1
|
Tang W, Sun G, Ji GW, Feng T, Zhang Q, Cao H, Wu W, Zhang X, Liu C, Liu H, Huang T, Liu L, Xia Y, Wang X. Single-cell RNA-sequencing atlas reveals an FABP1-dependent immunosuppressive environment in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007030. [PMID: 38007237 PMCID: PMC10679975 DOI: 10.1136/jitc-2023-007030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing, also known as scRNA-seq, is a method profiling cell populations on an individual cell basis. It is particularly useful for more deeply understanding cell behavior in a complicated tumor microenvironment. Although several previous studies have examined scRNA-seq for hepatocellular carcinoma (HCC) tissues, no one has tested and analyzed HCC with different stages. METHODS In this investigation, immune cells isolated from surrounding normal tissues and cancer tissues from 3 II-stage and 4 III-stage HCC cases were subjected to deep scRNA-seq. The analysis included 15 samples. We distinguished developmentally relevant trajectories, unique immune cell subtypes, and enriched pathways regarding differential genes. Western blot and co-immunoprecipitation were performed to demonstrate the interaction between fatty acid binding protein 1 (FABP1) and peroxisome proliferator-activated receptor gamma(PPARG). In vivo experiments were performed in a C57BL/6 mouse model of HCC established via subcutaneous injection. RESULTS FABP1 was discovered to be overexpressed in tumor-associated macrophages (TAMs) with III-stage HCC tissues compared with II-stage HCC tissues. This finding was fully supported by immunofluorescence detection in significant amounts of HCC human samples. FABP1 deficiency in TAMs inhibited HCC progression in vitro. Mechanistically, FABP1 interacted with PPARG/CD36 in TAMs to increase fatty acid oxidation in HCC. When compared with C57BL/6 mice of the wild type, tumors in FABP1-/- mice consistently showed attenuation. The FABP1-/- group's relative proportion of regulatory T cells and natural killer cells showed a downward trend, while dendritic cells, M1 macrophages, and B cells showed an upward trend, according to the results of mass cytometry. In further clinical translation, we found that orlistat significantly inhibited FABP1 activity, while the combination of anti-programmed cell death 1(PD-1) could synergistically treat HCC progression. Liposomes loaded with orlistat and connected with IR780 probe could further enhance the therapeutic effect of orlistat and visualize drug metabolism in vivo. CONCLUSIONS ScRNA-seq atlas revealed an FABP1-dependent immunosuppressive environment in HCC. Orlistat significantly inhibited FABP1 activity, while the combination of anti-PD-1 could synergistically treat HCC progression. This study identified new treatment targets and strategies for HCC progression, contributing to patients with advanced HCC from new perspectives.
Collapse
Affiliation(s)
- Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | | | - Gu-Wei Ji
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qian Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hengsong Cao
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyi Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Huang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Luo W. Nasopharyngeal carcinoma ecology theory: cancer as multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. Theranostics 2023; 13:1607-1631. [PMID: 37056571 PMCID: PMC10086202 DOI: 10.7150/thno.82690] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a particular entity of head neck cancer that is generally regarded as a genetic disease with diverse intertumor and intratumor heterogeneity. This perspective review mainly outlines the up-to-date knowledge of cancer ecology and NPC progression, and presents a number of conceptual stepping-stones. At the beginning, I explicitly advocate that the nature of NPC (cancer) is not a genetic disease but an ecological disease: a multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. The hallmarks of cancer is proposed to act as ecological factors of population fitness. Subsequently, NPC cells are described as invasive species and its metastasis as a multidirectional ecological dispersal. The foundational ecological principles include intraspecific relationship (e.g. communication) and interspecific relationship (e.g. competition, predation, parasitism and mutualism) are interpreted to understand NPC progression. "Mulberry-fish-ponds" model can well illustrate the dynamic reciprocity of cancer ecosystem. Tumor-host interface is the ecological transition zone of cancer, and tumor buddings should be recognized as ecological islands separated from the mainland. It should be noted that tumor-host interface has a significantly molecular and functional edge effect because of its curvature and irregularity. Selection driving factors and ecological therapy including hyperthermia for NPC patients, and future perspectives in such field as "ecological pathology", "multidimensional tumoriecology" are also discussed. I advance that "nothing in cancer evolution or ecology makes sense except in the light of the other". The cancer ecology tree is constructed to comprehensively point out the future research direction. Taken together, the establishment of NPC ecology theory and cancer ecology tree might provide a novel conceptual framework and paradigm for our understanding of cancer complex causal process and potential preventive and therapeutic applications for patients.
Collapse
Affiliation(s)
- Weiren Luo
- Cancer Research Institute, Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| |
Collapse
|
3
|
Mallin MM, Pienta KJ, Amend SR. Cancer cell foraging to explain bone-specific metastatic progression. Bone 2022; 158:115788. [PMID: 33279670 DOI: 10.1016/j.bone.2020.115788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023]
Abstract
Metastatic cancer is lethal and patients who suffer bone metastases fare especially poorly. Bone-specific metastatic progression in prostate and breast cancers is a highly observed example of organ-specific metastasis, or organotropism. Though research has delineated the sequential steps of the metastatic cascade, the determinants of bone-specific metastasis have remained elusive for decades. Applying fundamental ecological principles to cancer biology models of metastasis provides novel insights into metastatic organotropism. We use critical concepts from foraging theory and movement ecology to propose that observed bone-specific metastasis is the result of habitat selection by foraging cancer cells. Furthermore, we posit that cancer cells can only perform habitat selection if and when they employ a reversible motile foraging strategy. Only a very small percentage of cells in a primary tumor harbor this ability. Therefore, our habitat selection model emphasizes the importance of identifying the rare subset of cancer cells that might exhibit habitat selection, ergo achieve bone-specific metastatic colonization.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 2-103, Baltimore, MD 21205, USA.
