1
|
Rubitschung K, Sherwood A, Kapadia R, Xi Y, Hajibeigi A, Rubinow KB, Zerwekh JE, Öz OK. Aromatase deficiency in transplanted bone marrow cells improves vertebral trabecular bone quantity, connectivity, and mineralization and decreases cortical porosity in murine bone marrow transplant recipients. PLoS One 2024; 19:e0296390. [PMID: 38315701 PMCID: PMC10843046 DOI: 10.1371/journal.pone.0296390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17β-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rasesh Kapadia
- Scanco USA Incorporated, Wayne, Pennsylvania, United States of America
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Asghar Hajibeigi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katya B. Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington Medicine Diabetes Institute, Seattle, Washington, United States of America
| | - Joseph E. Zerwekh
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Mendez Ruiz S, Chalk AM, Goradia A, Heraud-Farlow J, Walkley C. Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation in vivo. NAR Cancer 2023; 5:zcad023. [PMID: 37275274 PMCID: PMC10233902 DOI: 10.1093/narcan/zcad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of in vivo models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.
Collapse
Affiliation(s)
- Shannon Mendez Ruiz
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Carl R Walkley
- To whom correspondence should be addressed. Tel: +61 3 9231 2480;
| |
Collapse
|
3
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sanaei R, Kularathna P, Taghavi N, Hooper J, Pagel C, Mackie E. Protease-activated receptor-2 promotes osteogenesis in skeletal mesenchymal stem cells at the expense of adipogenesis: Involvement of interleukin-6. Bone Rep 2021; 15:101113. [PMID: 34430676 PMCID: PMC8365448 DOI: 10.1016/j.bonr.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 10/27/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) give rise to osteoblasts and adipocytes, with an inverse relationship between the two. The MSCs from protease-activated receptor-2 knockout (PAR2 KO) mice have a reduced capacity to generate osteoblasts. Here we describe the observation that PAR2 KO osteoblastic cultures generate more adipocytes than wildtype (WT) cultures. Osteoblasts from PAR2 KO mice expressed lower levels of osteoblastic genes (Runx2, Col1a1 and Bglap), and higher levels of the adipocytic gene Pparg than WT osteoblasts. Bone marrow stromal cells from PAR2 KO mice generated fewer osteoblastic colonies (assessed by staining for alkaline phosphatase activity and mineral deposition) and more adipocytic (Oil Red-O positive) colonies than cultures from WT mice. Similarly, cultures of the bone marrow stromal cell line (Kusa 4b10) in which PAR2 was knocked down (F2rl1 KD), were less osteoblastic and more adipocytic than vector control cells. Putative regulators of PAR2-mediated osteogenesis and suppression of adipogenesis were identified in an RNA-sequencing (RNA-seq) investigation; these include C1qtnf3, Gpr35, Grem1, Snorc and Tcea3, which were more highly expressed, and Cnr1, Enpep, Hmgn5, Il6 and Ramp3 which were expressed at lower levels, in control than in F2rl1 KD cells. Interleukin-6 (IL-6) levels were higher in medium harvested from F2rl1 KD cells than from control cells, and a neutralising anti-IL-6 antibody reduced the number of adipocytes in F2rl1 KD cultures to that of control cultures. Thus, PAR2 appears to be a mediator of the reciprocal relationship between osteogenesis and adipogenesis, with IL-6 having a regulatory role in these PAR2-mediated effects.
Collapse
Affiliation(s)
- R. Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P.K. Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N. Taghavi
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J.D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - C.N. Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - E.J. Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Fioravanti G, Hua PQ, Tomlinson RE. The TrkA agonist gambogic amide augments skeletal adaptation to mechanical loading. Bone 2021; 147:115908. [PMID: 33713848 PMCID: PMC8097708 DOI: 10.1016/j.bone.2021.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The periosteal and endosteal surfaces of mature bone are densely innervated by sensory nerves expressing TrkA, the high-affinity receptor for nerve growth factor (NGF). In previous work, we demonstrated that administration of exogenous NGF significantly increased load-induced bone formation through the activation of Wnt signaling. However, the translational potential of NGF is limited by the induction of substantial mechanical and thermal hyperalgesia in mice and humans. Here, we tested the effect of gambogic amide (GA), a recently identified robust small molecule agonist for TrkA, on hyperalgesia and load-induced bone formation. Behavioral analysis was used to assess pain up to one week after axial forelimb compression. Contrary to our expectations, GA treatment was not associated with diminished use of the loaded forelimb or sensitivity to thermal stimulus. Furthermore, dynamic histomorphometry revealed a significant increase in relative periosteal bone formation rate as compared to vehicle treatment. Additionally, we found that GA treatment was associated with an increase in the number of osteoblasts per bone surface in loaded limbs as well as a significant increase in the fold change of Ngf, Wnt7b, and Axin2 mRNA expression as compared to vehicle (control). To test the effect of GA on osteoblasts directly, we cultured MC3T3-E1 cells for up to 21 days in osteogenic differentiation media containing NGF, GA, or vehicle (control). Media containing GA induced the significant upregulation of the osteoblastic differentiation markers Runx2, Bglap2, and Sp7 in a dose-dependent manner, whereas treatment with NGF was not associated with any significant increases in these markers. Furthermore, consistent with our in vivo findings, we observed that administration of 50 nM of GA upregulated expression of Ngf at both Day 3 and Day 7. However, cells treated with the highest dose of GA (500 nM) had significantly increased apoptosis and impaired cell proliferation. In conclusion, our study indicates GA may be useful for augmenting skeletal adaptation to mechanical forces without inducing hyperalgesia.
Collapse
Affiliation(s)
- Gabriella Fioravanti
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Phuong Q Hua
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
6
|
The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood 2021; 138:304-317. [PMID: 33786586 DOI: 10.1182/blood.2020005865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited due to a lack of methods to isolate these cells. We found that murine Lineage-CD31-Sca-1-CD51+ cells can be divided into four subpopulations using flow cytometry, based on their expression of the platelet derived growth factor receptors ⍺ and β (PDGFR⍺ and PDGFRβ). The use of different skeletal lineage reporters confirmed the skeletal origin of the four populations. Multiplex immunohistochemistry studies revealed that all four populations were localized near the growth plate and trabecular bone and were rarely found near cortical bone regions or in central bone marrow. Functional studies revealed differences in their abundance, colony-forming unit-fibroblast capacity and potential to differentiate into mineralized osteoblasts or adipocytes in vitro. Furthermore, the four populations had distinct gene expression profiles and differential cell surface expression of leptin receptor (LEPR) and vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we discovered that one of these four different skeletal populations showed the highest expression of genes involved in the extrinsic regulation of B lymphopoiesis. This cell population varied in abundance between distinct hematopoietically active skeletal sites, and significant differences in the proportions of B lymphocyte precursors were also observed in these distinct skeletal sites. It also supported pre-B lymphopoiesis in culture. Our method to isolate four distinct maturing skeletal populations will assist in elucidating the roles of distinct skeletal niche cells in regulating hematopoiesis and bone.
Collapse
|
7
|
McGregor NE, Poulton IJ, Walker EC, Sims NA. Testing Bone Formation Induction by Calvarial Injection Assay in vivo. Bio Protoc 2020; 10:e3560. [PMID: 33659531 PMCID: PMC7842514 DOI: 10.21769/bioprotoc.3560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 11/02/2022] Open
Abstract
Bone formation occurs during embryogenesis, skeletal growth and during the process of skeletal renewal throughout life. In the process of bone formation, osteoblasts lay down a collagen-containing matrix, termed osteoid, which is gradually hardened by incorporation of mineral crystals. Although osteoblasts can be induced to differentiate and to deposit mineral in culture, this system does not always provide results that reflect the ability of agents to stimulate bone formation in vivo. This protocol describes a rapid and reliable method for testing local administration of agents on bone formation in vivo. In this method, mice are injected with the agent of question for 5 successive days. Fluorochrome labels are injected prior to, and after agents used for testing, and samples are collected and analysed by undecalcified bone histology and histomorphometry. This provides a robust method for assessing the ability of agents to stimulate bone formation, and if a short-term modification is used, can also be used for testing gene responses in bone to the same stimuli.
