliation(s)
- Andrew A Pitsillides
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. .,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
34
|
Liu Z, Hussien AA, Wang Y, Heckmann T, Gonzalez R, Karner CM, Snedeker JG, Gray RS. An adhesion G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment. eLife 2021; 10:67781. [PMID: 34318745 PMCID: PMC8328515 DOI: 10.7554/elife.67781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spine disorder affecting children worldwide, yet little is known about the pathogenesis of this disorder. Here, we demonstrate that genetic regulation of structural components of the axial skeleton, the intervertebral discs, and dense connective tissues (i.e., ligaments and tendons) is essential for the maintenance of spinal alignment. We show that the adhesion G protein-coupled receptor ADGRG6, previously implicated in human AIS association studies, is required in these tissues to maintain typical spine alignment in mice. Furthermore, we show that ADGRG6 regulates biomechanical properties of tendon and stimulates CREB signaling governing gene expression in cartilaginous tissues of the spine. Treatment with a cAMP agonist could mirror aspects of receptor function in culture, thus defining core pathways for regulating these axial cartilaginous and connective tissues. As ADGRG6 is a key gene involved in human AIS, these findings open up novel therapeutic opportunities for human scoliosis.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| | - Amro A Hussien
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yunjia Wang
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Terry Heckmann
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Roberto Gonzalez
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
35
|
Azami M, Beheshtizadeh N. Identification of regeneration-involved growth factors in cartilage engineering procedure promotes its reconstruction. Regen Med 2021; 16:719-731. [PMID: 34287065 DOI: 10.2217/rme-2021-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To fabricate mature cartilage for implantation, developmental biological processes and proteins should be understood and employed. Methods: A systems biology study of all protein-coding genes participating in cartilage regeneration resulted in a network graph with 11 nodes and 28 edges. Gene ontology and centrality analysis were performed based on the degree index. Results: The four most crucial biological processes along with the seven most interactive proteins involved in cartilage regeneration were identified. Some proteins, which are under serious discussion in cartilage developmental and disease processes, are included in regeneration. Conclusions: Findings positively correlate with the literature, supporting the use of the four most impressive proteins as growth factors applicable to cartilage tissue engineering, including COL2A1, SOX9, CTGF and TGFβ1.
Collapse
Affiliation(s)
- Mahmoud Azami
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Regenerative Medicine group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
36
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
37
|
Xu L, Li Y. A Molecular Cascade Underlying Articular Cartilage Degeneration. Curr Drug Targets 2021; 21:838-848. [PMID: 32056522 DOI: 10.2174/1389450121666200214121323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Preserving of articular cartilage is an effective way to protect synovial joints from becoming osteoarthritic (OA) joints. Understanding of the molecular basis of articular cartilage degeneration will provide valuable information in the effort to develop cartilage preserving drugs. There are currently no disease-modifying OA drugs (DMOADs) available to prevent articular cartilage destruction during the development of OA. Current drug treatments for OA focus on the reduction of joint pain, swelling, and inflammation at advanced stages of the disease. However, based on discoveries from several independent research laboratories and our laboratory in the past 15 to 20 years, we believe that we have a functional molecular understanding of articular cartilage degeneration. In this review article, we present and discuss experimental evidence to demonstrate a sequential chain of the molecular events underlying articular cartilage degeneration, which consists of transforming growth factor beta 1, high-temperature requirement A1 (a serine protease), discoidin domain receptor 2 (a cell surface receptor tyrosine kinase for native fibrillar collagens), and matrix metalloproteinase 13 (an extracellularmatrix degrading enzyme). If, as we strongly suspect, this molecular pathway is responsible for the initiation and acceleration of articular cartilage degeneration, which eventually leads to progressive joint failure, then these molecules may be ideal therapeutic targets for the development of DMOADs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| | - Yefu Li