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Abstract
Integration of ecological and evolutionary features has begun to understand the interplay of tumor heterogeneity, microenvironment, and metastatic potential. Developing a theoretical framework is intrinsic to deciphering tumors' tremendous spatial and longitudinal genetic variation patterns in patients. Here, we propose that tumors can be considered evolutionary island-like ecosystems, that is, isolated systems that undergo evolutionary and spatiotemporal dynamic processes that shape tumor microenvironments and drive the migration of cancer cells. We examine attributes of insular systems and causes of insularity, such as physical distance and connectivity. These properties modulate migration rates of cancer cells through processes causing spatial and temporal isolation of the organs and tissues functioning as a supply of cancer cells for new colonizations. We discuss hypotheses, predictions, and limitations of tumors as islands analogy. We present emerging evidence of tumor insularity in different cancer types and discuss their relevance to the islands model. We suggest that the engagement of tumor insularity into conceptual and mathematical models holds promise to illuminate cancer evolution, tumor heterogeneity, and metastatic potential of cells.
Collapse
Affiliation(s)
- Antonia Chroni
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Clinical Relevance of Mesenchymal- and Stem-Associated Phenotypes in Circulating Tumor Cells Isolated from Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092158. [PMID: 33947159 PMCID: PMC8124761 DOI: 10.3390/cancers13092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lung cancer is the most frequent malignancy in the world. Most lung cancer patients are diagnosed at an advanced stage. To make matters worse, the survival of patients is very poor. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. It is definitely not easy being a CTC. First, they escape from the primary tumor, then they travel in the bloodstream, have to survive really harsh conditions, and finally, they form metastases. The adoption of epithelial-to-mesenchymal transition as well as cancer stem cell features has been suggested to allow CTCs to survive and metastasize. This review will focus on how these features can be used to estimate the prognosis of lung cancer patients. Abstract Lung cancer is the leading cause of cancer-related mortality globally. Among the types of lung cancer, non-small-cell lung cancer (NSCLC) is more common, while small-cell lung cancer (SCLC) is less frequent yet more aggressive. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. CTCs are considered to adopt an epithelial-to-mesenchymal transition (EMT) phenotype and characteristics of cancer stem cells (CSCs). This EMT (or partial) phenotype affords these cells the ability to escape from the primary tumor, travel into the bloodstream, and survive extremely adverse conditions, before colonizing distant foci. Acquisition of CSC features, such as self-renewal, differentiation, and migratory potential, further reflect CTCs’ invasive potential. CSCs have been identified in lung cancer, and expression of EMT markers has previously been correlated with poor clinical outcomes. Thus far, a vast majority of studies have concentrated on CTC detection and enumeration as a prognostic tools of patients’ survival or for monitoring treatment efficacy. In this review, we highlight EMT and CSC markers in CTCs and focus on the clinical significance of these phenotypes in the progression of both non-small- and small-cell lung cancer.
Collapse
|
6
|
Li T, Liu J, Feng J, Liu Z, Liu S, Zhang M, Zhang Y, Hou Y, Wu D, Li C, Chen Y, Chen H, Lu X. Variation in the life history strategy underlies functional diversity of tumors. Natl Sci Rev 2021; 8:nwaa124. [PMID: 34691566 PMCID: PMC8288455 DOI: 10.1093/nsr/nwaa124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Classical r- vs. K-selection theory describes the trade-offs between high reproductive output and competitiveness and guides research in evolutionary ecology. While its impact has waned in the recent past, cancer evolution may rekindle it. Herein, we impose r- or K-selection on cancer cell lines to obtain strongly proliferative r cells and highly competitive K cells to test ideas on life-history strategy evolution. RNA-seq indicates that the trade-offs are associated with distinct expression of genes involved in the cell cycle, adhesion, apoptosis, and contact inhibition. Both empirical observations and simulations based on an ecological competition model show that the trade-off between cell proliferation and competitiveness can evolve adaptively. When the r and K cells are mixed, they exhibit strikingly different spatial and temporal distributions. Due to this niche separation, the fitness of the entire tumor increases. The contrasting selective pressure may operate in a realistic ecological setting of actual tumors.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sixue Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjie Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuezheng Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dafei Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering and Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
| | - Yongbin Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Castillo SP, Keymer JE, Marquet PA. Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype? Bioessays 2020; 43:e2000126. [PMID: 33184914 DOI: 10.1002/bies.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a singular cellular state, the emergence of which destabilises the homeostasis reached through the evolution to multicellularity. We present the idea that the onset of the cellular disobedience to the metazoan functional and structural architecture, known as the cancer phenotype, is triggered by changes in the cell's external environment that occur with ageing: what ensues is a breach of the social contract of multicellular life characteristic of metazoans. By integrating old ideas with new evidence, we propose that with ageing the environmental information that maintains a multicellular organisation is eroded, rewiring internal processes of the cell, and resulting in an internal shift towards an ancestral condition resulting in the pseudo-multicellular cancer phenotype. Once that phenotype emerges, a new local social contract is built, different from the homeostatic one, leading to tumour formation and the foundation of a novel local ecosystem.