Collapse
Affiliation(s)
- Narelle E McGregor
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Ingrid J Poulton
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Emma C Walker
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research, Melbourne, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Methods to Determine the Effects of MIF on In Vitro Osteoclastogenesis Using Murine Bone Marrow-Derived Cells and Human Peripheral Blood Mononuclear Cells. Methods Mol Biol 2020; 2080:135-145. [PMID: 31745877 DOI: 10.1007/978-1-4939-9936-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Osteoclasts are the only cells that are capable of resorbing bones, and they are involved in multiple diseases and disorders. This chapter will describe several in vitro osteoclastogenesis methods, which allows further investigation of molecular mechanisms of osteoclastogenesis in normal physiological and disease conditions. This chapter includes a protocol for isolating osteoclast progenitors from mouse bone marrow and human peripheral blood, as well as obtaining murine osteoblasts for the coculture system. Furthermore, culture and identification of multinucleated osteoclasts in vitro is also described in this chapter.
Collapse
|
9
|
O'Neill HC, Lim HK, Periasamy P, Kumarappan L, Tan JKH, O'Neill TJ. Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis. PLoS One 2019; 14:e0223416. [PMID: 31584977 PMCID: PMC6777786 DOI: 10.1371/journal.pone.0223416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Spleen stromal lines which support in vitro hematopoiesis are investigated for their lineage origin and hematopoietic support function in vivo. Marker expression and gene profiling identify a lineage relationship with mesenchymal stem cells and perivascular reticular cells described recently in bone marrow. Stromal lines commonly express Cxcl12, Pdgfra and Pdgfr typical of bone marrow derived perivascular reticular cells but reflect a unique cell type in terms of other gene and marker expression. Their classification as osteoprogenitors is confirmed through ability to undergo osteogenic, but not adipogenic or chondrogenic differentiation. Some stromal lines were shown to form ectopic niches for HSCs following engraftment under the kidney capsule of NOD/SCID mice. The presence of myeloid cells and a higher representation of a specific dendritic-like cell type over other myeloid cells within grafts was consistent with previous in vitro evidence of hematopoietic support capacity. These studies reinforce the role of perivascular/perisinusoidal reticular cells in hematopoiesis and implicate such cells as niches for hematopoiesis in spleen.
Collapse
Affiliation(s)
- Helen C O'Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Hong K Lim
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Pravin Periasamy
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Microbiology, Yoo Long School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lavanya Kumarappan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonathan K H Tan
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Terence J O'Neill
- Big Data Centre, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Ho PWM, Chan AS, Pavlos NJ, Sims NA, Martin TJ. Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochem Pharmacol 2019; 169:113627. [PMID: 31476292 DOI: 10.1016/j.bcp.2019.113627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain. PTH functions as a circulating hormone, but PTHrP is generated locally in many tissues including bone, where it acts as a paracrine factor on osteoblasts and osteocytes. The present study compares how PTH and PTHrP influence cyclic AMP (cAMP) formation through adenylyl cyclase, the first event in cell activation through PTH1R. Brief exposure to full length PTHrP(1-141) in several osteoblastic cell culture systems was followed by sustained adenylyl cyclase activity for more than an hour after ligand washout. This effect was dose-dependent and was not found with shorter PTHrP or PTH peptides even though they were fully able to activate adenylyl cyclase with acute treatment. The persistent activation response to PTHrP(1-141) was seen also with later events in the cAMP/PKA pathway, including persistent activation of CRE-luciferase and sustained regulation of several CREB-responsive mRNAs, up to 24 h after the initial exposure. Pharmacologic blockade of endocytosis prevented the persistent activation of cAMP and gene responses. We conclude that full length PTHrP, the likely local physiological effector in bone, differs in intracellular action to PTH by undergoing endosomal translocation to induce a prolonged adenylyl cyclase activation in its target cells.
Collapse
Affiliation(s)
- Patricia W M Ho
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Audrey S Chan
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.
| |
Collapse
|
11
|
Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 2019; 10:3436. [PMID: 31366886 PMCID: PMC6668467 DOI: 10.1038/s41467-019-11373-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass. Osteoblasts mediate bone formation, and their differentiation requires expression of EphrinB2. Here, the authors show that EphrinB2 is also expressed by osteocytes, and that its genetic ablation in mice is associated with altered autophagy, elevated mineralization and brittle bone.
Collapse
|
12
|
McGregor NE, Murat M, Elango J, Poulton IJ, Walker EC, Crimeen-Irwin B, Ho PWM, Gooi JH, Martin TJ, Sims NA. IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem 2019; 294:7850-7863. [PMID: 30923130 DOI: 10.1074/jbc.ra119.008074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Interleukin 6 (IL-6) supports development of bone-resorbing osteoclasts by acting early in the osteoblast lineage via membrane-bound (cis) or soluble (trans) receptors. Here, we investigated how IL-6 signals and modifies gene expression in differentiated osteoblasts and osteocytes and determined whether these activities can promote bone formation or support osteoclastogenesis. Moreover, we used a genetically altered mouse with circulating levels of the pharmacological IL-6 trans-signaling inhibitor sgp130-Fc to determine whether IL-6 trans-signaling is required for normal bone growth and remodeling. We found that IL-6 increases suppressor of cytokine signaling 3 (Socs3) and CCAAT enhancer-binding protein δ (Cebpd) mRNA levels and promotes signal transducer and activator of transcription 3 (STAT3) phosphorylation by both cis- and trans-signaling in cultured osteocytes. In contrast, RANKL (Tnfsf11) mRNA levels were elevated only by trans-signaling. Furthermore, we observed soluble IL-6 receptor release and ADAM metallopeptidase domain 17 (ADAM17) sheddase expression by osteocytes. Despite the observation that IL-6 cis-signaling occurs, IL-6 stimulated bone formation in vivo only via trans-signaling. Although IL-6 stimulated RANKL (Tnfsf11) mRNA in osteocytes, these cells did not support osteoclast formation in response to IL-6 alone; binucleated TRAP+ cells formed, and only in response to trans-signaling. Finally, pharmacological, sgp130-Fc-mediated inhibition of IL-6 trans-signaling did not impair bone growth or remodeling unless mice had circulating sgp130-Fc levels > 10 μg/ml. At those levels, osteopenia and impaired bone growth occurred, reducing bone strength. We conclude that high sgp130-Fc levels may have detrimental off-target effects on the skeleton.
