1
|
Pera EM, Nilsson-De Moura J, Pomeshchik Y, Roybon L, Milas I. Inhibition of the serine protease HtrA1 by SerpinE2 suggests an extracellular proteolytic pathway in the control of neural crest migration. eLife 2024; 12:RP91864. [PMID: 38634469 PMCID: PMC11026092 DOI: 10.7554/elife.91864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism. SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.
Collapse
Affiliation(s)
- Edgar M Pera
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| | - Josefine Nilsson-De Moura
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund Stem Cell Center, Strategic Research Area MultiPark, Lund UniversityLundSweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund Stem Cell Center, Strategic Research Area MultiPark, Lund UniversityLundSweden
| | - Ivana Milas
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| |
Collapse
|
2
|
Bhutada S, Li L, Willard B, Muschler G, Piuzzi N, Apte SS. Forward and reverse degradomics defines the proteolytic landscape of human knee osteoarthritic cartilage and the role of the serine protease HtrA1. Osteoarthritis Cartilage 2022; 30:1091-1102. [PMID: 35339693 DOI: 10.1016/j.joca.2022.02.622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Proteolytic destruction of articular cartilage, a major pathogenic mechanism in osteoarthritis (OA), was not previously investigated by terminomics strategies. We defined the degradome of human knee OA cartilage and the contribution therein of the protease HtrA1 using Terminal Amine Isotopic Labeling of Substrates (TAILS). DESIGN Proteins from OA cartilage taken at knee arthroplasty (n = 6) or separately, from healthy cartilage incubated in triplicate with/without active HtrA1, were labeled at natural and proteolytically cleaved N-termini by reductive dimethylation, followed by trypsin digestion, enrichment of N-terminally labeled/blocked peptides, tandem mass spectrometry and positional peptide annotation to identify cleavage sites. Biglycan proteolysis by HtrA1 was validated biochemically and Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) was used to define the HtrA1 cleavage sites. RESULTS We identified 10,155 unique internal peptides from 2,162 proteins, suggesting at least 10,797 cleavage sites in OA cartilage. 7,635 internal peptides originated in 371 extracellular matrix/secreted components, many undergoing extensive proteolysis. Rampant ragging of protein termini suggested pervasive exopeptidase activity. HtrA1, the most abundant protease in OA cartilage, experimentally generated 323 cleavages in 109 cartilage proteins, accounting for 171 observed cleavages in the OA degradome. ATOMS identified HtrA1 cleavage sites in a selected substrate, biglycan, whose direct cleavage by HtrA1 was thus orthogonally validated. CONCLUSIONS OA cartilage demonstrates widespread proteolysis by endo- and exopeptidases. HtrA1 contributes broadly to cartilage proteolysis. Forward degradomics of OA cartilage together with reverse degradomics of proteases active in OA, e.g., HtrA1, can potentially fully annotate OA proteolytic pathways and provide new biomarkers.
Collapse
Affiliation(s)
- S Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - L Li
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - B Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - G Muschler
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, USA
| | - N Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, USA
| | - S S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Orthopaedic Surgery, Cleveland Clinic Orthopaedic and Rheumatologic Institute, Cleveland, OH, USA.
| |
Collapse
|
3
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
4
|
Renke J, Wasilewska E, Kędzierska-Mieszkowska S, Zorena K, Barańska S, Wenta T, Liberek A, Siluk D, Żurawa-Janicka D, Szczepankiewicz A, Renke M, Lipińska B. Tumor Suppressors-HTRA Proteases and Interleukin-12-in Pediatric Asthma and Allergic Rhinitis Patients. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E298. [PMID: 32560402 PMCID: PMC7353852 DOI: 10.3390/medicina56060298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
Background and objective: Allergy belongs to a group of mast cell-related disorders and is one of the most common diseases of childhood. It was shown that asthma and allergic rhinitis diminish the risk of various cancers, including colon cancer and acute lymphoblastic leukemia. On the other hand, asthma augments the risk of lung cancer and an increased risk of breast cancer in patients with allergy has been observed. Thus, the relation between allergy and cancer is not straightforward and furthermore, its biological mechanism is unknown. The HTRA (high temperature requirement A) proteases promote apoptosis, may function as tumor suppressors and HTRA1 is known to be released by mast cells. Interleukin-12 (Il-12) is an important cytokine that induces antitumor immune responses and is produced mainly by dendritic cells that co-localize with mast cells in superficial organs. Material and methods: In the present study we have assessed with ELISA plasma levels of the HTRA proteins, Il-12, and of the anti-HTRA autoantibodies in children with allergy (40) and in age matched controls (39). Children are a special population, since they usually do not have comorbidities and take not many drugs the processes we want to observe are not influenced by many other factors. Results: We have found a significant increase of HTRA1, 2 and 3, and of the Il-12 levels in the children with atopy (asthma and allergic rhinitis) compared to controls. Conclusion: Our results suggest that the HTRA1-3 and Il-12 levels might be useful in analyzing the pro- and antioncogenic potential in young atopic patients.
Collapse
Affiliation(s)
- Joanna Renke
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Eliza Wasilewska
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland;
| | - Sabina Kędzierska-Mieszkowska
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland;
| | - Sylwia Barańska
- Department of Bacterial Molecular Genetics University of Gdańsk Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Anna Liberek
- Faculty of Health Sciences with Subfaculty of Nursing, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland;
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Dorota Żurawa-Janicka
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-512 Poznan, Poland;
| | - Marcin Renke
- Department of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland;
| | - Barbara Lipińska
- Department of General and Medical Biochemistry, University of Gdańsk, Wita Stwosza 59 80-308 Gdańsk, Poland; (S.K.-M.); (T.W.); (D.Ż.-J.); (B.L.)
| |
Collapse
|
5
|
Tom I, Pham VC, Katschke KJ, Li W, Liang WC, Gutierrez J, Ah Young A, Figueroa I, Eshghi ST, Lee CV, Kanodia J, Snipas SJ, Salvesen GS, Lai P, Honigberg L, van Lookeren Campagne M, Kirchhofer D, Baruch A, Lill JR. Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proc Natl Acad Sci U S A 2020; 117:9952-9963. [PMID: 32345717 PMCID: PMC7211935 DOI: 10.1073/pnas.1917608117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.