Collapse
Affiliation(s)
- Simon P Castillo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile
| | - Juan E Keymer
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile.,Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
8
|
Gatenbee CD, Minor ES, Slebos RJC, Chung CH, Anderson ARA. Histoecology: Applying Ecological Principles and Approaches to Describe and Predict Tumor Ecosystem Dynamics Across Space and Time. Cancer Control 2020; 27:1073274820946804. [PMID: 32869651 PMCID: PMC7710396 DOI: 10.1177/1073274820946804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer cells exist within a complex spatially structured ecosystem composed of resources and different cell types. As the selective pressures imposed by this environment determine the fate of cancer cells, an improved understanding of how this ecosystem evolves will better elucidate how tumors grow and respond to therapy. State of the art imaging methods can now provide highly resolved descriptions of the microenvironment, yielding the data required for a thorough study of its role in tumor growth and treatment resistance. The field of landscape ecology has been studying such species-environment relationship for decades, and offers many tools and perspectives that cancer researchers could greatly benefit from. Here, we discuss one such tool, species distribution modeling (SDM), that has the potential to, among other things, identify critical environmental factors that drive tumor evolution and predict response to therapy. SDMs only scratch the surface of how ecological theory and methods can be applied to cancer, and we believe further integration will take cancer research in exciting new and productive directions. Significance: Here we describe how species distribution modeling can be used to quantitatively describe the complex relationship between tumor cells and their microenvironment. Such a description facilitates a deeper understanding of cancers eco-evolutionary dynamics, which in turn sheds light on the factors that drive tumor growth and response to treatment.
Collapse
Affiliation(s)
- Chandler D. Gatenbee
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer
Center & Research Institute, Tampa, FL, USA
| | - Emily S. Minor
- Department of Biological Sciences, Institute for Environmental
Science and Policy, University of Illinois at Chicago, Chicago, IL, USA
| | - Robbert J. C. Slebos
- Department of Head and Neck–Endocrine Oncology, H. Lee Moffitt
Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H. Chung
- Department of Head and Neck–Endocrine Oncology, H. Lee Moffitt
Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R. A. Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer
Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
9
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
10
|
Maddalena L, Ragni S. Existence of solutions and numerical approximation of a non-local tumor growth model. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 37:58-82. [PMID: 30933283 DOI: 10.1093/imammb/dqz005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 11/15/2022]
Abstract
In order to model the evolution of a heterogeneous population of cancer stem cells and tumor cells, we analyse a nonlinear system of integro-differential equations. We provide an existence and uniqueness result by exploiting a suitable iterative scheme of functions which converge to the solution of the system. Then, we discretize the model and perform some numerical simulations. Numerical approximations are obtained by applying finite differences for space discretization and an exponential Runge-Kutta scheme for time integration. We exploit the numerical tool in order to investigate the effects that niches have on cancer development. In this respect, the numerical procedure is applied in the case when the function of cell redistribution is assumed to be spatially explicit. It allows for finding an approximate solution which is spatially inhomogeneous as time progresses. In this framework, numerical investigation may help in understanding the process of niche construction, which plays an important role in cancer population biology.
Collapse
Affiliation(s)
- Lucia Maddalena
- Department of Economics, University of Foggia, Largo Papa Giovanni Paolo II, Foggia, Italy
| | - Stefania Ragni
- Department of Economics and Management, University of Ferrara, Via Voltapaletto, Ferrara, Italy
| |
Collapse
|
11
|
Amend SR, Torga G, Lin KC, Kostecka LG, de Marzo A, Austin RH, Pienta KJ. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 2019; 79:1489-1497. [PMID: 31376205 PMCID: PMC6706309 DOI: 10.1002/pros.23877] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Cancer led to the deaths of more than 9 million people worldwide in 2018, and most of these deaths were due to metastatic tumor burden. While in most cases, we still do not know why cancer is lethal, we know that a total tumor burden of 1 kg-equivalent to one trillion cells-is not compatible with life. While localized disease is curable through surgical removal or radiation, once cancer has spread, it is largely incurable. The inability to cure metastatic cancer lies, at least in part, to the fact that cancer is resistant to all known compounds and anticancer drugs. The source of this resistance remains undefined. In fact, the vast majority of metastatic cancers are resistant to all currently available anticancer therapies, including chemotherapy, hormone therapy, immunotherapy, and systemic radiation. Thus, despite decades-even centuries-of research, metastatic cancer remains lethal and incurable. We present historical and contemporary evidence that the key actuators of this process-of tumorigenesis, metastasis, and therapy resistance-are polyploid giant cancer cells.
Collapse
Affiliation(s)
- Sarah R. Amend
- Department of Urology, Johns Hopkins University School of Medicine
| | - Gonzalo Torga
- Department of Urology, Johns Hopkins University School of Medicine
| | | | - Laurie G. Kostecka
- Department of Urology, Johns Hopkins University School of Medicine
- Cellular and Molecular Medicine Program, Johns Hopkins University
| | - Angelo de Marzo
- Depatment of Pathology, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
12
|
Piñeiro Fernández J, Luddy KA, Harmon C, O'Farrelly C. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. Int J Mol Sci 2019; 20:E4131. [PMID: 31450598 PMCID: PMC6747260 DOI: 10.3390/ijms20174131] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is a complex organ with critical physiological functions including metabolism, glucose storage, and drug detoxification. Its unique immune profile with large numbers of cytotoxic CD8+ T cells and significant innate lymphoid population, including natural killer cells, γ δ T cells, MAIT cells, and iNKTcells, suggests an important anti-tumor surveillance role. Despite significant immune surveillance in the liver, in particular large NK cell populations, hepatic cell carcinoma (HCC) is a relatively common outcome of chronic liver infection or inflammation. The liver is also the second most common site of metastatic disease. This discordance suggests immune suppression by the environments of primary and secondary liver cancers. Classic tumor microenvironments (TME) are poorly perfused, leading to accumulation of tumor cell metabolites, diminished O2, and decreased nutrient levels, all of which impact immune cell phenotype and function. Here, we focus on changes in the liver microenvironment associated with tumor presence and how they affect NK function and phenotype.