Collapse
Affiliation(s)
- Narelle E McGregor
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Melissa Murat
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jeevithan Elango
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ingrid J Poulton
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Emma C Walker
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Blessing Crimeen-Irwin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Patricia W M Ho
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Jonathan H Gooi
- the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and.,the Structural Biology Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - T John Martin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| | - Natalie A Sims
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia, .,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| |
Collapse
|
13
|
Alexander KA, Tseng HW, Fleming W, Jose B, Salga M, Kulina I, Millard SM, Pettit AR, Genêt F, Levesque JP. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Front Immunol 2019; 10:377. [PMID: 30899259 PMCID: PMC6417366 DOI: 10.3389/fimmu.2019.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neurogenic heterotopic ossifications (NHO) are very incapacitating complications of traumatic brain and spinal cord injuries (SCI) which manifest as abnormal formation of bone tissue in periarticular muscles. NHO are debilitating as they cause pain, partial or total joint ankylosis and vascular and nerve compression. NHO pathogenesis is unknown and the only effective treatment remains surgical resection, however once resected, NHO can re-occur. To further understand NHO pathogenesis, we developed the first animal model of NHO following SCI in genetically unmodified mice, which mimics most clinical features of NHO in patients. We have previously shown that the combination of (1) a central nervous system lesion (SCI) and (2) muscular damage (via an intramuscular injection of cardiotoxin) is required for NHO development. Furthermore, macrophages within the injured muscle play a critical role in driving NHO pathogenesis. More recently we demonstrated that macrophage-derived oncostatin M (OSM) is a key mediator of both human and mouse NHO. We now report that inflammatory monocytes infiltrate the injured muscles of SCI mice developing NHO at significantly higher levels compared to mice without SCI. Muscle infiltrating monocytes and neutrophils expressed OSM whereas mouse muscle satellite and interstitial cell expressed the OSM receptor (OSMR). In vitro recombinant mouse OSM induced tyrosine phosphorylation of the transcription factor STAT3, a downstream target of OSMR:gp130 signaling in muscle progenitor cells. As STAT3 is tyrosine phosphorylated by JAK1/2 tyrosine kinases downstream of OSMR:gp130, we demonstrated that the JAK1/2 tyrosine kinase inhibitor ruxolitinib blocked OSM driven STAT3 tyrosine phosphorylation in mouse muscle progenitor cells. We further demonstrated in vivo that STAT3 tyrosine phosphorylation was not only significantly higher but persisted for a longer duration in injured muscles of SCI mice developing NHO compared to mice with muscle injury without SCI. Finally, administration of ruxolitinib for 7 days post-surgery significantly reduced STAT3 phosphorylation in injured muscles in vivo as well as NHO volume at all analyzed time-points up to 3 weeks post-surgery. Our results identify the JAK/STAT3 signaling pathway as a potential therapeutic target to reduce NHO development following SCI.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Beulah Jose
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.,CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France
| | - Irina Kulina
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - François Genêt
- CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France.,Université de Versailles Saint Quentin en Yvelines, END:ICAP Inserm U1179, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Bisht K, Brunck ME, Matsumoto T, McGirr C, Nowlan B, Fleming W, Keech T, Magor G, Perkins AC, Davies J, Walkinshaw G, Flippin L, Winkler IG, Levesque JP. HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. Blood Adv 2019; 3:406-418. [PMID: 30733301 PMCID: PMC6373754 DOI: 10.1182/bloodadvances.2018017566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1+ endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation.
Collapse
Affiliation(s)
- Kavita Bisht
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marion E Brunck
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Taichi Matsumoto
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Pharmacological Sciences, Fukuoka University, Fukuoka, Japan
| | - Crystal McGirr
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Thomas Keech
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Graham Magor
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andrew C Perkins
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Julie Davies
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | | | | | - Ingrid G Winkler
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Jean-Pierre Levesque
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
15
|
Gooi JH, Chia LY, Vrahnas C, Sims NA. Isolation, Purification, Generation, and Culture of Osteocytes. Methods Mol Biol 2019; 1914:39-51. [PMID: 30729459 DOI: 10.1007/978-1-4939-8997-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteocytes reside within bone matrix and produce both paracrine and endocrine factors that influence the skeleton and other tissues. Despite their abundance and physiological importance, osteocytes have been difficult to study in vitro because they are difficult to extract and purify, and do not retain their phenotype in standard culture conditions. However, new techniques for this purpose are emerging. This chapter will describe three methods we use to study osteocytes: (1) isolating and purifying primary osteocytes from murine bone, with and without hematopoietic-lineage depletion, (2) differentiating cultured osteoblasts (or osteoblast cell lines) until they reach a stage of osteocytic gene expression, and (3) using the Ocy454 osteocyte-like cell line.
Collapse
Affiliation(s)
- Jonathan H Gooi
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - Ling Yeong Chia
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - Christina Vrahnas
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- MRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, Sir James Black Centre, Dundee, UK
| | - Natalie A Sims
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia.
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Esmaeili S. Functional Hepatocyte-Like Cells Derived from Human Bone Marrow Mesenchymal Stem Cells on a Novel 3-Dimensional Biocompatible Nanofibrous Scaffold. Int J Artif Organs 2018; 31:500-7. [DOI: 10.1177/039139880803100605] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aim To supporting growth and functional differentiation of adult stem cells into hepatocytes in a well-controlled manner, we performed differentiation of human bone marrow mesenchymal stem cells (hBMSCs) to hepatocytes-like cells on a constructed 3-dimensional (3D) nanofibrous biocompatible scaffold. Methods After characterization of the hBMSCs isolated from human bone marrow, the performance of the cells seeded and their proliferation on the scaffold was evaluated by scanning electron microscopy (SEM) and 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Different approaches such as immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR), and biochemical assays were used to estimate the ability of hBMSC-derived cells to express hepatocyte-specific markers. Results Scanning electron micrographs and MTT analysis revealed the cells were able to expand and remained biologically and metabolically active for 21 days. Immunocytochemical analysis of albumin and α-fetoprotein showing the accumulation of these markers in differentiated cells was confirmed by RT-PCR. Additional markers such as cytochrome P450 3A4, cytokeratin-18, and cytokeratin-19 detected by RT-PCR showed progressive expression during 3 weeks of differentiation on 3D scaffold. The hepatocyte-like cells displayed several characteristics of metabolic functions as judged by production of albumin, urea, transferrin, serum glutamic pyruvic transaminase (SGPT), and serum oxaloacetate aminotransferase (SGOT). Levels of above-mentioned markers, except SGOT in differentiated cells on scaffold, were found to be significantly greater than in the 2D culture system (p<0.05). Conclusion Overall data suggest that the engineered nanofibrous scaffold is a conductive matrix for functional hBMSC-derived hepatocyte-like cells and is promising for maintenance of hepatocytes suitable for implantation.
Collapse
Affiliation(s)
- S. Kazemnejad
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran
| | - A. Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran
| | - M. Soleimani
- Department of Hematology and Stem Cell, Faculty of Medical Science, Tarbiat Modares University, Tehran
| | | | - Y. Mohammadi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Nanotechnology and Biomaterial, Stem Cell Technology Co, Tehran - Iran
| | - N. Amirizadeh
- Research Centre of the Blood Transfusion Organization, Tehran
| | - S. Esmaeili
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran
| |
Collapse
|
17
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
18
|
Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res 2016; 350:284-297. [PMID: 27964926 DOI: 10.1016/j.yexcr.2016.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022]
Abstract
Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice.