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| |
Collapse
|
38
|
Zhang X, Dong Y, Dong H, Cui Y, Du Q, Wang X, Li L, Zhang H. Telmisartan Mitigates TNF-α-Induced Type II Collagen Reduction by Upregulating SOX-9. ACS OMEGA 2021; 6:11756-11761. [PMID: 34056329 PMCID: PMC8154015 DOI: 10.1021/acsomega.1c01170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor-α (TNF-α)-induced degradation of extracellular matrix (ECM), such as type II collagen in chondrocytes, plays an important role in the development of osteoarthritis (OA). Telmisartan, an angiotensin II (Ang-II) receptor blocker, is a licensed drug used for the treatment of hypertension. However, the effects of Telmisartan in tumor necrosis factor-α (TNF-α)-induced damage to chondrocytes and the progression of OA are unknown. In this study, we found that treatment with Telmisartan attenuated TNF-α-induced oxidative stress by reducing the levels of mitochondrial reactive oxygen species (ROS) and the production of protein carbonyl in human C28/I2 chondrocytes. Interestingly, Telmisartan inhibited TNF-α-induced expression and secretions of proinflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Notably, stimulation with TNF-α reduced the levels of type II collagen at both the mRNA and the protein levels, which was rescued by the treatment with Telmisartan. Mechanistically, we found that Telmisartan restored TNF-α-induced reduction of SOX-9. Silencing of SOX-9 blocked the inhibitory effects of Telmisartan against TNF-α-induced degradation of type II collagen. These findings suggest that Telmisartan might be a potential and promising agent for the treatment of OA.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Yanfeng Dong
- Department
of Cardiology, Zhangdian District peopleundefineds
Hospital, Zibo 255036, China
| | - Hanyu Dong
- Department
of Endocrinology, Zibo Maternal and Child
Health Hospital, Zibo 255036, China
| | - Yanhui Cui
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Qing Du
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Xiaoli Wang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Lanlan Li
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Hongju Zhang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| |
Collapse
|
39
|
Icariin inhibits the inflammation through down-regulating NF-κB/HIF-2α signal pathways in chondrocytes. Biosci Rep 2021; 40:226908. [PMID: 33155655 PMCID: PMC7685011 DOI: 10.1042/bsr20203107] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Articular cartilage injury or defect is a common disease and is mainly characterized by cartilage degradation because of chondrocyte inflammation. By now, there are no effective drugs and methods to protect articular cartilage from degradation. Icariin (ICA) is a typical flavonoid compound extracted from Epimedii Folium with anti-inflammatory and bone-protective effects. Our previous studies demonstrate that ICA up-regulates HIF-1α expression and glycolysis in chondrocytes and maintains chondrocyte phenotype. As another member of HIFs family, HIF-2α always plays a key role in inflammation. The effect of ICA on HIF-2α is unclear by now. In the present study, we confirmed the findings in our previous study that ICA promoted not only chondrocyte vitality and extracellular matrix (ECM) synthesis, but also the anti-inflammatory effect of ICA. In bone defect mice, ICA inhibited the expressions of NF-κB and HIF-2α. In TNF-α-treated ADTC5 chondrocytes, ICA neutralized the activation of IKK (IKK phosphorylation), the phosphorylation of IkB and NF-κB and the expression of HIF-2α. Furthermore, ICA inhibited the nucleus transfer of NF-κB and the expressions of MMP9 and ADAMTS5, two key targets of NF-κB/HIF-2α signal pathway. Taken together, the present study demonstrated that ICA may increase the vitality of chondrocytes by suppressing the inflammatory injury through the inhibition on NF-κB/HIF-2α signaling pathway. ICA is one effective candidate drug for the treatment of articular cartilage injury.