Collapse
Affiliation(s)
| | - Kimberly A Luddy
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33626, USA.
| | - Cathal Harmon
- Brigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02138, USA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, D02 PN40 Dublin, Ireland.
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland.
| |
Collapse
|
13
|
Amend SR, Gatenby RA, Pienta KJ, Brown JS. Cancer Foraging Ecology: Diet Choice, Patch Use, and Habitat Selection of Cancer Cells. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0185-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc Natl Acad Sci U S A 2018; 115:11298-11303. [PMID: 30322928 DOI: 10.1073/pnas.1812704115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune targeted therapy of nitric oxide (NO) synthases are being considered as a potential frontline therapeutic to treat patients diagnosed with locally advanced and metastatic prostate cancer. However, the role of NO in castration-resistant prostate cancer (CRPC) is controversial because NO can increase in nitrosative stress while simultaneously possessing antiinflammatory properties. Accordingly, we tested the hypothesis that increased NO will lead to tumor suppression of CRPC through tumor microenvironment. S-nitrosoglutathione (GSNO), an NO donor, decreased the tumor burden in murine model of CRPC by targeting tumors in a cell nonautonomous manner. GSNO inhibited both the abundance of antiinflammatory (M2) macrophages and expression of pERK, indicating that tumor-associated macrophages activity is influenced by NO. Additionally, GSNO decreased IL-34, indicating suppression of tumor-associated macrophage differentiation. Cytokine profiling of CRPC tumor grafts exposed to GSNO revealed a significant decrease in expression of G-CSF and M-CSF compared with grafts not exposed to GSNO. We verified the durability of NO on CRPC tumor suppression by using secondary xenograft murine models. This study validates the significance of NO on inhibition of CRPC tumors through tumor microenvironment (TME). These findings may facilitate the development of previously unidentified NO-based therapy for CRPC.
Collapse
|
15
|
Qian JJ, Akçay E. Competition and niche construction in a model of cancer metastasis. PLoS One 2018; 13:e0198163. [PMID: 29813117 PMCID: PMC5973602 DOI: 10.1371/journal.pone.0198163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Niche construction theory states that not only does the environment act on populations to generate Darwinian selection, but organisms reciprocally modify the environment and the sources of natural selection. Cancer cells participate in niche construction as they alter their microenvironments and create pre-metastatic niches; in fact, metastasis is a product of niche construction. Here, we present a mathematical model of niche construction and metastasis. Our model contains producers, which pay a cost to contribute to niche construction that benefits all tumor cells, and cheaters, which reap the benefits without paying the cost. We derive expressions for the conditions necessary for metastasis, showing that the establishment of a mutant lineage that promotes metastasis depends on niche construction specificity and strength of interclonal competition. We identify a tension between the arrival and invasion of metastasis-promoting mutants, where tumors composed only of cheaters remain small but are susceptible to invasion whereas larger tumors containing producers may be unable to facilitate metastasis depending on the level of niche construction specificity. Our results indicate that even if metastatic subclones arise through mutation, metastasis may be hindered by interclonal competition, providing a potential explanation for recent surprising findings that most metastases are derived from early mutants in primary tumors.
Collapse
Affiliation(s)
- Jimmy J. Qian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
16
|
Investigating Niche Construction in Dynamic Human-Animal Landscapes: Bridging Ecological and Evolutionary Timescales. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0033-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 2018; 9:20908-20927. [PMID: 29755698 PMCID: PMC5945509 DOI: 10.18632/oncotarget.24556] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
The progression of cancer is a result of not only the growth of the malignant cells but also the behavior of other components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are key components of the TME that influence tumor growth and disease progression. TAMs can either inhibit or support tumor growth depending on their polarization to classically-activated macrophages (M1s) or alternatively-activated macrophages (M2s), respectively. Epigenetic regulation plays a significant role in determining this polarization and manipulating the epigenetic regulation in macrophages would provide a means for selectively targeting M2s thereby eliminating tumor-supporting TAMs while sparing tumor-inhibiting M1 TAMs. Many pharmacologic modulators of epigenetic enzymes are currently used clinically and could be repurposed for treating tumors with high TAM infiltrate. While much research involving epigenetic enzymes and their modulators has been performed in M1s, significantly less is known about the epigenetic regulation of M2s. This review highlights the field’s current knowledge of key epigenetic enzymes and their pharmacologic modulators known to influence macrophage polarization.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA, Sengupta S, Ben-Jacob E, Levine H, Onuchic JN. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 2017; 13:rsif.2015.1106. [PMID: 27170649 PMCID: PMC4892257 DOI: 10.1098/rsif.2015.1106] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/15/2016] [Indexed: 01/14/2023] Open
Abstract
Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA Metastasis Research Center, MD Anderson Cancer Center, Houston, TX 77025, USA
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Chemistry, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| |
Collapse
|
19
|
Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan Y, Pienta KJ, Anderson KS, Gatenby R, Swanton C, Posada D, Wu CI, Schiffman JD, Hwang ES, Polyak K, Anderson ARA, Brown JS, Greaves M, Shibata D. Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 2017; 17:605-619. [PMID: 28912577 PMCID: PMC5811185 DOI: 10.1038/nrc.2017.69] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neoplasms change over time through a process of cell-level evolution, driven by genetic and epigenetic alterations. However, the ecology of the microenvironment of a neoplastic cell determines which changes provide adaptive benefits. There is widespread recognition of the importance of these evolutionary and ecological processes in cancer, but to date, no system has been proposed for drawing clinically relevant distinctions between how different tumours are evolving. On the basis of a consensus conference of experts in the fields of cancer evolution and cancer ecology, we propose a framework for classifying tumours that is based on four relevant components. These are the diversity of neoplastic cells (intratumoural heterogeneity) and changes over time in that diversity, which make up an evolutionary index (Evo-index), as well as the hazards to neoplastic cell survival and the resources available to neoplastic cells, which make up an ecological index (Eco-index). We review evidence demonstrating the importance of each of these factors and describe multiple methods that can be used to measure them. Development of this classification system holds promise for enabling clinicians to personalize optimal interventions based on the evolvability of the patient's tumour. The Evo- and Eco-indices provide a common lexicon for communicating about how neoplasms change in response to interventions, with potential implications for clinical trials, personalized medicine and basic cancer research.