Collapse
|
19
|
Bhattacharya S, Chalk AM, Ng AJM, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 2016; 35:5282-5294. [PMID: 27041566 DOI: 10.1038/onc.2016.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone and the 5th leading cause of cancer-related death in young adults. Currently, 5-year survival rates have plateaued at ~70% for patients with localized disease. Those with disseminated disease have an ~20% 5-year survival. An improved understanding of the molecular genetics of OS may yield new approaches to improve outcomes for OS patients. To this end, we applied murine models that replicate human OS to identify and understand dysregulated microRNAs (miRNAs) in OS. miRNA expression patterns were profiled in murine primary osteoblasts, osteoblast cultures and primary OS cell cultures (from primary and paired metastatic locations) isolated from two genetically engineered murine models of OS. The differentially expressed miRNA were further assessed by a cross-species comparison with human osteoblasts and OS cultures. We identified miR-155-5p and miR-148a-3p as deregulated in OS. miR-155-5p suppression or miR-148a-3p overexpression potently reduced proliferation and induced apoptosis in OS cells, yet strikingly, did not impact normal osteoblasts. To define how these miRNAs regulated OS cell fate, we used an integrated computational approach to identify putative candidate targets and then correlated these with the cell biological impact. Although we could not resolve the mechanism through which miR-148a-3p impacts OS, we identified that miR-155-5p overexpression suppressed its target Ripk1 (receptor (TNFRSF)-interacting serine-threonine kinase 1) expression, and miR-155-5p inhibition elevated Ripk1 levels. Ripk1 is directly involved in apoptosis/necroptosis. In OS cells, small interfering RNA against Ripk1 prevented cell death induced by the sequestration of miR-155-5p. Collectively, we show that miR-148a-3p and miR-155-5p are species-conserved deregulated miRNA in OS. Modulation of these miRNAs was specifically toxic to tumor cells but not normal osteoblasts, raising the possibility that these may be tractable targets for miRNA-based therapies for OS.
Collapse
Affiliation(s)
- S Bhattacharya
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A M Chalk
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A J M Ng
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - T J Martin
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A C Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - L E Purton
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - J Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - E K Baker
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - C R Walkley
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
20
|
Ng AJM, Walia MK, Smeets MF, Mutsaers AJ, Sims NA, Purton LE, Walsh NC, Martin TJ, Walkley CR. The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation. PLoS Genet 2015; 11:e1005160. [PMID: 25859855 PMCID: PMC4393104 DOI: 10.1371/journal.pgen.1005160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 12/04/2022] Open
Abstract
RECQL4 mutations are associated with Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome. These patients display a range of benign skeletal abnormalities such as low bone mass. In addition, RTS patients have a highly increased incidence of osteosarcoma (OS). The role of RECQL4 in normal adult bone development and homeostasis is largely uncharacterized and how mutation of RECQL4 contributes to OS susceptibility is not known. We hypothesised that Recql4 was required for normal skeletal development and both benign and malignant osteoblast function, which we have tested in the mouse. Recql4 deletion in vivo at the osteoblastic progenitor stage of differentiation resulted in mice with shorter bones and reduced bone volume, assessed at 9 weeks of age. This was associated with an osteoblast intrinsic decrease in mineral apposition rate and bone formation rate in the Recql4-deficient cohorts. Deletion of Recql4 in mature osteoblasts/osteocytes in vivo, however, did not cause a detectable phenotype. Acute deletion of Recql4 in primary osteoblasts or shRNA knockdown in an osteoblastic cell line caused failed proliferation, accompanied by cell cycle arrest, induction of apoptosis and impaired differentiation. When cohorts of animals were aged long term, the loss of Recql4 alone was not sufficient to initiate OS. We then crossed the Recql4fl/fl allele to a fully penetrant OS model (Osx-Cre p53fl/fl). Unexpectedly, the Osx-Cre p53fl/flRecql4fl/fl (dKO) animals had a significantly increased OS-free survival compared to Osx-Cre p53fl/fl or Osx-Cre p53fl/flRecql4fl/+ (het) animals. The extended survival was explained when the Recql4 status in the tumors that arose was assessed, and in no case was there complete deletion of Recql4 in the dKO OS. These data provide a mechanism for the benign skeletal phenotypes of RECQL4 mutation syndromes. We propose that tumor suppression and osteosarcoma susceptibility are most likely a function of mutant, not null, alleles of RECQL4. Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome are very rare human syndromes associated with mutations in RECQL4. RECQL4 is important for controlling how cells divide and for preventing genome damage. Patients with RECQL4 mutations have problems with bone formation and a low bone mass, similar to osteoporosis. RTS patients have a highly increased risk of developing bone cancer (osteosarcoma). The role of RECQL4 in normal bone development and osteosarcoma formation is largely unknown. We have used mouse models to understand the specific role of Recql4 in bone development. Mice with Recql4 removed specifically from their bone cells have shortened bones and a reduced rate of bone formation. Therefore, RECQL4 is essential for normal bone development. Interestingly, the animals with no Recql4 in bone cells did not develop osteosarcoma. Using mouse models of osteosarcoma, we observed delayed cancer formation when Recql4 was also deleted. Further analysis demonstrated that bone cancer could not arise from Recql4 null cells even with concurrent p53 deletion. These studies clarify the role of RECQL4 in both normal and malignant bone biology and suggest that RECQL4 mutations that cause osteosarcoma most likely result in proteins with reduced, but not absent, function.
Collapse
Affiliation(s)
- Alvin J. M. Ng
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Mannu K. Walia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Monique F. Smeets
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Natalie A. Sims
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Louise E. Purton
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Nicole C. Walsh
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - T. John Martin
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Baker EK, Taylor S, Gupte A, Chalk AM, Bhattacharya S, Green AC, Martin TJ, Strbenac D, Robinson MD, Purton LE, Walkley CR. Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone 2015; 73:223-32. [PMID: 25571841 DOI: 10.1016/j.bone.2014.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
Abstract
Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation.
Collapse
Affiliation(s)
- Emma K Baker
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| | - Scott Taylor
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ankita Gupte
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Shreya Bhattacharya
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Alanna C Green
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - T John Martin
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia; Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Dario Strbenac
- Cancer Epigenetics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| |
Collapse
|
22
|
Sims NA, Martin TJ. Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface? Front Endocrinol (Lausanne) 2015; 6:41. [PMID: 25852649 PMCID: PMC4371744 DOI: 10.3389/fendo.2015.00041] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/19/2023] Open
Affiliation(s)
- Natalie A. Sims
- Department of Medicine, St. Vincent’s Institute of Medical Research, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
- *Correspondence:
| | - T. John Martin
- Department of Medicine, St. Vincent’s Institute of Medical Research, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
23
|
Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 2014; 111:E5564-73. [PMID: 25512523 DOI: 10.1073/pnas.1419260111] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo.
Collapse
|
24
|
Standal T, Johnson RW, McGregor NE, Poulton IJ, Ho PWM, Martin TJ, Sims NA. gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. J Endocrinol 2014; 223:181-90. [PMID: 25228504 DOI: 10.1530/joe-14-0424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone (PTH) treatment stimulates osteoblast differentiation and bone formation, and is the only currently approved anabolic therapy for osteoporosis. In cells of the osteoblast lineage, PTH also stimulates the expression of members of the interleukin 6 (IL-6) cytokine superfamily. Although the similarity of gene targets regulated by these cytokines and PTH suggest cooperative action, the dependence of PTH anabolic action on IL-6 cytokine signaling is unknown. To determine whether cytokine signaling in the osteocyte through glycoprotein 130 (gp130), the common IL-6 superfamily receptor subunit, is required for PTH anabolic action, male mice with conditional gp130 deletion in osteocytes (Dmp1Cre.gp130(f/f)) and littermate controls (Dmp1Cre.gp130(w/w)) were treated with hPTH(1-34) (30 μg/kg 5× per week for 5 weeks). PTH dramatically increased bone formation in Dmp1Cre.gp130(w/w) mice, as indicated by elevated osteoblast number, osteoid surface, mineralizing surface, and increased serum N-terminal propeptide of type 1 collagen (P1NP). However, in mice with Dmp1Cre-directed deletion of gp130, PTH treatment changed none of these parameters. Impaired PTH anabolic action was associated with a 50% reduction in Pth1r mRNA levels in Dmp1Cre.gp130(f/f) femora compared with Dmp1Cre.gp130(w/w). Furthermore, lentiviral-Cre infection of gp130(f/f) primary osteoblasts also lowered Pth1r mRNA levels to 16% of that observed in infected C57/BL6 cells. In conclusion, osteocytic gp130 is required to maintain PTH1R expression in the osteoblast lineage, and for the stimulation of osteoblast differentiation that occurs in response to PTH.