Collapse
|
40
|
Lepage SIM, Sharma R, Dukoff D, Stalker L, LaMarre J, Koch TG. Gene Expression Profile Is Different between Intact and Enzymatically Digested Equine Articular Cartilage. Cartilage 2021; 12:222-225. [PMID: 30841716 PMCID: PMC7970368 DOI: 10.1177/1947603519833148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES RNA isolation is necessary for the evaluation of gene expression. Due to the nature of its extracellular matrix, RNA isolation from articular hyaline cartilage is difficult and thus the tissue is commonly enzymatically digested in order to extract RNA from the obtained chondrocytes. We hypothesized that the digestion process affects the expression levels of common cartilage-associated genes. DESIGN Expression of cartilage-associated genes was compared between intact cartilage and digested chondrocytes from weight bearing and non-weight bearing regions of the equine fetlock joint. RESULTS The gene expression of SOX9, COL1A2, COL2A1, ACAN, and COLX were analyzed. Digested cartilage showed a significant decrease in the expression of COL1A2, COL2A1, and ACAN compared to intact cartilage in both joint regions, and an increase in COLX expression in non-weight bearing cartilage only. CONCLUSIONS Enzymatic digestion of cartilage significantly impacts gene expression profile. We conclude that while RNA isolation from intact cartilage is more technically difficult, determination of gene expression should be conducted on intact cartilage if true representation of the in vivo processes is sought.
Collapse
Affiliation(s)
- Sarah I. M. Lepage
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada
| | - Rishi Sharma
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada
| | - David Dukoff
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada
| | - Leanne Stalker
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada
| | - Jon LaMarre
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences,
University of Guelph, Guelph, Ontario, Canada,Thomas G. Koch, Ontario Veterinary College,
University of Guelph, 50 Stone Road, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
41
|
Haseeb A, Kc R, Angelozzi M, de Charleroy C, Rux D, Tower RJ, Yao L, Pellegrino da Silva R, Pacifici M, Qin L, Lefebvre V. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A 2021; 118:e2019152118. [PMID: 33597301 PMCID: PMC7923381 DOI: 10.1073/pnas.2019152118] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage is essential throughout vertebrate life. It starts developing in embryos when osteochondroprogenitor cells commit to chondrogenesis, activate a pancartilaginous program to form cartilaginous skeletal primordia, and also embrace a growth-plate program to drive skeletal growth or an articular program to build permanent joint cartilage. Various forms of cartilage malformation and degeneration diseases afflict humans, but underlying mechanisms are still incompletely understood and treatment options suboptimal. The transcription factor SOX9 is required for embryonic chondrogenesis, but its postnatal roles remain unclear, despite evidence that it is down-regulated in osteoarthritis and heterozygously inactivated in campomelic dysplasia, a severe skeletal dysplasia characterized postnatally by small stature and kyphoscoliosis. Using conditional knockout mice and high-throughput sequencing assays, we show here that SOX9 is required postnatally to prevent growth-plate closure and preosteoarthritic deterioration of articular cartilage. Its deficiency prompts growth-plate chondrocytes at all stages to swiftly reach a terminal/dedifferentiated stage marked by expression of chondrocyte-specific (Mgp) and progenitor-specific (Nt5e and Sox4) genes. Up-regulation of osteogenic genes (Runx2, Sp7, and Postn) and overt osteoblastogenesis quickly ensue. SOX9 deficiency does not perturb the articular program, except in load-bearing regions, where it also provokes chondrocyte-to-osteoblast conversion via a progenitor stage. Pathway analyses support roles for SOX9 in controlling TGFβ and BMP signaling activities during this cell lineage transition. Altogether, these findings deepen our current understanding of the cellular and molecular mechanisms that specifically ensure lifelong growth-plate and articular cartilage vigor by identifying osteogenic plasticity of growth-plate and articular chondrocytes and a SOX9-countered chondrocyte dedifferentiation/osteoblast redifferentiation process.