Collapse
Affiliation(s)
- Carlo C Maley
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, USA
| | - Athena Aktipis
- Department of Psychology, Center for Evolution and Medicine, Arizona State University, 651 E. University Drive, Tempe, Arizona 85287, USA
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michalina Janiszewska
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue D740C, Boston, Massachusetts 02215, USA
| | - Ariosto S Silva
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Marco Gerlinger
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Kenneth J Pienta
- Brady Urological Institute, The Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, USA
| | - Karen S Anderson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85287, USA
| | - Robert Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - David Posada
- Department of Biochemistry, Genetics and Immunology and Biomedical Research Center (CINBIO), University of Vigo, Spain; Galicia Sur Health Research Institute, Vigo, 36310, Spain
| | - Chung-I Wu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Joshua D Schiffman
- Departments of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84108, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University and Duke Cancer Institute, 465 Seeley Mudd Building, Durham, North Carolina 27710, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue D740C, Boston, Massachusetts 02215, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Joel S Brown
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Darryl Shibata
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, NOR2424, Los Angeles, California 90033, USA
| |
Collapse
|
20
|
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol 2017; 11:739-754. [PMID: 28548388 PMCID: PMC5496493 DOI: 10.1002/1878-0261.12084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well‐studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune evasion, invasion, and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally verified molecular mechanisms and act as ‘hypothesis‐generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive E/M plasticity at both the single‐cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
21
|
Lewis DM, Tang V, Jain N, Isser A, Xia Z, Gerecht S. Collagen Fiber Architecture Regulates Hypoxic Sarcoma Cell Migration. ACS Biomater Sci Eng 2017; 4:400-409. [DOI: 10.1021/acsbiomaterials.7b00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Zhiyong Xia
- The Johns Hopkins University, Applied Physics
Laboratory, Laurel, Maryland 20723, United States
| | | |
Collapse
|
22
|
Mooney SM, Talebian V, Jolly MK, Jia D, Gromala M, Levine H, McConkey BJ. The GRHL2/ZEB Feedback Loop-A Key Axis in the Regulation of EMT in Breast Cancer. J Cell Biochem 2017; 118:2559-2570. [PMID: 28266048 DOI: 10.1002/jcb.25974] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
More than 90% of cancer-related deaths are caused by metastasis. Epithelial-to-Mesenchymal Transition (EMT) causes tumor cell dissemination while the reverse process, Mesenchymal-to-Epithelial Transition (MET) allows cancer cells to grow and establish a potentially deadly metastatic lesion. Recent evidence indicates that in addition to E and M, cells can adopt a stable hybrid Epithelial/Mesenchymal (E/M) state where they can move collectively leading to clusters of Circulating Tumor Cells-the "bad actors" of metastasis. EMT is postulated to occur in all four major histological breast cancer subtypes. Here, we identify a set of genes strongly correlated with CDH1 in 877 cancer cell lines, and differentially expressed genes in cell lines overexpressing ZEB1, SNAIL, and TWIST. GRHL2 and ESRP1 appear in both these sets and also correlate with CDH1 at the protein level in 40 breast cancer specimens. Next, we find that GRHL2 and CD24 expression coincide with an epithelial character in human mammary epithelial cells. Further, we show that high GRHL2 expression is highly correlated with worse relapse-free survival in all four subtypes of breast cancer. Finally, we integrate CD24, GRHL2, and ESRP1 into a mathematical model of EMT regulation to validate the role of these players in EMT. Our data analysis and modeling results highlight the relationships among multiple crucial EMT/MET drivers including ZEB1, GRHL2, CD24, and ESRP1, particularly in basal-like breast cancers, which are most similar to triple-negative breast cancer (TNBC) and are considered the most dangerous subtype. J. Cell. Biochem. 118: 2559-2570, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biology, University of Waterloo, Waterloo N2L3G1, ON, Canada
| | - Vida Talebian
- Department of Biology, University of Waterloo, Waterloo N2L3G1, ON, Canada
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston 77005, Texas.,Department of Bioengineering, Rice University, Houston 77005, Texas
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston 77005, Texas.,Program in Systems/Synthetic/Physical Biology, Rice University, Houston 77005, Texas
| | - Monica Gromala
- Department of Biology, University of Waterloo, Waterloo N2L3G1, ON, Canada
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston 77005, Texas.,Program in Systems/Synthetic/Physical Biology, Rice University, Houston 77005, Texas.,Department of Physics and Astronomy, Rice University, Houston 77005, Texas
| | - Brendan J McConkey
- Department of Biology, University of Waterloo, Waterloo N2L3G1, ON, Canada
| |
Collapse
|
23
|
Raimondi C, Carpino G, Nicolazzo C, Gradilone A, Gianni W, Gelibter A, Gaudio E, Cortesi E, Gazzaniga P. PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: A molecular shield to evade immune system ?. Oncoimmunology 2017; 6:e1315488. [PMID: 29209560 DOI: 10.1080/2162402x.2017.1315488] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
The programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) pathway has emerged as a critical inhibitory pathway regulating T-cell response in non-small-cell lung cancer (NSCLC), and the development of PD-1/PD-L1 inhibitors has changed the landscape of NSCLC therapy. Nevertheless, the high degree of non-responders demonstrates that we are still far from completely understanding the events underlying tumor immune resistance. Although the expression of PD-L1 in tumor tissue has been correlated with clinical response to anti PD-1 inhibitors, the ability of this marker to discriminate the subgroup of patients who derive benefit from immunotherapy is suboptimal. Circulating tumor cells (CTCs), as an accessible source of tumor for biologic characterization that can be serially obtained with minimally invasive procedure, hold significant promise to facilitate treatment-specific biomarkers discovery. We recently demonstrated that the presence of PD-L1 on CTCs apparently predicts resistance to the anti-PD-1 Nivolumab in metastatic NSCLC patients and that PD-L1 positive CTCs usually have an elongated morphology that can be ascribed to epithelial-mesenchymal transition (EMT). We here demonstrate for the first time that PD-L1 positive CTCs isolated from NSCLC patients are characterized by partial EMT phenotype, and hypothesize that the co-expression of PD-L1 and EMT markers might represent for these cells a possible molecular background for immune escape.