Collapse
Affiliation(s)
- Therese Standal
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rachelle W Johnson
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Narelle E McGregor
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid J Poulton
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patricia W M Ho
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T John Martin
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natalie A Sims
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
25
|
Zheng Y, Chow SO, Boernert K, Basel D, Mikuscheva A, Kim S, Fong-Yee C, Trivedi T, Buttgereit F, Sutherland RL, Dunstan CR, Zhou H, Seibel MJ. Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways. J Bone Miner Res 2014; 29:1938-49. [PMID: 24676805 DOI: 10.1002/jbmr.2231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
The bone microenvironment and its modification by cancer and host cell interactions is a key driver of skeletal metastatic growth. Interleukin-6 (IL-6) stimulates receptor activator of NF-κB ligand (RANKL) expression in bone cells, and serum IL-6 levels are associated with poor clinical outcomes in cancer patients. We investigated the effects of RANKL on cancer cells and the role of tumor-derived IL-6 within the bone microenvironment. Using human breast cancer cell lines to induce tumors in the bone of immune-deficient mice, we first determined whether RANKL released by cells of the osteoblast lineage directly promotes IL-6 expression by cancer cells in vitro and in vivo. We then disrupted of IL-6 signaling in vivo either via knockdown of IL-6 in tumor cells or through treatment with specific anti-human or anti-mouse IL-6 receptor antibodies to investigate the tumor effect. Finally, we tested the effect of RANK knockdown in cancer cells on cancer growth. We demonstrate that osteoblast lineage-derived RANKL upregulates secretion of IL-6 by breast cancers in vivo and in vitro. IL-6, in turn, induces expression of RANK by cancer cells, which sensitizes the tumor to RANKL and significantly enhances cancer IL-6 release. Disruption in vivo of this auto-amplifying crosstalk by knockdown of IL-6 or RANK in cancer cells, or via treatment with anti-IL-6 receptor antibodies, significantly reduces tumor growth in bone but not in soft tissues. RANKL and IL-6 mediate direct paracrine-autocrine signaling between cells of the osteoblast lineage and cancer cells, significantly enhancing the growth of metastatic breast cancers within bone.
Collapse
Affiliation(s)
- Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia; The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo. Oncogene 2014; 34:2922-33. [PMID: 25043296 DOI: 10.1038/onc.2014.217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/01/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone. Parathyroid hormone (PTH) regulates calcium homeostasis and bone development, while the paracrine/autocrine PTH-related protein (PTHrP) has central roles in endochondral bone formation and bone remodeling. Using a murine OS model, we found that OS cells express PTHrP and the common PTH/PTHrP receptor (PTHR1). To investigate the role of PTHR1 signaling in OS cell behavior, we used shRNA to reduce PTHR1 expression. This only mildly inhibited proliferation in vitro, but markedly reduced invasion through collagen and reduced expression of RANK ligand (RANKL). Administration of PTH(1-34) did not stimulate OS proliferation in vivo but, strikingly, PTHR1 knockdown resulted in a profound growth inhibition and increased differentiation/mineralization of the tumors. Treatment with neutralizing antibody to PTHrP did not recapitulate the knockdown of PTHR1. Consistent with this lack of activity, PTHrP was predominantly intracellular in OS cells. Knockdown of PTHR1 resulted in increased expression of late osteoblast differentiation genes and upregulation of Wnt antagonists. RANKL production was reduced in knockdown tumors, providing for reduced homotypic signaling through the receptor, RANK. Loss of PTHR1 resulted in the coordinated loss of gene signatures associated with the polycomb repressive complex 2 (PRC2). Using Ezh2 inhibitors, we demonstrate that the increased expression of osteoblast maturation markers is in part mediated by the loss of PRC2 activity. Collectively these results demonstrate that PTHR1 signaling is important in maintaining OS proliferation and undifferentiated state. This is in part mediated by intracellular PTHrP and through regulation of the OS epigenome.
Collapse
|
27
|
Tonna S, Takyar FM, Vrahnas C, Crimeen-Irwin B, Ho PWM, Poulton IJ, Brennan HJ, McGregor NE, Allan EH, Nguyen H, Forwood MR, Tatarczuch L, Mackie EJ, Martin TJ, Sims NA. EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB J 2014; 28:4482-96. [PMID: 24982128 DOI: 10.1096/fj.14-254300] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells that form bone (osteoblasts) express both ephrinB2 and EphB4, and previous work has shown that pharmacological inhibition of the ephrinB2/EphB4 interaction impairs osteoblast differentiation in vitro and in vivo. The purpose of this study was to determine the role of ephrinB2 signaling in the osteoblast lineage in the process of bone formation. Cultured osteoblasts from mice with osteoblast-specific ablation of ephrinB2 showed delayed expression of osteoblast differentiation markers, a finding that was reproduced by ephrinB2, but not EphB4, RNA interference. Microcomputed tomography, histomorphometry, and mechanical testing of the mice lacking ephrinB2 in osteoblasts revealed a 2-fold delay in bone mineralization, a significant reduction in bone stiffness, and a 50% reduction in osteoblast differentiation induced by anabolic parathyroid hormone (PTH) treatment, compared to littermate sex- and age-matched controls. These defects were associated with significantly lower mRNA levels of late osteoblast differentiation markers and greater levels of osteoblast and osteocyte apoptosis, indicated by TUNEL staining and transmission electron microscopy of bone samples, and a 2-fold increase in annexin V staining and 7-fold increase in caspase 8 activation in cultured ephrinB2 deficient osteoblasts. We conclude that osteoblast differentiation and bone strength are maintained by antiapoptotic actions of ephrinB2 signaling within the osteoblast lineage.
Collapse
Affiliation(s)
- Stephen Tonna
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Farzin M Takyar
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Christina Vrahnas
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Patricia W M Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Holly J Brennan
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Elizabeth H Allan
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Huynh Nguyen
- Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Mark R Forwood
- Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Liliana Tatarczuch
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Eleanor J Mackie
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia; and
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia;
| |
Collapse
|
28
|
Yazawa M, Mori T, Nakayama Y, Kishi K. Basic study of soft tissue augmentation by adipose-inductive biomaterial. J Biomed Mater Res B Appl Biomater 2014; 103:92-6. [PMID: 24764287 DOI: 10.1002/jbm.b.33180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 04/12/2014] [Indexed: 02/02/2023]
Abstract
Reconstructive surgery for tumor resection, trauma, and congenital anomaly involves volume augmentation with autologous tissue transfer. However, a healthy region is damaged as a donor site, and the autologous tissue is transferred like a patchwork to the recipient site. We have attempted to induce adipogenesis activity in artificial biomaterial that is injectable with an injection needle for soft tissue augmentation. First of all, the optimal dose of pioglitazone hydrochloride was examined with adipo-precursor cells in terms of the proliferator-activated receptor-γ mRNA expression levels affected by reagent in vitro. Then, salmon collagen with pioglitazone was adjusted in terms of the dose and the salmon collagen was injected into mouse back using an injection needle in vivo. At 4 weeks after implantation, the pioglitazone collagen gel was substituted by mature adipocytes in comparison with the case for control collagen gel without pioglitazone. These results are indicative of the possibility of promoting adipogenesis using collagen with pioglitazone as an adipose-inductive substance.