Collapse
Affiliation(s)
- Irene Tom
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Victoria C Pham
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Wei-Ching Liang
- Department of Antibody Discovery, Genentech, Inc., South San Francisco, CA 94080
| | - Johnny Gutierrez
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - Andrew Ah Young
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Isabel Figueroa
- Drug Metabolism, Pharmacokinetics, and Bioanalysis, AbbVie, South San Francisco, CA 94090
| | - Shadi Toghi Eshghi
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | - ChingWei V Lee
- Biology Core Support, Gilead Sciences, Foster City, CA 94404
| | - Jitendra Kanodia
- Clinical and Translational Pharmacology, Theravance Biopharma, Inc., South San Francisco, CA 94080
| | - Scott J Snipas
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Guy S Salvesen
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Phillip Lai
- Early Clinical Development OMNI Department, Genentech, Inc., South San Francisco, CA 94080
| | - Lee Honigberg
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA 94080
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Amos Baruch
- Biomarker Development, Calico Life Sciences, LLC, South San Francisco, CA 94080
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, Inc., South San Francisco, CA 94080;
| |
Collapse
|
6
|
Li Y, Yuan J, Rothzerg E, Wu X, Xu H, Zhu S, Xu J. Molecular structure and the role of high-temperature requirement protein 1 in skeletal disorders and cancers. Cell Prolif 2019; 53:e12746. [PMID: 31867863 PMCID: PMC7048211 DOI: 10.1111/cpr.12746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023] Open
Abstract
Human high‐temperature requirement protein 1 (HTRA1) is a member of serine proteases and consists of four well‐defined domains—an IGFBP domain, a Kazal domain, a protease domain and a PDZ domain. HTRA1 is a secretory protein and also present intracellularly and associated with microtubules. HTRA1 regulates a broad range of physiological processes via its proteolytic activity. This review examines the role of HTRA1 in bone biology, osteoarthritis, intervertebral disc (IVD) degeneration and tumorigenesis. HTRA1 mediates diverse pathological processes via a variety of signalling pathways, such as TGF‐β and NF‐κB. The expression of HTRA1 is increased in arthritis and IVD degeneration, suggesting that HTRA1 protein is attributed to cartilage degeneration and disease progression. Emerging evidence also suggests that HTRA1 has a role in tumorigenesis. Further understanding the mechanisms by which HTRA1 displays as an extrinsic and intrinsic regulator in a cell type–specific manner will be important for the development of HTRA1 as a therapeutic target.
Collapse
Affiliation(s)
- Yihe Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jinbo Yuan
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinghuo Wu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
8
|
Li D, Wu Y, Wu Y, Ni C, Jiang P, Li J, Mao L, Zheng Q, Yue J. HtrA1 upregulates the expression of ADAMTS-5 in HNPCs via the ERK/NF-κB/JNK signaling pathway. Am J Transl Res 2019; 11:5114-5121. [PMID: 31497227 PMCID: PMC6731407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration (IDD) is a form of chronic inflammation and is one of the most common disorders reported to be involved in low back pain (LBP). The pathophysiology of degeneration is not completely understood, but the consensus is that the degradation of extracellular matrix (ECM) proteins in the disc is the leading factor contributing to IDD. High temperature requirement A1 (HtrA1) is serine protease that has been shown to be increased in degenerated intervertebral discs as a result of an increase in the expression of matrix metalloproteinases (MMPs), but no study has focused on the effect of HtrA1 on a disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs). In the present study, we successfully isolated human nucleus pulposus cells (HNPCs) from IDD patients who were our research subjects to elaborate on the potential role of HtrA1 in the pathogenesis of IDD. We confirmed that HtrA1 has the potential to induce the expression of ADAMTS-5 in a dose-dependent manner. Consistently, this was mediated by the ERK, NF-κB and JNK pathways. By using inhibitors of these pathways, the increase in ADAMTS-5 could be reduced. Our findings indicated that HtrA1 can induce the expression of ADAMTS-5 in HNPCs via the ERK/NF-κB/JNK signaling pathway, and our study also elucidated the involved induction mechanisms in HNPCs, which may provide new insights for the treatment of IDD.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Yumin Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow UniversityChangzhou 213003, Jiangsu Province, China
| | - Yan Wu
- Department of Physiology, Medical College of Jiangsu UniversityZhenjiang 212013, Jiangsu Province, China
| | - Chenlie Ni
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Pan Jiang
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Jian Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Qiping Zheng
- Jiangsu Key Laboratory of Medical Science and The Laboratory of Jiangsu UniversityZhenjiang 212013, Jiangsu Province, China
| | - Jiawei Yue
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow UniversityChangzhou 213003, Jiangsu Province, China
| |
Collapse
|
9
|
Abstract
The HTRA1 gene encoding an evolutionary conserved protein quality-control factor can be epigenetically silenced or inactivated by mutation under pathologic conditions such as cancer. Recent evidence suggests that the loss of HTRA1 function causes multiple phenotypes, including the acceleration of cell growth, delayed onset of senescence, centrosome amplification, and polyploidy, suggesting an implication in the regulation of the cell cycle. To address this model, we performed a large-scale proteomics study to correlate the abundance of proteins and HTRA1 levels in various cell cycle phases using label-free-quantification mass spectrometry. These data indicate that the levels of 4723 proteins fluctuated in a cell-cycle-dependent manner, 2872 in a HTRA1-dependent manner, and 1530 in a cell-cycle- and HTRA1-dependent manner. The large number of proteins affected by the modulation of HTRA1 levels supports its general role in protein homeostasis. Moreover, the detected changes in protein abundance, in combination with pull-down data, implicate HTRA1 in various cell cycle events such as DNA replication, chromosome segregation, and cell-cycle-dependent apoptosis. These results highlight the wide implications of HTRA1 in cellular physiology.