Collapse
Affiliation(s)
- Cristina Raimondi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Guido Carpino
- Dipartimento di Anatomia, Istologia, Medicina Forense e Scienze Ortopediche, Sapienza Università di Roma, Roma, Italia
| | - Chiara Nicolazzo
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Angela Gradilone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| | - Walter Gianni
- Policlinico Umberto I, II Clinica Medica, Sapienza Università di Roma, Roma, Italia
| | - Alain Gelibter
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Eugenio Gaudio
- Dipartimento di Anatomia, Istologia, Medicina Forense e Scienze Ortopediche, Sapienza Università di Roma, Roma, Italia
| | - Enrico Cortesi
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza Università di Roma, Roma, Italia
| | - Paola Gazzaniga
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma Roma, Italia
| |
Collapse
|
24
|
Mooney SM, Jolly MK, Levine H, Kulkarni P. Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins. Asian J Androl 2017; 18:704-10. [PMID: 27427552 PMCID: PMC5000791 DOI: 10.4103/1008-682x.183570] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A striking characteristic of cancer cells is their remarkable phenotypic plasticity, which is the ability to switch states or phenotypes in response to environmental fluctuations. Phenotypic changes such as a partial or complete epithelial to mesenchymal transition (EMT) that play important roles in their survival and proliferation, and development of resistance to therapeutic treatments, are widely believed to arise due to somatic mutations in the genome. However, there is a growing concern that such a deterministic view is not entirely consistent with multiple lines of evidence, which indicate that stochasticity may also play an important role in driving phenotypic plasticity. Here, we discuss how stochasticity in protein interaction networks (PINs) may play a key role in determining phenotypic plasticity in prostate cancer (PCa). Specifically, we point out that the key players driving transitions among different phenotypes (epithelial, mesenchymal, and hybrid epithelial/mesenchymal), including ZEB1, SNAI1, OVOL1, and OVOL2, are intrinsically disordered proteins (IDPs) and discuss how plasticity at the molecular level may contribute to stochasticity in phenotypic switching by rewiring PINs. We conclude by suggesting that targeting IDPs implicated in EMT in PCa may be a new strategy to gain additional insights and develop novel treatments for this disease, which is the most common form of cancer in adult men.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005; Department of Bioengineering, Rice University, Houston, TX 77005; Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
25
|
de Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR. Revisiting Seed and Soil: Examining the Primary Tumor and Cancer Cell Foraging in Metastasis. Mol Cancer Res 2017; 15:361-370. [PMID: 28209759 DOI: 10.1158/1541-7786.mcr-16-0436] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022]
Abstract
Metastasis is the consequence of a cancer cell that disperses from the primary tumor, travels throughout the body, and invades and colonizes a distant site. On the basis of Paget's 1889 hypothesis, the majority of modern metastasis research focuses on the properties of the metastatic "seed and soil," but the implications of the primary tumor "soil" have been largely neglected. The rare lethal metastatic "seed" arises as a result of the selective pressures in the primary tumor. Optimal foraging theory describes how cancer cells adopt a mobile foraging strategy to balance predation risk and resource reward. Further selection in the dispersal corridors leading out of the primary tumor enhances the adaptive profile of the potentially metastatic cell. This review focuses on the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" which is essential to understanding this critical component of prostate cancer metastasis.Implication: Elucidating the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" is essential to understand how and why metastasis occurs in prostate cancer. Mol Cancer Res; 15(4); 361-70. ©2017 AACR.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sounak Roy
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Department of Biological Sciences and UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois.,Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
26
|
Amend SR, Roy S, Brown JS, Pienta KJ. Ecological paradigms to understand the dynamics of metastasis. Cancer Lett 2016; 380:237-42. [PMID: 26458994 PMCID: PMC4826855 DOI: 10.1016/j.canlet.2015.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
The process by which prostate cancer cells non-randomly disseminate to the bone to form lethal metastases remains unknown. Metastasis is the ultimate consequence of the long-range dispersal of a cancer cell from the primary tumor to a distant secondary site. In order to metastasize, the actively emigrating cell must move. Movement ecology describes an individual's migration between habitats without the requirement of conscious decision-making. Specifically, this paradigm describes four interacting components that influence the dynamic process of metastasis: (1) the microenvironmental pressures exerted on the cancer cell, (2) how the individual cell reacts to these external pressures, (3) the phenotypic switch of a cell to gain the physical traits required for movement, and (4) the ability of the cancer cell to navigate to a specific site. A deeper understanding of each of these components will lead to the development of novel therapeutics targeted to interrupt previously unidentified steps of metastasis.