Collapse
Affiliation(s)
- Masaki Yazawa
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Raeth S, Sacchetti B, Siegel G, Mau-Holzmann UA, Hansmann J, Vacun G, Hauk TG, Pfizenmaier K, Hausser A. A mouse bone marrow stromal cell line with skeletal stem cell characteristics to study osteogenesis in vitro and in vivo. Stem Cells Dev 2014; 23:1097-108. [PMID: 24405418 DOI: 10.1089/scd.2013.0367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are composed of progenitor and multipotent skeletal stem cells, which are able to differentiate in vitro into osteocytes, adipocytes, and chondrocytes. Mouse BMSCs (mBMSCs) are a versatile model system to investigate factors involved in BMSC differentiation in vitro and in vivo as a variety of transgenic mouse models are available. In this study, mBMSCs were isolated and osteogenic differentiation was investigated in tissue culture and in vivo. Three out of seven independent cell isolates showed the ability to differentiate into osteocytes, adipocytes, and chondrocytes in vitro. In vitro multipotency of an established mBMSC line was maintained over 45 passages. The osteogenic differentiation of this cell line was confirmed by quantitative polymerase chain reaction (qPCR) analysis of specific markers such as osteocalcin and shown to be Runx2 dependent. Notably, the cell line, when transplanted subcutaneously into mice, possesses full skeletal stem cell characteristics in vivo in early and late passages, evident from bone tissue formation, induction of vascularization, and hematopoiesis. This cell line provides, thus, a versatile tool to unravel the molecular mechanisms governing osteogenesis in vivo thereby aiding to improve current strategies in bone regenerative therapy.
Collapse
Affiliation(s)
- Sebastian Raeth
- 1 Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu X, Chim SM, Kuek V, Lim BS, Chow ST, Zhao J, Yang S, Rosen V, Tickner J, Xu J. HtrA1 is upregulated during RANKL-induced osteoclastogenesis, and negatively regulates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK and p38 phosphorylation. FEBS Lett 2013; 588:143-50. [DOI: 10.1016/j.febslet.2013.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022]
|
31
|
Bhattacharyya S, Kumar A, Lal Khanduja K. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochim Biophys Sin (Shanghai) 2012; 44:463-75. [PMID: 22562866 DOI: 10.1093/abbs/gms027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Presently, worldwide attempts are being made to apply stem cells and stem cell-derived products to a wide range of clinical applications and for the development of cell-based therapies. In order to harness stem cells and manipulate them for therapeutic application, it is very important to understand the basic biology of stem cells and identify the factors that govern the dynamics of these cells in the body. Several signaling pathways have emerged as key regulators of stem cells. Some of these signaling pathways regulate the stem cell's proliferative capacity and therefore act as direct regulators of the stem cell, whereas others are involved in shaping and maintaining the stem cell niche and therefore act as indirect regulators of the stem cell. It is difficult to identify which signaling pathways critically affect the stem cell's behavior and which are important for maintaining the quiescent population. A stem cell receives different extrinsic signals compared with the bulk population and responds to them differently. In order to manipulate these adult cells for therapeutic approaches it is crucial to identify how signaling pathways regulate stem cells either directly by regulating proliferative status or indirectly by influencing the niche. The main challenge is to identify whether different factors provide diverse extrinsic signals to the stem cell and its daughter cell population, or whether there are intrinsic differences in stem cell and daughter cell populations that is reflected in their behavior. In this study, we will focus on the various aspects of stem cell biology and differentiation, as well as exploring the potential strategies to intervene the differentiation process in order to obtain the desired yield of cells applicable in regenerative medicine.
Collapse
Affiliation(s)
- Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | | | | |
Collapse
|
32
|
Yang X, Hatfield JT, Hinze SJ, Mu X, Anderson PJ, Powell BC. Bone to pick: the importance of evaluating reference genes for RT-qPCR quantification of gene expression in craniosynostosis and bone-related tissues and cells. BMC Res Notes 2012; 5:222. [PMID: 22564426 PMCID: PMC3476976 DOI: 10.1186/1756-0500-5-222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/05/2012] [Indexed: 01/01/2023] Open
Abstract
Background RT-qPCR is a common tool for quantification of gene expression, but its accuracy is dependent on the choice and stability (steady state expression levels) of the reference gene/s used for normalization. To date, in the bone field, there have been few studies to determine the most stable reference genes and, usually, RT-qPCR data is normalised to non-validated reference genes, most commonly GAPDH, ACTB and 18 S rRNA. Here we draw attention to the potential deleterious impact of using classical reference genes to normalise expression data for bone studies without prior validation of their stability. Results Using the geNorm and Normfinder programs, panels of mouse and human genes were assessed for their stability under three different experimental conditions: 1) disease progression of Crouzon syndrome (craniosynostosis) in a mouse model, 2) proliferative culture of cranial suture cells isolated from craniosynostosis patients and 3) osteogenesis of a mouse bone marrow stromal cell line. We demonstrate that classical reference genes are not always the most ‘stable’ genes and that gene ‘stability’ is highly dependent on experimental conditions. Selected stable genes, individually or in combination, were then used to normalise osteocalcin and alkaline phosphatase gene expression data during cranial suture fusion in the craniosynostosis mouse model and strategies compared. Strikingly, the expression trends of alkaline phosphatase and osteocalcin varied significantly when normalised to the least stable, the most stable or the three most stable genes. Conclusion To minimise errors in evaluating gene expression levels, analysis of a reference panel and subsequent normalization to several stable genes is strongly recommended over normalization to a single gene. In particular, we conclude that use of single, non-validated “housekeeping” genes such as GAPDH, ACTB and 18 S rRNA, currently a widespread practice by researchers in the bone field, is likely to produce data of questionable reliability when changes are 2 fold or less, and such data should be interpreted with due caution.
Collapse
Affiliation(s)
- Xianxian Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
33
|
Membrane-bound receptor activator of NFκB ligand (RANKL) activity displayed by osteoblasts is differentially regulated by osteolytic factors. Biochem Biophys Res Commun 2012; 422:48-53. [PMID: 22561018 DOI: 10.1016/j.bbrc.2012.04.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
Osteoclast formation is central to bone metabolism, occurring when myelomonocytic progenitors are stimulated by membrane-bound receptor activator of NFκB ligand (RANKL) on osteoblasts. Osteolytic hormones induce osteoblast RANKL expression, and reduce production of RANKL decoy receptor osteoprotegerin (OPG). However, rather than RANKL and OPG mRNA or protein levels, to measure hormonally-induced osteoclastogenic stimuli the net RANKL activity at the osteoblast surface needs to be determined. To estimate this we developed a cell reporter approach employing pre-osteoclast RAW264.7 cells transfected with luciferase reporter constructs controlled by NFκB (NFκB-RAW) or NFATc1 (NFAT-RAW)-binding promoter elements. Strong signals were induced in these cells by recombinant RANKL over 24h. When NFκB-RAW cells were co-cultured on osteoblastic cells (primary osteoblasts or Kusa O cells) stimulated by osteolytic factors 1,25(OH)(2) vitamin D(3) (1,25(OH)(2)D(3)) and prostaglandin E(2) (PGE(2)), a strong dose dependent signal in NFκB-RAW cells was induced. These signals were completely blocked by soluble recombinant RANKL receptor, RANK.Fc. This osteoblastic RANKL activity was sustained for 3 days in Kusa O cells; with 1,25(OH)(2)D(3) withdrawal, RANKL-induced signal was still detectable 24 h later. However, conditioned medium from stimulated osteoblasts induced no signal. TGFβ treatment inhibited osteoclast formation supported by 1,25(OH)(2)D(3)-treated Kusa O cells, and likewise blocked RANKL-dependent signals in NFAT-RAW co-cultured with these cells. These data indicate net RANKL stimulus at the osteoblast surface is increased by 1,25(OH)(2)D(3) and PGE(2), and suppressed by TGFβ, in line with their effects on RANKL mRNA levels. These results demonstrate the utility of this simple co-culture-based reporter assay for osteoblast RANKL activity.