Collapse
Affiliation(s)
- Jasmin Schillinger
- Centre of Medical Biotechnology, Faculty of Biology , University Duisburg-Essen, Universitaetsstrasse , 45141 Essen , Germany
| | - Katharina Severin
- Centre of Medical Biotechnology, Faculty of Biology , University Duisburg-Essen, Universitaetsstrasse , 45141 Essen , Germany
| | - Farnusch Kaschani
- Centre of Medical Biotechnology, Faculty of Biology , University Duisburg-Essen, Universitaetsstrasse , 45141 Essen , Germany
| | - Markus Kaiser
- Centre of Medical Biotechnology, Faculty of Biology , University Duisburg-Essen, Universitaetsstrasse , 45141 Essen , Germany
| | - Michael Ehrmann
- Centre of Medical Biotechnology, Faculty of Biology , University Duisburg-Essen, Universitaetsstrasse , 45141 Essen , Germany
- School of Biosciences , Cardiff University , Cardiff CF10 3US , United Kingdom
| |
Collapse
|
10
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
11
|
Ivry SL, Meyer NO, Winter MB, Bohn MF, Knudsen GM, O'Donoghue AJ, Craik CS. Global substrate specificity profiling of post-translational modifying enzymes. Protein Sci 2018; 27:584-594. [PMID: 29168252 PMCID: PMC5818756 DOI: 10.1002/pro.3352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.
Collapse
Affiliation(s)
- Sam L. Ivry
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Nicole O. Meyer
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Michael B. Winter
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Markus F. Bohn
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Giselle M. Knudsen
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San DiegoLa JollaCalifornia
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
12
|
Globus O, Evron T, Caspi M, Siman-Tov R, Rosin-Arbesfeld R. High-Temperature Requirement A1 (Htra1) - A Novel Regulator of Canonical Wnt Signaling. Sci Rep 2017; 7:17995. [PMID: 29269789 PMCID: PMC5740065 DOI: 10.1038/s41598-017-18203-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
Different cancer types as well as many other diseases are caused by aberrant activation of the canonical Wnt signal transduction pathway, and it is especially implicated in the development and progression of colorectal cancer (CRC). The main effector protein of the canonical Wnt signaling cascade is β-catenin, which binds to the T- cell factor/lymphoid enhancer factor (TCF/LEF) and triggers the activation of Wnt target genes. Here, we identify the serine protease High-Temperature Requirement A1 (HTRA1) as a novel component of the canonical Wnt pathway. We show that the HTRA1 protein inhibits the Wnt/β-catenin signaling, in both paracrine and autocrine manners, and affects the expression of several Wnt target genes. Moreover, HTRA1 forms a complex with β-catenin and reduces the proliferation rates of cells. Taken together, our findings indicate that HTRA1 functions as a novel suppressor of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Oriane Globus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamar Evron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
13
|
HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model. EBioMedicine 2017; 27:258-274. [PMID: 29269042 PMCID: PMC5828370 DOI: 10.1016/j.ebiom.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.
Collapse
|
14
|
Cabrera AC, Melo E, Roth D, Topp A, Delobel F, Stucki C, Chen CY, Jakob P, Banfai B, Dunkley T, Schilling O, Huber S, Iacone R, Petrone P. HtrA1 activation is driven by an allosteric mechanism of inter-monomer communication. Sci Rep 2017; 7:14804. [PMID: 29093542 PMCID: PMC5666011 DOI: 10.1038/s41598-017-14208-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022] Open
Abstract
The human protease family HtrA is responsible for preventing protein misfolding and mislocalization, and a key player in several cellular processes. Among these, HtrA1 is implicated in several cancers, cerebrovascular disease and age-related macular degeneration. Currently, HtrA1 activation is not fully characterized and relevant for drug-targeting this protease. Our work provides a mechanistic step-by-step description of HtrA1 activation and regulation. We report that the HtrA1 trimer is regulated by an allosteric mechanism by which monomers relay the activation signal to each other, in a PDZ-domain independent fashion. Notably, we show that inhibitor binding is precluded if HtrA1 monomers cannot communicate with each other. Our study establishes how HtrA1 trimerization plays a fundamental role in proteolytic activity. Moreover, it offers a structural explanation for HtrA1-defective pathologies as well as mechanistic insights into the degradation of complex extracellular fibrils such as tubulin, amyloid beta and tau that belong to the repertoire of HtrA1.
Collapse
Affiliation(s)
- Alvaro Cortes Cabrera
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Esther Melo
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Doris Roth
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Topp
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Frederic Delobel
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Corinne Stucki
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Peter Jakob
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Balazs Banfai
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
- Soladis GmbH, 4052, Basel, Switzerland
| | - Tom Dunkley
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Sylwia Huber
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Roberto Iacone
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland
| | - Paula Petrone
- Pharma Research & Early Development (pRED). Roche Innovation Center Basel, Basel, Switzerland.