Collapse
Affiliation(s)
- Sarah R Amend
- Department of Urology, Johns Hopkins University, 600 N Wolfe St., Marburg Building rm 105, Baltimore, MD 21287, USA.
| | - Sounak Roy
- Department of Urology, Johns Hopkins University, 600 N Wolfe St., Marburg Building rm 105, Baltimore, MD 21287, USA
| | - Joel S Brown
- Department of Biological Sciences and UIC Cancer Center, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA; Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University, 600 N Wolfe St., Marburg Building rm 105, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Wimalawansa SA, Wimalawansa SJ. Environmentally induced, occupational diseases with emphasis on chronic kidney disease of multifactorial origin affecting tropical countries. Ann Occup Environ Med 2016; 28:33. [PMID: 27499855 PMCID: PMC4974668 DOI: 10.1186/s40557-016-0119-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Environmentally induced, occupational diseases are increasing worldwide, especially in rural agricultural communities. Poverty-associated malnutrition, environmental hazards and pollution, and lack of access to clean water, safe sanitation, and modern healthcare facilities are often associated with these chronic illnesses. METHOD The authors systematically reviewed occupational public health issues that have been related to the environment. General interpretations of results were included as per the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Pertinent publications from research databases were reviewed on (A) the risk-benefits, (B) the prevalence of risk factors for various diseases, (C) the benefits of not ignoring the risk factors (i.e., broader evidence), and (D) the risks, effects, and outcomes of different types of interventions. The authors used chronic kidney disease of multifactorial origin (CKDmfo) as an example to explore the theme. Emphasis was given to the regions with emerging economies and developing countries located in the vicinity of the equator. FINDINGS Geographical, socio-economic and aetiological similarities exist for many chronic non-communicable diseases that are affecting tropical countries around the equator. The authors identified manufacturing, mining, and agriculture as the biggest polluters of the environment. In addition, deforestation and associated soil erosion, overuse of agrochemicals, and irresponsible factory discharge (e.g., chemicals and paint, from rubber and textile factories, etc.), all contribute to pollution. To decrease the escalating incidences of environmentally induced diseases, governments should work proactively to protect the environment, especially watersheds, and take steps to minimise harmful occupational exposures and strictly enforce environmental regulations. CONCLUSION Creating public awareness of environmental issues and their relationship to public health is essential. This includes regular monitoring and periodic publication of the quality of water, air and soil; preventing deforestation and man-made soil erosion, increasing forest and ground cover, preventing occupational injuries, judicious and safe use of agrochemicals, sustainable agriculture and development programs, and implementing legislation to protect and conserve water heriage and the environment. These actions are essential both for a healthier environment and for the health of the people who live in that environment. Such measures would also decrease public health threats from such, including global-warming-related erratic environmental changes and the occurrence and the spread of non-communicable diseases, such as CKDmfo.
Collapse
|
28
|
|
29
|
Wang G, Chen L, Yu B, Zellmer L, Xu N, Liao DJ. Learning about the Importance of Mutation Prevention from Curable Cancers and Benign Tumors. J Cancer 2016; 7:436-45. [PMID: 26918057 PMCID: PMC4749364 DOI: 10.7150/jca.13832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Some cancers can be cured by chemotherapy or radiotherapy, presumably because they are derived from those cell types that not only can die easily but also have already been equipped with mobility and adaptability, which would later allow the cancers to metastasize without the acquisition of additional mutations. From a viewpoint of biological dispersal, invasive and metastatic cells may, among other possibilities, have been initial losers in the competition for resources with other cancer cells in the same primary tumor and thus have had to look for new habitats in order to survive. If this is really the case, manipulation of their ecosystems, such as by slightly ameliorating their hardship, may prevent metastasis. Since new mutations may occur, especially during and after therapy, to drive progression of cancer cells to metastasis and therapy-resistance, preventing new mutations from occurring should be a key principle for the development of new anticancer drugs. Such new drugs should be able to kill cancer cells very quickly without leaving the surviving cells enough time to develop new mutations and select resistant or metastatic clones. This principle questions the traditional use and the future development of genotoxic drugs for cancer therapy.
Collapse
Affiliation(s)
- Gangshi Wang
- 1. Department of Geriatric Gastroenterology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lichan Chen
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Baofa Yu
- 3. Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye Yuan, Chang Pin Qu, Beijing 102206, P.R. China
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- 5. D. Joshua Liao, Clinical Research Center, Guizhou Medical University Hospital, Guizhou, Guiyang 550004, P.R. China
| |
Collapse
|
30
|
Mooney SM, Parsana P, Hernandez JR, Liu X, Verdone JE, Torga G, Harberg CA, Pienta KJ. The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J Cell Biochem 2016; 116:115-23. [PMID: 25160502 DOI: 10.1002/jcb.24948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/22/2014] [Indexed: 01/17/2023]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that plays a central role in the epithelial to mesenchymal transition (EMT) of cancer cell lines. Studies on its regulation have mostly focused on the negative 3'UTR binding of miR200c. Interestingly, it has been previously reported that androgen receptor (AR) regulates ZEB1 expression in breast and prostate cancers. In order to validate this, various ZEB1 promoter deletions were cloned into a luciferase reporter system to elucidate the contribution of two putative androgen response elements (AREs). The in vivo contribution of AR was also assessed in cell lines after R1881 treatment using qPCR with prostate specific antigen (PSA) as the positive control. We discovered that AR upregulates the levels of expression of ZEB1 10-fold on a luciferase promoter that only contains the distal ARE. However, when the proximal ARE is included, no additional activation is apparent with AR or its hormone independent variant, AR-V7. Furthermore, we demonstrate here that a promoter construct containing both AREs activates transcription of ZEB1 even in the AR-null cell lines DU145 and PC3. Incubation of the AR-positive cell line, LNCaP with R1881, failed to substantially increase the expression levels of ZEB1. Despite the presence of AREs in the promoter region, it appears that ZEB1 expression can be induced even without AR. In addition, the region around the distal ARE is a potent repressor in AR-null cell lines.