Collapse
|
34
|
Walker EC, Poulton IJ, McGregor NE, Ho PWM, Allan EH, Quach JM, Martin TJ, Sims NA. Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. J Bone Miner Res 2012; 27:902-12. [PMID: 22190112 DOI: 10.1002/jbmr.1506] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130-dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real-time polymerase chain reaction (qPCR) of PTH-treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130-dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6-week-old male Osmr(-/-) mice and wild-type (WT) littermates were treated with hPTH(1-34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr(-/-) mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr(-/-) compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr(-/-) mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr(-/-) osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr(-/-) osteoblasts. However, RANKL induction in PTH-treated Osmr(-/-) osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR-deficient osteoblasts, resulting in bone destruction.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Poulton IJ, McGregor NE, Pompolo S, Walker EC, Sims NA. Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization. J Bone Miner Res 2012; 27:586-95. [PMID: 22143976 DOI: 10.1002/jbmr.1485] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe here distinct functions of leukemia inhibitory factor (LIF) in bone development/growth and adult skeletal homeostasis. In the growth plate and developing neonate bones, LIF deficiency enhanced vascular endothelial growth factor (VEGF) levels, enlarged blood vessel formation, and increased the formation of "giant" osteoclasts/chondroclasts that rapidly destroyed the mineralized regions of the growth plate and developing neonatal bone. Below this region, osteoblasts formed large quantities of woven bone. In contrast, in adult bone undergoing remodeling osteoclast formation was unaffected by LIF deficiency, whereas osteoblast formation and function were both significantly impaired, resulting in osteopenia. Consistent with LIF promoting osteoblast commitment, enhanced marrow adipocyte formation was also observed in adult LIF null mice, and adipocytic differentiation of murine stromal cells was delayed by LIF treatment. LIF, therefore, controls vascular size and osteoclast differentiation during the transition of cartilage to bone, whereas an anatomically separate LIF-dependent pathway regulates osteoblast and adipocyte commitment in bone remodeling.
Collapse
Affiliation(s)
- Ingrid J Poulton
- St Vincent's Institute, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | | | | | | | | |
Collapse
|
36
|
Sadie-Van Gijsen H, Smith W, du Toit EF, Michie J, Hough FS, Ferris WF. Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells. Mol Cell Endocrinol 2012; 348:55-66. [PMID: 21827826 DOI: 10.1016/j.mce.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/22/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs.
Collapse
Affiliation(s)
- Hanel Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, Tygerberg Campus, P.O. Box 19063, Francie van Zijl Drive, Parow 7505, South Africa
| | | | | | | | | | | |
Collapse
|
37
|
Scanning electron microscopy preparation protocol for differentiated stem cells. Anal Biochem 2011; 416:186-90. [DOI: 10.1016/j.ab.2011.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/29/2023]
|
38
|
Chim SM, Qin A, Tickner J, Pavlos N, Davey T, Wang H, Guo Y, Zheng MH, Xu J. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J Biol Chem 2011; 286:22035-46. [PMID: 21531721 PMCID: PMC3121348 DOI: 10.1074/jbc.m110.187633] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/21/2011] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing.
Collapse
Affiliation(s)
- Shek Man Chim
- From the School of Pathology and Laboratory Medicine and
| | - An Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Western Australia 6009, Australia
- the Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011
| | | | - Nathan Pavlos
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Western Australia 6009, Australia
| | - Tamara Davey
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Western Australia 6009, Australia
| | - Hao Wang
- the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433
- the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai 201203, and
- the Schools of Medicine and Pharmacy, Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yajun Guo
- the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433
- the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai 201203, and
- the Schools of Medicine and Pharmacy, Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ming Hao Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Western Australia 6009, Australia
| | - Jiake Xu
- From the School of Pathology and Laboratory Medicine and
| |
Collapse
|
39
|
Saleh H, Eeles D, Hodge JM, Nicholson GC, Gu R, Pompolo S, Gillespie MT, Quinn JMW. Interleukin-33, a target of parathyroid hormone and oncostatin m, increases osteoblastic matrix mineral deposition and inhibits osteoclast formation in vitro. Endocrinology 2011; 152:1911-22. [PMID: 21363931 DOI: 10.1210/en.2010-1268] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th₂ cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.
Collapse
Affiliation(s)
- Hasnawati Saleh
- Prince Henry's Institute, Monash Medical Centre, Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are a kind of multipotent stem cells that have the capacity to undergo self-renewal and multi-lineage differentiation. In an appropriate microenvironment, BM-MSCs can differentiate into bone, cartilage, fat, nerve, liver or other cells. Based on this characteristic, BM-MSCs might be used as new seed cells for orthotopic liver transplantation and bioartificial liver support system. This paper reviews the recent advances in research on the use of BM-MSCs as a treatment for acute liver failure.
Collapse
|
41
|
Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 2011; 117:5631-42. [PMID: 21421837 DOI: 10.1182/blood-2010-11-320564] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Erythropoietin (Epo) has been used in the treatment of anemia resulting from numerous etiologies, including renal disease and cancer. However, its effects are controversial and the expression pattern of the Epo receptor (Epo-R) is debated. Using in vivo lineage tracing, we document that within the hematopoietic and mesenchymal lineage, expression of Epo-R is essentially restricted to erythroid lineage cells. As expected, adult mice treated with a clinically relevant dose of Epo had expanded erythropoiesis because of amplification of committed erythroid precursors. Surprisingly, we also found that Epo induced a rapid 26% loss of the trabecular bone volume and impaired B-lymphopoiesis within the bone marrow microenvironment. Despite the loss of trabecular bone, hematopoietic stem cell populations were unaffected. Inhibition of the osteoclast activity with bisphosphonate therapy blocked the Epo-induced bone loss. Intriguingly, bisphosphonate treatment also reduced the magnitude of the erythroid response to Epo. These data demonstrate a previously unrecognized in vivo regulatory network coordinating erythropoiesis, B-lymphopoiesis, and skeletal homeostasis. Importantly, these findings may be relevant to the clinical application of Epo.
Collapse
|
42
|
Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, Sims NA, Gillespie MT, Martin TJ. Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem 2010; 286:4186-98. [PMID: 21123171 DOI: 10.1074/jbc.m110.178251] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Osteoblasts and adipocytes are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. cDNA microarrays and quantitative real-time PCR (Q-PCR) were carried out in a differentiating mouse stromal osteoblastic cell line, Kusa 4b10, to identify gene targets of factors that stimulate osteoblast differentiation including parathyroid hormone (PTH) and gp130-binding cytokines, oncostatin M (OSM) and cardiotrophin-1 (CT-1). Zinc finger protein 467 (Zfp467) was rapidly down-regulated by PTH, OSM, and CT-1. Retroviral overexpression and RNA interference for Zfp467 in mouse stromal cells showed that this factor stimulated adipocyte formation and inhibited osteoblast commitment compared with controls. Regulation of adipocyte markers, including peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, adiponectin, and resistin, and late osteoblast/osteocyte markers (osteocalcin and sclerostin) by Zfp467 was confirmed by Q-PCR. Intra-tibial injection of calvarial cells transduced with retroviral Zfp467 doubled the number of marrow adipocytes in C57Bl/6 mice compared with vector control-transduced cells, providing in vivo confirmation of a pro-adipogenic role of Zfp467. Furthermore, Zfp467 transactivated a PPAR-response element reporter construct and recruited a histone deacetylase complex. Thus Zfp467 is a novel co-factor that promotes adipocyte differentiation and suppresses osteoblast differentiation. This has relevance to therapeutic interventions in osteoporosis, including PTH-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.