- Barcelonabeta Brain Research Center, Fundacion Pascual Maragall. Carrer de Wellington, 30, 08005, Barcelona, Spain.
| |
Collapse
|
15
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Zurawa-Janicka D, Wenta T, Jarzab M, Skorko-Glonek J, Glaza P, Gieldon A, Ciarkowski J, Lipinska B. Structural insights into the activation mechanisms of human HtrA serine proteases. Arch Biochem Biophys 2017; 621:6-23. [PMID: 28396256 DOI: 10.1016/j.abb.2017.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Human HtrA1-4 proteins belong to the HtrA family of evolutionarily conserved serine proteases and function as important modulators of many physiological processes, including maintenance of mitochondrial homeostasis, cell signaling and apoptosis. Disturbances in their action are linked to severe diseases, including oncogenesis and neurodegeneration. The HtrA1-4 proteins share structural and functional features of other members of the HtrA protein family, however there are several significant differences in structural architecture and mechanisms of action which makes each of them unique. Our goal is to present recent studies regarding human HtrAs. We focus on their physiological functions, structure and regulation, and describe current models of activation mechanisms. Knowledge of molecular basis of the human HtrAs' action is a subject of great interest; it is crucial for understanding their relevance in cellular physiology and pathogenesis as well as for using them as targets in future therapies of diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Miroslaw Jarzab
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Przemyslaw Glaza
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Artur Gieldon
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jerzy Ciarkowski
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
17
|
Schmidt N, Irle I, Ripkens K, Lux V, Nelles J, Johannes C, Parry L, Greenow K, Amir S, Campioni M, Baldi A, Oka C, Kawaichi M, Clarke AR, Ehrmann M. Epigenetic silencing of serine protease HTRA1 drives polyploidy. BMC Cancer 2016; 16:399. [PMID: 27388476 PMCID: PMC4936022 DOI: 10.1186/s12885-016-2425-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. METHODS Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. RESULTS HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). CONCLUSIONS Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation.
Collapse
Affiliation(s)
- Nina Schmidt
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Inga Irle
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Kamilla Ripkens
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Vanda Lux
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Jasmin Nelles
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Christian Johannes
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
| | - Lee Parry
- />School of Biosciences, Cardiff University, Cardiff, CF10 3US UK
| | - Kirsty Greenow
- />School of Biosciences, Cardiff University, Cardiff, CF10 3US UK
| | - Sarah Amir
- />School of Biosciences, Cardiff University, Cardiff, CF10 3US UK
| | - Mara Campioni
- />Department of Biochemistry and Biophysics, Section of Pathology, Second University of Naples, 80100 Naples, Italy
| | - Alfonso Baldi
- />Department of Biochemistry and Biophysics, Section of Pathology, Second University of Naples, 80100 Naples, Italy
| | - Chio Oka
- />Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 Japan
| | - Masashi Kawaichi
- />Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 Japan
| | - Alan R. Clarke
- />School of Biosciences, Cardiff University, Cardiff, CF10 3US UK
| | - Michael Ehrmann
- />Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, Universitaetsstrasse, D-45117 Essen, Germany
- />School of Biosciences, Cardiff University, Cardiff, CF10 3US UK
| |
Collapse
|
18
|
Ribeiro JR, Schorl C, Yano N, Romano N, Kim KK, Singh RK, Moore RG. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res 2016; 9:28. [PMID: 27184254 PMCID: PMC4869286 DOI: 10.1186/s13048-016-0240-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023] Open
Abstract
Background Chemotherapy resistance presents a difficult challenge in treating epithelial ovarian cancer patients, particularly when tumors exhibit resistance to multiple chemotherapeutic agents. A few studies have shown that elevated serum levels of the ovarian cancer biomarker HE4 correlate with tumor chemoresistance, response to treatment, and survival. Here, we sought to confirm our previous results that HE4 contributes to collateral resistance to cisplatin and paclitaxel in vitro and uncover factors that may contribute to HE4-mediated chemoresistance. Methods MTS assays and western blots for cleaved PARP were used to assess resistance of HE4-overexpressing SKOV3 and OVCAR8 clones to cisplatin and paclitaxel. CRISPR/Cas technology was used to knockdown HE4 in HE4-overexpressing SKOV3 cells. A microarray was conducted to determine differential gene expression between SKOV3 null vector-transfected and HE4-overexpressing clones upon cisplatin exposure, and results were validated by quantitative RT-PCR. Regulation of mitogen activated protein kinases (MAPKs) and tubulins were assessed by western blot. Results HE4-overexpressing SKOV3 and OVCAR8 clones displayed increased resistance to cisplatin and paclitaxel. Knockdown of HE4 in HE4-overexpressing SKOV3 cells partially reversed chemoresistance. Microarray analysis revealed that HE4 overexpression resulted in suppression of cisplatin-mediated upregulation of EGR1, a MAPK-regulated gene involved in promoting apoptosis. Upregulation of p38, a MAPK activated in response to cisplatin, was suppressed in HE4-overexpressing clones. No differences in extracellular signal-regulated kinase (ERK) activation were noted in HE4-overexpressing clones treated with 25 μM cisplatin, but ERK activation was partially suppressed in HE4-overexpressing clones treated with 80 μM cisplatin. Furthermore, treatment of cells with recombinant HE4 dramatically affected ERK activation in SKOV3 and OVCAR8 wild type cells. Recombinant HE4 also upregulated α-tubulin and β-tubulin levels in SKOV3 and OVCAR8 cells, and microtubule associated protein tau (MAPT) gene expression was increased in SKOV3 HE4-overexpressing clones. Conclusions Overexpression of HE4 promotes collateral resistance to cisplatin and paclitaxel, and downregulation of HE4 partially reverses this chemoresistance. Multiple factors could be involved in HE4-mediated chemoresistance, including deregulation of MAPK signaling, as well as alterations in tubulin levels or stability. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0240-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J R Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.