Collapse
Affiliation(s)
- Abdul Haseeb
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ranjan Kc
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marco Angelozzi
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Charles de Charleroy
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Danielle Rux
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Robert J Tower
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Lutian Yao
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Maurizio Pacifici
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
| |
Collapse
|
42
|
Lekvijittada K, Hosomichi J, Maeda H, Hong H, Changsiripun C, Kuma YI, Oishi S, Suzuki JI, Yoshida KI, Ono T. Intermittent hypoxia inhibits mandibular cartilage growth with reduced TGF-β and SOX9 expressions in neonatal rats. Sci Rep 2021; 11:1140. [PMID: 33441835 PMCID: PMC7806651 DOI: 10.1038/s41598-020-80303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2020] [Indexed: 01/15/2023] Open
Abstract
Intermittent hypoxia (IH) has been associated with skeletal growth. However, the influence of IH on cartilage growth and metabolism is unknown. We compared the effects of IH on chondrocyte proliferation and maturation in the mandibular condyle fibrocartilage and tibial hyaline cartilage of 1-week-old male Sprague-Dawley rats. The rats were exposed to normoxic air (n = 9) or IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2; 0% CO2) (n = 9) for 8 h each day. IH impeded body weight gain, but not tibial elongation. IH also increased cancellous bone mineral and volumetric bone mineral densities in the mandibular condylar head. The mandibular condylar became thinner, but the tibial cartilage did not. IH reduced maturative and increased hypertrophic chondrocytic layers of the middle and posterior mandibular cartilage. PCR showed that IH shifted proliferation and maturation in mandibular condyle fibrocartilage toward hypertrophic differentiation and ossification by downregulating TGF-β and SOX9, and upregulating collagen X. These effects were absent in the tibial growth plate hyaline cartilage. Our results showed that neonatal rats exposed to IH displayed underdeveloped mandibular ramus/condyles, while suppression of chondrogenesis marker expression was detected in the growth-restricted condylar cartilage.
Collapse
Affiliation(s)
- Kochakorn Lekvijittada
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan. .,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan.
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Chidsanu Changsiripun
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yo-Ichiro Kuma
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shuji Oishi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
43
|
Abstract
Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | |
Collapse
|
44
|
Culley KL, Singh P, Lessard S, Wang M, Rourke B, Goldring MB, Otero M. Mouse Models of Osteoarthritis: Surgical Model of Post-traumatic Osteoarthritis Induced by Destabilization of the Medial Meniscus. Methods Mol Biol 2021; 2221:223-260. [PMID: 32979207 DOI: 10.1007/978-1-0716-0989-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of post-traumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression. This chapter describes the requirements for the surgical induction of OA in mouse models, and provides guidelines and tools for the subsequent histological, immunohistochemical, and molecular analyses. Methods for the assessment of the contributions of selected genes in genetically modified strains are also provided.
Collapse
Affiliation(s)
- Kirsty L Culley
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Purva Singh
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Samantha Lessard
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Mengying Wang
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Brennan Rourke
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Mary B Goldring
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA
| | - Miguel Otero
- Orthopedic Soft Tissue Research Program, HSS Research Institute, The Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
45
|
Santos S, Richard K, Fisher MC, Dealy CN, Pierce DM. Chondrocytes respond both anabolically and catabolically to impact loading generally considered non-injurious. J Mech Behav Biomed Mater 2020; 115:104252. [PMID: 33385951 DOI: 10.1016/j.jmbbm.2020.104252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
We aimed to determine the longitudinal effects of low-energy (generally considered non-injurious) impact loading on (1) chondrocyte proliferation, (2) chondroprogenitor cell activity, and (3) EGFR signaling. In an in vitro study, we assessed 127 full-thickness, cylindrical osteochondral plugs of bovine cartilage undergoing either single, uniaxial unconfined impact loads with energy densities in the range of 1.5-3.2mJ/mm3 or no impact (controls). We quantified cell responses at two, 24, 48, and 72 h via immunohistochemical labeling of Ki67, Sox9, and pEGFR antibodies. We compared strain, stress, and impact energy density as predictors for mechanotransductive responses from cells, and fit significant correlations using linear regressions. Our study demonstrates that low-energy mechanical impacts (1.5-3.2mJ/mm3) generally stimulate time-dependent anabolic responses in the superficial zone of articular cartilage and catabolic responses in the middle and deep zones. We also found that impact energy density is the most consistent predictor of cell responses to low-energy impact loading. These spatial and temporal changes in chondrocyte behavior result directly from low-energy mechanical impacts, revealing a new level of mechanotransductive sensitivity in chondrocytes not previously appreciated.