Collapse
Affiliation(s)
- Julie M Quach
- St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010; 120:582-92. [PMID: 20051625 DOI: 10.1172/jci40568] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022] Open
Abstract
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr-/- osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer.
Collapse
|
44
|
Quinn JMW, Tam S, Sims NA, Saleh H, McGregor NE, Poulton IJ, Scott JW, Gillespie MT, Kemp BE, van Denderen BJW. Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J 2009; 24:275-85. [PMID: 19723702 DOI: 10.1096/fj.09-137158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since AMP-activated protein kinase (AMPK) plays important roles in modulating metabolism in response to diet and exercise, both of which influence bone mass, we examined the influence of AMPK on bone mass in mice. AMPK is an alphabetagamma heterotrimer where the beta subunit anchors the alpha catalytic and gamma regulatory subunits. Germline deletion of either AMPK beta1 or beta2 subunit isoforms resulted in reduced trabecular bone density and mass, but without effects on osteoclast (OC) or osteoblast (OB) numbers, as compared to wild-type littermate controls. We tested whether activating AMPK in vivo would enhance bone density but found AICA-riboside treatment caused a profound loss of trabecular bone volume (49.5%) and density and associated increased OC numbers. Consistent with this, AICA-riboside strongly stimulated OC differentiation in vitro, in an adenosine kinase-dependent manner. OCs and macrophages (unlike OBs) lacked AMPK beta2 subunit expression, and when generated from AMPK beta1(-/-) mice displayed no detectable AMPK activity. Nevertheless, AICA-riboside was equally effective at stimulating OC differentiation from wild-type or beta1(-/-) progenitors, indicating that AMPK is not essential for OC differentiation or the stimulatory action of AICA-riboside. These results show that AMPK is required to maintain normal bone density, but not through bone cell differentiation, and does not mediate powerful osteolytic effects of AICA-riboside.
Collapse
Affiliation(s)
- Julian M W Quinn
- Prince Henry's Institute, Monash Medical Centre, Clayton, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.
Collapse
|
46
|
Makino H, Toyoda M, Matsumoto K, Saito H, Nishino K, Fukawatase Y, Machida M, Akutsu H, Uyama T, Miyagawa Y, Okita H, Kiyokawa N, Fujino T, Ishikawa Y, Nakamura T, Umezawa A. Mesenchymal to embryonic incomplete transition of human cells by chimeric OCT4/3 (POU5F1) with physiological co-activator EWS. Exp Cell Res 2009; 315:2727-40. [PMID: 19559696 DOI: 10.1016/j.yexcr.2009.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
POU5F1 (more commonly known as OCT4/3) is one of the stem cell markers, and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotypes, we generated human cells of mesodermal origin with overexpression of the chimeric OCT4/3 gene with physiological co-activator EWS (product of the EWSR1 gene), which is driven by the potent EWS promoter by translocation. The cells expressed embryonic stem cell genes such as NANOG, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structures when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that the cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can be traced back to cells of embryonic phenotype by the OCT4/3 gene in collaboration with the potent cis-regulatory element and the fused co-activator. The cells generated in this study with overexpression of chimeric OCT4/3 provide us with insight into cell plasticity involving OCT4/3 that is essential for embryonic cell maintenance, and the complexity required for changing cellular identity.
Collapse
Affiliation(s)
- Hatsune Makino
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Z, Deng Q, Zhang X, Zhang J. Treatment of Injured Neurons with Bone Marrow Stem Cells Cotransfected by hTERT and Ad-BDNF In Vitro. J Mol Neurosci 2009; 38:265-72. [DOI: 10.1007/s12031-009-9208-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 04/27/2009] [Indexed: 11/28/2022]
|
48
|
Onan D, Allan EH, Quinn JMW, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ. The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 2009; 150:2244-53. [PMID: 19147675 DOI: 10.1210/en.2008-1597] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PTH receptor (PTHR1) is expressed on osteoblasts and responds to PTH or PTHrP in an endocrine or autocrine/paracrine manner, respectively. A microarray study carried out on PTHR1-positive osteoblasts (Kusa 4b10 cells) identified the cysteine-X-cysteine (CXC) family chemokine ligand 1 (Cxcl1) as a novel immediate PTH/PTHrP-responsive gene. Cxcl1 is a potent neutrophil chemoattractant with recognized roles in angiogenesis and inflammation, but a role in bone biology has not been described. Cxcl1 mRNA levels were up-regulated 1 h after either PTH or PTHrP treatment of differentiated Kusa 4b10 osteoblasts (15-fold) and mouse calvarial osteoblasts (160-fold) and in rat metaphyseal bone (5-fold) 1 h after a single sc injection of PTH. Furthermore, PTH treatment stimulated a 10-fold increase in secreted Cxcl1 protein by both Kusa 4b10 cells and calvarial osteoblasts. Immunohistochemistry and PCR demonstrated that CXCR2, the receptor for Cxcl1, is highly expressed in osteoclast precursors (hemopoietic cells) but is predominantly undetectable in the osteoblast lineage, suggesting that osteoblast-derived Cxcl1 may act as a chemoattractant for osteoclast precursors. Confirming this hypothesis, recombinant Cxcl1 dose-dependently stimulated migration of osteoclast precursors in cell culture studies, as did conditioned media from Kusa 4b10 cells treated with PTH. These data indicate that local action through the PTHR1 could stimulate cells of the osteoblast lineage to release a chemokine capable of attracting osteoclast precursors to the bone environment.
Collapse
Affiliation(s)
- Döne Onan
- Bone Joint and Cancer Unit, St. Vincent's Institute, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. NEPHRON. PHYSIOLOGY 2009; 111:p39-53. [PMID: 19276629 PMCID: PMC2881330 DOI: 10.1159/000208212] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although first described as early as 1898 and long considered a vestigial organelle of little functional importance, the primary cilium has become one of the hottest research topics in modern cell biology and physiology. Primary cilia are nonmotile sensory organelles present in a single copy on the surface of most growth-arrested or differentiated mammalian cells, and defects in their assembly or function are tightly coupled to many developmental defects, diseases and disorders. In normal tissues, the primary cilium coordinates a series of signal transduction pathways, including Hedgehog, Wnt, PDGFRalpha and integrin signaling. In the kidney, the primary cilium may function as a mechano-, chemo- and osmosensing unit that probes the extracellular environment and transmits signals to the cell via, e.g., polycystins, which depend on ciliary localization for appropriate function. Indeed, hypomorphic mutations in the mouse ift88 (previously called Tg737) gene, which encodes a ciliogenic intraflagellar transport protein, result in malformation of primary cilia, and in the collecting ducts of kidney tubules this is accompanied by development of autosomal recessive polycystic kidney disease (PKD). While PKD was one of the first diseases to be linked to dysfunctional primary cilia, defects in this organelle have subsequently been associated with many other phenotypes, including cancer, obesity, diabetes as well as a number of developmental defects. Collectively, these disorders of the cilium are now referred to as the ciliopathies. In this review, we provide a brief overview of the structure and function of primary cilia and some of their roles in coordinating signal transduction pathways in mammalian development, health and disease.
Collapse
Affiliation(s)
- Iben R Veland
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
50
|
Epidermal growth factor promotes the differentiation of stem cells derived from human umbilical cord blood into neuron-like cells via taurine induction in vitro. In Vitro Cell Dev Biol Anim 2009; 45:321-7. [DOI: 10.1007/s11626-009-9184-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|