| | - C Schorl
- Center for Genomics and Proteomics, Genomics Core Facility, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - N Yano
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA
| | - N Romano
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA
| | - K K Kim
- Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - R K Singh
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.,Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - R G Moore
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Molecular Therapeutics Laboratory, 200 Chestnut Street, Providence, RI, 02903, USA.,Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Ciferri C, Lipari MT, Liang WC, Estevez A, Hang J, Stawicki S, Wu Y, Moran P, Elliott M, Eigenbrot C, Katschke KJ, van Lookeren Campagne M, Kirchhofer D. The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody. Biochem J 2015; 472:169-81. [PMID: 26385991 DOI: 10.1042/bj20150601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022]
Abstract
High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease implicated in the progression of age-related macular degeneration (AMD). Our interest in an antibody therapy to neutralize HtrA1 faces the complication that the target adopts a trimeric arrangement, with three active sites in close proximity. In the present study, we describe antibody 94, obtained from a human antibody phage display library, which forms a distinct macromolecular complex with HtrA1 and inhibits the enzymatic activity of recombinant and native HtrA1 forms. Using biochemical methods and negative-staining EM we were able to elucidate the molecular composition of the IgG94 and Fab94 complexes and the associated inhibition mechanism. The 246-kDa complex between the HtrA1 catalytic domain trimer (HtrA1_Cat) and Fab94 had a propeller-like organization with one Fab bound peripherally to each protomer. Low-resolution EM structures and epitope mapping indicated that the antibody binds to the surface-exposed loops B and C of the catalytic domain, suggesting an allosteric inhibition mechanism. The HtrA1_Cat-IgG94 complex (636 kDa) is a cage-like structure with three centrally located IgG94 molecules co-ordinating two HtrA1_Cat trimers and the six active sites pointing into the cavity of the cage. In both complexes, all antigen-recognition regions (paratopes) are found to bind one HtrA1 protomer and all protomers are bound by a paratope, consistent with the complete inhibition of enzyme activity. Therefore, in addition to its potential therapeutic usefulness, antibody 94 establishes a new paradigm of multimeric serine protease inhibition.
Collapse
Affiliation(s)
- Claudio Ciferri
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Michael T Lipari
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Julie Hang
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Scott Stawicki
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Mike Elliott
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | - Kenneth J Katschke
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, U.S.A.
| |
Collapse
|
20
|
Poepsel S, Sprengel A, Sacca B, Kaschani F, Kaiser M, Gatsogiannis C, Raunser S, Clausen T, Ehrmann M. Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat Chem Biol 2015; 11:862-9. [PMID: 26436840 DOI: 10.1038/nchembio.1931] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/09/2015] [Indexed: 01/28/2023]
Abstract
Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.
Collapse
Affiliation(s)
- Simon Poepsel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andreas Sprengel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Barbara Sacca
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Ehrmann
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Frochaux V, Hildebrand D, Talke A, Linscheid MW, Schlüter H. Alpha-1-antitrypsin: a novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PLoS One 2014; 9:e109483. [PMID: 25329061 PMCID: PMC4203740 DOI: 10.1371/journal.pone.0109483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/12/2014] [Indexed: 01/03/2023] Open
Abstract
The human serine protease high temperature requirement A1 (HTRA1) is highly expressed in the placental tissue, especially in the last trimester of gestation. This suggests that HTRA1 is involved in placental formation and function. With the aim of a better understanding of the role of HTRA1 in the placenta, candidate substrates were screened in a placenta protein extract using a gel-based mass spectrometric approach. Protease inhibitor alpha-1-antitrypsin, actin cytoplasmic 1, tropomyosin beta chain and ten further proteins were identified as candidate substrates of HTRA1. Among the identified candidate substrates, alpha-1-antitrypsin (A1AT) was considered to be of particular interest because of its important role as protease inhibitor. For investigation of alpha-1-antitrypsin as substrate of HTRA1 synthetic peptides covering parts of the sequence of alpha-1-antitrypsin were incubated with HTRA1. By mass spectrometry a specific cleavage site was identified after met-382 (AIPM382↓383SIPP) within the reactive centre loop of alpha-1-antitrypsin, resulting in a C-terminal peptide comprising 36 amino acids. Proteolytic removal of this peptide from alpha-1-antitrypsin results in a loss of its inhibitor function. Beside placental alpha-1-antitrypsin the circulating form in human plasma was also significantly degraded by HTRA1. Taken together, our data suggest a link between the candidate substrates alpha-1-antitrypsin and the function of HTRA1 in the placenta in the syncytiotrophoblast, the cell layer attending to maternal blood in the villous tree of the human placenta. Data deposition: Mass spectrometry (MS) data have been deposited to the ProteomeXchange with identifier PXD000473.
Collapse
Affiliation(s)
- Violette Frochaux
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Diana Hildebrand
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Hartmut Schlüter
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Risør MW, Poulsen ET, Thomsen LR, Dyrlund T, Nielsen TA, Nielsen NC, Sanggaard KW, Enghild JJ. The autolysis of human HtrA1 is governed by the redox state of its N-terminal domain. Biochemistry 2014; 53:3851-7. [PMID: 24846539 PMCID: PMC4067144 DOI: 10.1021/bi401633w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/20/2014] [Indexed: 01/07/2023]
Abstract
Human HtrA1 (high-temperature requirement protein A1) belongs to a conserved family of serine proteases involved in protein quality control and cell fate. The homotrimeric ubiquitously expressed protease has chymotrypsin-like specificity and primarily targets hydrophobic stretches in selected or misfolded substrate proteins. In addition, the enzyme is capable of exerting autolytic activity by removing the N-terminal insulin-like growth factor binding protein (IGFBP)/Kazal-like tandem motif without affecting the protease activity. In this study, we have addressed the mechanism governing the autolytic activity and find that it depends on the integrity of the disulfide bonds in the N-terminal IGFBP/Kazal-like domain. The specificity of the autolytic cleavage reveals a strong preference for cysteine in the P1 position of HtrA1, explaining the lack of autolysis prior to disulfide reduction. Significantly, the disulfides were reduced by thioredoxin, suggesting that autolysis of HtrA1 in vivo is linked to the endogenous redox balance and that the N-terminal domain acts as a redox-sensing switch.