Collapse
Affiliation(s)
- Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Kelsey Richard
- Department of Global Health, University of Connecticut, Storrs, CT, United States of America
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
46
|
Byun JH, Choi CW, Jang MJ, Lim SH, Han HJ, Choung SY. Anti-Osteoarthritic Mechanisms of Chrysanthemum zawadskii var. latilobum in MIA-Induced Osteoarthritic Rats and Interleukin-1β-Induced SW1353 Human Chondrocytes. ACTA ACUST UNITED AC 2020; 56:medicina56120685. [PMID: 33321982 PMCID: PMC7762971 DOI: 10.3390/medicina56120685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Background and objectives: Chrysanthemum zawadskii var. latilobum (CZ), which has traditionally been used as a oriental tea in Asia, is known to have anti-inflammatory effects in osteoarthritis (OA). But the mechanism of these effects has not been made clear and it needs to be elucidated specifically for the clinical use of CZE in OA. Materials and Methods: To reveal this mechanism, we first identified which biomarkers were expressed in the joints of rats in which OA had been induced with monosodium iodoacetate and determined whether CZ extract (CZE) could normalize these biomarkers in the progression of OA. The anti-osteoarthritis effect of CZE was evaluated for its capability to inhibit levels of extracellular matrix (ECM)-degrading enzymes and enhance ECM synthesis. We also sought to identify whether the marker compound of CZE, linarin, has anti-osteoarthritic effects in the human chondrosarcoma cell line SW1353. Results: The changes in matrix metalloproteinases (MMPs) were remarkable: among them, MMP-1, MMP-3, MMP-9 and MMP-13 were most strongly induced, whereas their expressions were inhibited by CZE dose dependently. The expressions of the ECM synthetic genes, COL2A1 and ACAN, and the transcription factor SOX9 of these genes were reduced by OA induction and significantly normalized by CZE dose dependently. SOX9 is also a repressor of ECM-degrading aggrecanases, ADAMTS-4 and ADAMTS-5, and CZE significantly reduced the levels of these enzymes dose dependently. Similar results were obtained using the human chondrosarcoma cell line SW1353 with linarin, the biologically active compound of CZE. Conclusions: These anti-osteoarthritic effects suggest that CZE has mechanisms for activating ECM synthesis with SOX9 as well as inhibiting articular ECM-degrading enzymes.
Collapse
Affiliation(s)
- Jae-Hyuk Byun
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02453, Korea;
| | - Chi-Won Choi
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul 02453, Korea;
| | - Min-Jung Jang
- Department of Research, GREEN CROSS Wellbeing Co., Ltd., Seongnam 13595, Korea; (M.-J.J.); (S.H.L.); (H.J.H.)
| | - Su Hwan Lim
- Department of Research, GREEN CROSS Wellbeing Co., Ltd., Seongnam 13595, Korea; (M.-J.J.); (S.H.L.); (H.J.H.)
| | - Hae Jung Han
- Department of Research, GREEN CROSS Wellbeing Co., Ltd., Seongnam 13595, Korea; (M.-J.J.); (S.H.L.); (H.J.H.)