Collapse
Affiliation(s)
- Michael W. Risør
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
- Centre
for Insoluble Protein Structures (inSPIN), Aarhus University, DK-8000 Aarhus, Denmark
| | - Ebbe Toftgaard Poulsen
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| | - Line R. Thomsen
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| | - Thomas
F. Dyrlund
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| | - Tania A. Nielsen
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| | - Niels Chr. Nielsen
- Centre
for Insoluble Protein Structures (inSPIN), Aarhus University, DK-8000 Aarhus, Denmark
- Department
of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kristian W. Sanggaard
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| | - Jan J. Enghild
- Department
of Molecular Biology and Genetics, Aarhus
University, DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4:122. [PMID: 24027553 PMCID: PMC3759803 DOI: 10.3389/fneur.2013.00122] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022] Open
Abstract
One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles. However there is still noteworthy debate concerning which specific pathological forms of tau are the contributors to neuronal dysfunction and death in AD. Given that increases in aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing interest in understanding the degradative pathways that remove tau from the cell, and the selectivity of these different pathways for various forms of tau. Indeed, one can speculate that deficits in a pathway that selectively removes certain pathological forms of tau could play a pivotal role in AD. In this review we will discuss the different proteolytic and degradative machineries that may be involved in removing tau from the cell. How deficits in these different degradative pathways may contribute to abnormal accumulation of tau in AD will also be considered. In addition, the issue of the selective targeting of specific tau species to a given degradative pathway for clearance from the cell will be addressed.
Collapse
Affiliation(s)
- Adrianne S Chesser
- Neuroscience Graduate Program, Department of Anesthesiology, University of Rochester , Rochester, NY , USA
| | | | | |
Collapse
|
24
|
Yu Y, Shao W, Hu Y, Zhang J, Song H, Zhu ZH. HtrA1 expression associated with the occurrence and development of esophageal cancer. World J Surg Oncol 2012; 10:179. [PMID: 22935172 PMCID: PMC3502178 DOI: 10.1186/1477-7819-10-179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The purposes of this study were to measure both the mRNA and protein expression levels of high-temperature requirement serine peptidase 1 (HtrA1) in human esophageal cancer tissues and their adjacent, comparatively normal esophageal tissues. METHODS The expression levels of HtrA1 mRNA and protein in both tissue types were measured by semi-quantitative RT-PCR (reverse transcription-polymerase chain reaction) and Western blotting. The clinical and pathological correlation between HtrA1 expression levels and the occurrence and development of esophageal cancer was analyzed. RESULTS The expression levels of HtrA1 mRNA and protein in esophageal carcinoma were significantly lower than the levels expressed in their adjacent normal esophageal tissue (p < 0.05). The more highly undifferentiated esophageal tumor cells expressed lower HtrA1 mRNA and protein expression levels (p < 0.05). Patients with tumors in early pathological stages (I-II) had significantly higher HtrA1 mRNA and protein expression levels than did patients with tumors in mid-to-late pathological stages (III-IV) (p < 0.05). Patients with positive lymph node metastasis had significantly lower HtrA1 mRNA and protein expression levels than did patients with lymph node-negative disease (p < 0.05). CONCLUSIONS HtrA1 expression is associated with the occurrence and development of esophageal cancer.
Collapse
Affiliation(s)
- Youtao Yu
- Department of Interventional Radiology, The Third Affiliated Hospital of Harbin Medical University, No. 150, Haping Rd, Harbin, 150040, China
| | - Wenlong Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Zhang
- Department of Interventional Radiology, The Third Affiliated Hospital of Harbin Medical University, No. 150, Haping Rd, Harbin, 150040, China
| | - Hao Song
- Department of Interventional Radiology, The Third Affiliated Hospital of Harbin Medical University, No. 150, Haping Rd, Harbin, 150040, China
| | - Zhi-hua Zhu
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Department of Thoracic Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Wang N, Eckert KA, Zomorrodi AR, Xin P, Pan W, Shearer DA, Weisz J, Maranus CD, Clawson GA. Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways. PLoS One 2012; 7:e39446. [PMID: 22761798 PMCID: PMC3383700 DOI: 10.1371/journal.pone.0039446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/21/2012] [Indexed: 12/18/2022] Open
Abstract
Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways.
Collapse
Affiliation(s)
- Ning Wang
- Gittlen Cancer Research Institute & Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Kristin A. Eckert
- Gittlen Cancer Research Institute & Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ali R. Zomorrodi
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ping Xin
- Gittlen Cancer Research Institute & Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Weihua Pan
- Gittlen Cancer Research Institute & Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Debra A. Shearer
- Department of Obstetrics & Gynecology, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Judith Weisz
- Department of Obstetrics & Gynecology, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Costas D. Maranus
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gary A. Clawson
- Gittlen Cancer Research Institute & Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
26
|
Tennstaedt A, Pöpsel S, Truebestein L, Hauske P, Brockmann A, Schmidt N, Irle I, Sacca B, Niemeyer CM, Brandt R, Ksiezak-Reding H, Tirniceriu AL, Egensperger R, Baldi A, Dehmelt L, Kaiser M, Huber R, Clausen T, Ehrmann M. Human high temperature requirement serine protease A1 (HTRA1) degrades tau protein aggregates. J Biol Chem 2012; 287:20931-41. [PMID: 22535953 PMCID: PMC3375517 DOI: 10.1074/jbc.m111.316232] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/24/2012] [Indexed: 11/06/2022] Open
Abstract
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed.