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02453, Korea;
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: ; Tel.: +82-29-6103-72
| |
Collapse
|
47
|
Li X, Chen Y, Xu R, Wang Y, Jian F, Long H, Lai W. Delay in articular cartilage degeneration of the knee joint by the conditional removal of discoidin domain receptor 2 in a spontaneous mouse model of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1178. [PMID: 33241027 PMCID: PMC7576030 DOI: 10.21037/atm-20-5786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Discoidin domain receptor 2 (Ddr2) is a rate-limiting factor in articular cartilage degeneration, a condition which normally leads to joint destruction. In human osteoarthritic tissues and mouse models of osteoarthritis (OA), the expression of Ddr2 increases and interacts with collagen type II, inducing the expression of matrix metalloproteinase 13 (MMP-13) and the receptor itself in chondrocytes. Moreover, conditional deletion of Ddr2 can significantly delay the progression of articular cartilage degeneration in post-traumatic OA mouse models. However, the biological effect of the conditional removal of Ddr2 in aging-related OA is still unknown. Therefore, this investigation was to determine whether the conditional removal of Ddr2 in articular cartilage could delay the cartilage degeneration in an aging-related mouse model (Col11a1+/−) of OA. Methods Mice Acan+/CreERT2 were bred with Ddr2flox/flox mice to generate Acan+/CreERT2;Ddr2+/flox mice. Acan+/CreERT2;Ddr2+/flox mice were crossed with Ddr2flox/flox mice to produce Acan+/CreERT2;Ddr2flox/flox mice. A similar breeding procedure was used to generate Col11a1+/−;Ddr2flox/flox mice, in which Acan+/CreERT2 mice were replaced by Col11a1+/− mice. Acan+/CreERT2;Ddr2flox/flox mice were bred with Col11a1+/−;Ddr2flox/flox mice to produce Acan+/CreERT2;Ddr2flox/flox;Col11a1+/− mice that were then treated with tamoxifen or oil at the age of 10 weeks. Knee joints from oil- and tamoxifen-treated Acan+/CreERT2;Ddr2flox/flox;Col11a1+/− mice, and Acan+/CreERT2;Ddr2flox/flox mice at the ages of 3, 9 and 15 months were collected for histology and immunohistochemistry analyses. The protein expressions of Ddr2 and Mmp-13 and the degraded collagen type II were examined. Results The cartilage degeneration was significantly delayed in tamoxifen-treated Acan+/CreERT2;Ddr2flox/flox;Col11a1+/− mice. The scores, representing the severity of the cartilage damage, between oil- and tamoxifen-treated mice were: (mean ± SD) 1.33±0.47 vs. 1.29±0.45 (P>0.05) at the age of 3 months, 3.50±0.50 vs. 2.14±0.35 (P<0.001) at the age of 9 months, and 5.33±0.47 vs. 2.71±0.55 (P<0.001) at the age of 15 months. The protein expressions of Ddr2, Mmp-13 and the degraded collagen type II were significantly decreased in tamoxifen-treated mice. Conclusions The removal of Ddr2 could significantly attenuate the cartilage degeneration in Col11a1+/− mice.
Collapse
Affiliation(s)
- Xiaolong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Chen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Rui Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Tsingas M, Ottone OK, Haseeb A, Barve RA, Shapiro IM, Lefebvre V, Risbud MV. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol 2020; 94:110-133. [PMID: 33027692 DOI: 10.1016/j.matbio.2020.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
SOX9 plays an important role in chondrocyte differentiation and, in the developing axial skeleton, maintains the notochord and the demarcation of intervertebral disc compartments. Diminished expression is linked to campomelic dysplasia, resulting in severe scoliosis and progressive disc degeneration. However, the specific functions of SOX9 in the adult spinal column and disc are largely unknown. Accordingly, employing a strategy to conditionally delete Sox9 in Acan-expressing cells (AcanCreERT2Sox9fl/fl), we delineated these functions in the adult intervertebral disc. AcanCreERT2Sox9fl/fl mice (Sox9cKO) showed extensive and progressive remodeling of the extracellular matrix in nucleus pulposus (NP) and annulus fibrosus (AF), consistent with human disc degeneration. Progressive degeneration of the cartilaginous endplates (EP) was also evident in Sox9cKO mice, and it preceded morphological changes seen in the NP and AF compartments. Fate mapping using tdTomato reporter, EdU chase, and quantitative immunohistological studies demonstrated that SOX9 is crucial for disc cell survival and phenotype maintenance. Microarray analysis showed that Sox9 regulated distinct compartment-specific transcriptomic landscapes, with prominent contributions to the ECM, cytoskeleton-related, and metabolic pathways in the NP and ion transport, the cell cycle, and signaling pathways in the AF. In summary, our work provides new insights into disc degeneration in Sox9cKO mice at the cellular, molecular, and transcriptional levels, underscoring tissue-specific roles of this transcription factor. Our findings may direct future cell therapies targeting SOX9 to mitigate disc degeneration.
Collapse
Affiliation(s)
- Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdul Haseeb
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
49
|
Choi JH, Park A, Lee W, Youn J, Rim MA, Kim W, Kim N, Song JE, Khang G. Preparation and characterization of an injectable dexamethasone-cyclodextrin complexes-loaded gellan gum hydrogel for cartilage tissue engineering. J Control Release 2020; 327:747-765. [PMID: 32941931 DOI: 10.1016/j.jconrel.2020.08.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
In this study, 6-(6-aminohexyl) amino-6-deoxy-β-cyclodextrin-gellan gum complex hydrogel (HCD-GG) was developed to enhance the affinity of anti-inflammatory drug dexamethasone (Dx), improve chondrogenesis, and decrease the inflammatory response. The modified chemical structure was confirmed by NMR and FTIR. Mechanical and physicochemical properties were characterized by performing viscosity study, compression test, injection force test, swelling kinetic, weight loss, and morphological study. The release profile of the drug-loaded hydrogels was analyzed to confirm the affinity of the hydrophobic drugs and the matrix and characterize cumulative release. In vitro test was carried out with MTT assay, live/dead staining, glycosaminoglycan (GAGs) content, double-stranded DNA (dsDNA) content, morphological analysis, histology, and gene expression. In vivo experiment was conducted by implanting the samples under a subcutaneous area of SPD rat and cartilage defected rabbit model. The results displayed successfully synthesized HCD-GG. The gelation temperature of the modified hydrogels was decreased while the mechanical property was improved when the drug was loaded in the modified hydrogel. Swelling and degradation kinetics resulted in a higher level compared to the pristine GG but was a sufficient level to support drugs and cells. The affinity and release rate of the drug was higher in the HCD-GG group which shows an improved drug delivery system of the GG-based material. The microenvironment provided a suitable environment for cells to grow. Also, chondrogenesis was affected by the existence of Dx and microenvironment, resulting in higher expression levels of cartilage-related genes while the expression of the inflammation mediators decreased when the Dx was loaded. In vivo study showed an improved anti-inflammatory response in the drug-loaded hydrogel. Furthermore, the cartilage defected rabbit model showed an enhanced regenerative effect when the Dx@HCD-GG was implanted. These results suggest that HCD-GG and Dx@HCD-GG have the potential for cartilage regeneration along with multiple applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea.
| | - Ain Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Wonchan Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Min A Rim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Namyeong Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea.
| |
Collapse
|
50
|
Conditional ablation of MAPK7 expression in chondrocytes impairs endochondral bone formation in limbs and adaptation of chondrocytes to hypoxia. Cell Biosci 2020; 10:103. [PMID: 32944217 PMCID: PMC7488079 DOI: 10.1186/s13578-020-00462-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Long bones of limbs are formed through endochondral bone formation, which depends on the coordinated development of growth plates. Our previous studies have demonstrated that dysfunction of mitogen-activated protein kinase 7 (MAPK7) can cause skeletal dysplasia. However, little is known about the role of MAPK7 in the regulation of proliferation and differentiation of chondrocytes during growth plate development. Results Ablation of MAPK7 expression in chondrocytes led to growth restriction, short limbs and bone mass loss in postnatal mice. Histological studies revealed that MAPK7 deficiency increased the apoptosis and decreased the proliferation of chondrocytes in the center of the proliferative layer, where the most highly hypoxic chondrocytes are located. Accordingly, hypertrophic differentiation markers were downregulated in the central hypertrophic layer, beneath the site where abnormal apoptosis was observed. Simultaneously, we demonstrated that hypoxic adaptation and hypoxia-induced activation of hypoxia-inducible factor 1 subunit α (HIF1α) were impaired when MAPK7 could not be activated normally in primary chondrocytes. Concomitantly, vascular invasion into epiphyseal cartilage was inhibited when Mapk7 was deleted. Conclusions We demonstrated that MAPK7 is necessary for maintaining proliferation, survival, and differentiation of chondrocytes during postnatal growth plate development, possibly through modulating HIF1α signaling for adaptation to hypoxia. These results indicate that MAPK7 signaling might be a target for treatment of chondrodysplasia.
Collapse
|