Collapse
Affiliation(s)
- Annette Tennstaedt
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Simon Pöpsel
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Linda Truebestein
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Patrick Hauske
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Anke Brockmann
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Nina Schmidt
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Inga Irle
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Barbara Sacca
- the Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christof M. Niemeyer
- the Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Roland Brandt
- the Fachbereich Biologie/Chemie, University Osnabrueck, D-49076 Osnabrueck, Germany
| | - Hanna Ksiezak-Reding
- the Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Anca Laura Tirniceriu
- the Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 23, 81377 Munich, Germany
| | - Rupert Egensperger
- the Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 23, 81377 Munich, Germany
| | - Alfonso Baldi
- the Department of Biochemistry and Biophysics, Section of Pathology, the Second University of Naples, 80100 Naples, Italy
| | - Leif Dehmelt
- the Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Markus Kaiser
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Robert Huber
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
- the Department for Chemical Biology, Technische Universität Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- the Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany
- the School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom, and
| | - Tim Clausen
- the Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Michael Ehrmann
- From the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
- the School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom, and
| |
Collapse
|
27
|
He X, Khurana A, Maguire JL, Chien J, Shridhar V. HtrA1 sensitizes ovarian cancer cells to cisplatin-induced cytotoxicity by targeting XIAP for degradation. Int J Cancer 2012; 130:1029-35. [PMID: 21387310 PMCID: PMC3206182 DOI: 10.1002/ijc.26044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/22/2011] [Indexed: 01/13/2023]
Abstract
HtrA1, a member of serine protease family, has been previously found to be involved in resistance to chemotherapy in ovarian cancer although the underlying mechanism is not clear. Using mixture-based oriented peptide library approach, previously we identified X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis proteins family, as a potential substrate of HtrA1. The aim of our work is to investigate the link between HtrA1 and XIAP proteins and their relationships with chemoresistance in ovarian cancer. Our results showed that recombinant XIAP was degraded by purified wild-type HtrA1 but not mutant HtrA1 in vitro. Consistent with the in vitro data, coimmunoprecipitation assays showed that HtrA1 and XIAP formed a protein complex in vivo. Ectopic expression of HtrA1 led to decreased level of XIAP in OV167 and OV202 ovarian cancer cells, while knockdown of HtrA1 resulted in increased level of XIAP in SKOV3 ovarian cancer cells. Furthermore, overexpression of HtrA1 in OV202 cells promoted cell sensitivity to cisplatin-induced apoptosis that could be reversed by increased expression of XIAP. The cleavage of XIAP induced by HtrA1 was enhanced by cisplatin treatment. Taken together, our experiments have identified XIAP as a novel substrate of HtrA1 and the degradation of XIAP by HtrA1 contributes to cell response to chemotherapy, suggesting that restoring the expression of HtrA1 may be a promising treatment strategy for ovarian cancer.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
28
|
Chien J. WT1 as a substrate of HtrA2: a potential pathway for therapeutic targeting by HtrA proteases. Future Oncol 2010; 6:1233-5. [PMID: 20799869 DOI: 10.2217/fon.10.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evaluation of: Hartkamp J, Carpenter B, Roberts SGE: The Wilms’ tumor suppressor protein wt1 is processed by the serine protease HtrA2/Omi. Mol. Cell 37, 159–171 (2010). WT1 is a transcription factor first cloned in 1990 as a tumor suppressor, and inactivating deletions and mutations in WT1 are found in childhood kidney Wilms’ tumor. The tumor suppressive role of WT1 is further supported by in vitro and in vivo studies in which ectopic expression of WT1 attenuated cell growth and tumor formation by promoting apoptosis through induction of proapoptotic proteins. However, WT1 is also reported to be overexpressed in adult cancer, and the functional significance of overexpression or de novo expression of WT in adult cancers is not clear, although WT1 in adult cancer may represent isoform-specific differences in WT1 function. A paper by Hartkamp et al. is discussed in this article, reporting the identification of Wilms’ tumor suppressor protein WT1 as a substrate of serine protease HtrA2 and the contribution of potential mechanistic insights into how distinct WT1 functions may be regulated through proteolysis by HtrA2.
Collapse
Affiliation(s)
- Jeremy Chien
- Mayo Clinic, Division of Experimental Pathology, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Campioni M, Severino A, Manente L, Tuduce IL, Toldo S, Caraglia M, Crispi S, Ehrmann M, He X, Maguire J, De Falco M, De Luca A, Shridhar V, Baldi A. The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein. Mol Cancer Res 2010; 8:1248-60. [PMID: 20671064 DOI: 10.1158/1541-7786.mcr-09-0473] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hamartin and tuberin are products of the tumor suppressor genes TSC1 and TSC2, respectively. Mutations affecting either gene result in the tuberous sclerosis syndrome, a neurologic genetic disorder characterized by the formation of multiple benign tumors or hamartomas. In this study, we report the identification of TSC2, but not TSC1, as a substrate of HtrA1, a member of the human HtrA family proteins of serine proteases. We show the direct interaction and colocalization in the cytoplasm of HtrA1 and TSC2 and that HtrA1 cleaves TSC2 both in vitro and in vivo. Finally, we show that alterations in HtrA1 expression cause modifications in phosphorylation status of two downstream targets of TSC2: 4E-BP1 and S6K. Our data suggest that, under particular physiologic or pathologic conditions, HtrA1 degrades TSC2 and activates the downstream targets. Considering that HtrA1 levels are significantly increased during embryogenesis, we speculate that one of the targets of HtrA1 activity during fetal development is the TSC2-TSC1 pathway.
Collapse
Affiliation(s)
- Mara Campioni
- Department of Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni 5, 80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
An E, Sen S, Park SK, Gordish-Dressman H, Hathout Y. Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome. Invest Ophthalmol Vis Sci 2010; 51:3379-86. [PMID: 20207970 PMCID: PMC2904004 DOI: 10.1167/iovs.09-4853] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 02/18/2010] [Indexed: 01/06/2023] Open
Abstract
PURPOSE. To define the role of the serine protease HTRA1 in age-related macular degeneration (AMD) by examining its expression level and identifying its potential substrates in the context of primary RPE cell extracellular milieu. METHODS. Primary RPE cell cultures were established from human donor eyes and screened for CFH, ARMS2, and HTRA1 risk genotypes by using an allele-discrimination assay. HTRA1 expression in genotyped RPE cells was determined by using real-time PCR and quantitative proteomics. Potential HTRA1 substrates were identified by incubating RPE-conditioned medium with or without human recombinant HTRA1. Selectively cleaved proteins were quantified by using the differential stable isotope labeling by amino acids in cell culture (SILAC) strategy. RESULTS. HTRA1 mRNA levels were threefold higher in primary RPE cells homozygous for the HTRA1 promoter risk allele than in RPE cells with the wild-type allele, which translated into a twofold increase in HTRA1 secretion by RPE cells with the risk genotype. A total of 196 extracellular proteins were identified in the RPE secretome, and only 8 were found to be selectively cleaved by the human recombinant HTRA1. These include fibromodulin with 90% cleavage, clusterin (50%), ADAM9 (54%), vitronectin (54%), and alpha2-macroglobulin (55%), as well as some cell surface proteins including talin-1 (21%), fascin (40%), and chloride intracellular channel protein 1 (51%). CONCLUSIONS. Recombinant HTRA1 cleaves RPE-secreted proteins involved in regulation of the complement pathway (clusterin, vitronectin, and fibromodulin) and of amyloid deposition (clusterin, alpha2-macroglobulin, and ADAM9). These findings suggest a link between HTRA1, complement regulation, and amyloid deposition in AMD pathogenesis.
Collapse
Affiliation(s)
- Eunkyung An
- From the Center for Genetic Medicine, Children's National Medical Center, Washington, DC
- the Program in Biochemistry and Molecular Genetics, Institute of Biomedical Science, George Washington University, Washington, DC; and
| | - Supti Sen
- From the Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Sung Kyu Park
- the Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | | | - Yetrib Hathout
- From the Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| |
Collapse
|
31
|
He X, Ota T, Liu P, Su C, Chien J, Shridhar V. Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res 2010; 70:3109-18. [PMID: 20388781 PMCID: PMC5579484 DOI: 10.1158/0008-5472.can-09-3557] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously identified serine protease HtrA1 as a downregulated gene in epithelial ovarian cancer (EOC), but the functional consequence of loss of HtrA1 in EOC remains largely unclear. Here, we report that loss of HtrA1 attenuates anoikis--a critical physiologic barrier for tumor metastasis. In response to loss of anchorage, HtrA1 expression was upregulated in SKOV3 cells, resulting in autocatalytic activation of HtrA1. Stable knockdown of HtrA1 in SKOV3 and TOV21G cells resulted in resistance to anoikis due to enhanced activation of epidermal growth factor receptor (EGFR)/AKT pathway. In suspended SKOV3 cells, enhanced expression of HtrA1 inhibited EGFR/AKT pathway, leading to increased cell death, whereas protease-inactive mutant HtrA1 failed to result in either the inhibition of EGFR/AKT pathway or increased cell death, suggesting the requirement of HtrA1 protease activity in regulating anoikis. Immunoprecipitation and immunofluorescence assays revealed that HtrA1 interacted with EGFR not only on the cell membrane but also in the nucleus. Most importantly, downregulation of HtrA1 significantly enhanced the peritoneal dissemination of SKOV3ip1 cells in nonobese diabetic/severe combined immunodeficient mice, with increased phospho-EGFR level in corresponding tumor nodules compared with that in xenografts originated from the control cells. Taken together, these data reveal for the first time a novel function of HtrA1 in promoting anoikis by attenuating activation of EGFR/AKT pathway that may contribute to its metastasis suppression capacity, thus providing a possible explanation for the aggressive nature of human ovarian tumors with downregulated HtrA1.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Takayo Ota
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Peng Liu
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Changqing Su
- Department of Gene and Viral Therapy, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, 225 Changhai Rd., Shanghai 200438, China
| | - Jeremy Chien
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Beleford D, Rattan R, Chien J, Shridhar V. High temperature requirement A3 (HtrA3) promotes etoposide- and cisplatin-induced cytotoxicity in lung cancer cell lines. J Biol Chem 2010; 285:12011-27. [PMID: 20154083 DOI: 10.1074/jbc.m109.097790] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Here we show for the first time that HtrA3 is a mitochondrial stress-response factor that promotes cytotoxicity to etoposide and cisplatin in lung cancer cell lines. Exogenous expression of wild type HtrA3 domain variants significantly attenuated cell survival with etoposide and cisplatin treatment in lung cancer cell lines H157 and A549 compared with expression of protease inactive mutants (S305A) or vector control. Conversely, HtrA3 suppression promoted cell survival with etoposide and cisplatin treatment in lung cancer cell lines Hop62 and HCC827. Survival was attenuated by re-expression of wild type HtrA3 variants during treatment but not by protease inactive mutants or vector control. HtrA3 also co-fractionated and co-localized with mitochondrial markers with both endogenous and exogenous expression in normal lung and lung cancer cell lines but was translocated from mitochondria following etoposide treatment. Moreover, HtrA3 translocation from mitochondria correlated with an increase in cell death that was attenuated by either HtrA3 suppression or Bcl-2 overexpression. Taken together, these results suggest that HtrA3 may be a previously uncharacterized mitochondrial cell death effector whose serine protease function may be crucial to modulating etoposide- and cisplatin-induced cytotoxicity in lung cancer cell lines.
Collapse
Affiliation(s)
- Daniah Beleford
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
33
|
Chien J, Ota T, Aletti G, Shridhar R, Boccellino M, Quagliuolo L, Baldi A, Shridhar V. Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol Cell Biol 2009; 29:4177-87. [PMID: 19470753 PMCID: PMC2715801 DOI: 10.1128/mcb.00035-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified alpha- and beta-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of alpha-, beta-, and gamma-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in the regulation of cell motility by modulating microtubule stability.
Collapse
Affiliation(s)
- Jeremy Chien
- Experimental Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|