Collapse
Affiliation(s)
- Steven M Mooney
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cancer Ecology: Niche Construction, Keystone Species, Ecological Succession, and Ergodic Theory. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13752-015-0226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Bergman A, Gligorijevic B. Niche construction game cancer cells play. EUROPEAN PHYSICAL JOURNAL PLUS 2015; 130:203. [PMID: 27656339 PMCID: PMC5027994 DOI: 10.1140/epjp/i2015-15203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.
Collapse
Affiliation(s)
- Aviv Bergman
- Systems and Computational Biology Department, Albert Einstein College of Medicine, 1301 Morris Park Ave, 10461, Bronx, NY, USA
| | - Bojana Gligorijevic
- Bioengineering Department, Temple University, 1947 N 12th st., 19122 Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Cottman Ave 333, 19111 Philadelphia, PA, USA
| |
Collapse
|
33
|
Gerlee P, Anderson ARA. The evolution of carrying capacity in constrained and expanding tumour cell populations. Phys Biol 2015; 12:056001. [DOI: 10.1088/1478-3975/12/5/056001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 2015; 5:155. [PMID: 26258068 PMCID: PMC4507461 DOI: 10.3389/fonc.2015.00155] [Citation(s) in RCA: 496] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Institute of Physics, University of São Paulo , São Paulo , Brazil
| | - Bin Huang
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Graduate Program in Systems, Synthetic and Physical Biology, Rice University , Houston, TX , USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; School of Physics and Astronomy, and The Sagol School of Neuroscience, Tel-Aviv University , Tel-Aviv , Israel ; Department of Biosciences, Rice University , Houston, TX , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| |
Collapse
|
35
|
Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev 2015; 33:1095-108. [PMID: 25376898 PMCID: PMC4244550 DOI: 10.1007/s10555-014-9531-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Much effort is currently devoted to developing patient-specific cancer therapy based on molecular characterization of tumors. In particular, this approach seeks to identify driver mutations that can be blocked through small molecular inhibitors. However, this approach is limited by extensive intratumoral genetic heterogeneity, and, not surprisingly, even dramatic initial responses are typically of limited duration as resistant tumor clones rapidly emerge and proliferate. We propose an alternative approach based on observations that while tumor evolution produces genetic divergence, it is also associated with striking phenotypic convergence that loosely correspond to the well-known cancer “hallmarks”. These convergent properties can be described as driver phenotypes and may be more consistently and robustly expressed than genetic targets. To this purpose, it is necessary to identify strategies that are critical for cancer progression and metastases, and it is likely that these driver phenotypes will be closely related to cancer “hallmarks”. It appears that an antiacidic approach, by targetting a driver phenotype in tumors, may be thought as a future strategy against tumors in either preventing the occurrence of cancer or treating tumor patients with multiple aims, including the improvement of efficacy of existing therapies, possibly reducing their systemic side effects, and controlling tumor growth, progression, and metastasis. This may be achieved with existing molecules such as proton pump inhibitors (PPIs) and buffers such as sodium bicarbonate, citrate, or TRIS.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
- Department of Drug Research and Medicines Evaluation, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Bob Gatenby
- Radiology Department, Cancer Biology and Evolution Program Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
36
|
Yuan Y, Zhang S, Gao J, Lu F. Spatial structural integrity is important for adipose regeneration after transplantation. Arch Dermatol Res 2015; 307:693-704. [DOI: 10.1007/s00403-015-1574-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/11/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
|
37
|
Alternative CD44 splicing identifies epithelial prostate cancer cells from the mesenchymal counterparts. Med Oncol 2015; 32:159. [PMID: 25850653 PMCID: PMC4391735 DOI: 10.1007/s12032-015-0593-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
An epithelial to mesenchymal transition (EMT) has been shown to be a necessary precursor to prostate cancer metastasis. Additionally, the differential expression and splicing of mRNAs has been identified as a key means to distinguish epithelial from mesenchymal cells by qPCR, western blotting and immunohistochemistry. However, few markers exist to differentiate between these cells by flow cytometry. We previously developed two cell lines, PC3-Epi (epithelial) and PC3-EMT (mesenchymal). RNAseq was used to determine the differential expression of membrane proteins on PC3-Epi/EMT. We used western blotting, qPCR and flow cytometry to validate the RNAseq results. CD44 was one of six membrane proteins found to be differentially spliced between epithelial and mesenchymal PC3 cells. Although total CD44 was positive in all PC3-Epi/EMT cells, PC3-Epi cells had a higher level of CD44v6 (CD44 variant exon 6). CD44v6 was able to differentiate epithelial from mesenchymal prostate cancer cells using either flow cytometry, western blotting or qPCR.
Collapse
|
38
|
Yuan Y, Chen C, Zhang S, Gao J, Lu F. The role of the intact structure of adipose tissue in free fat transplantation. Exp Dermatol 2015; 24:238-9. [PMID: 25641193 DOI: 10.1111/exd.12631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Yi Yuan
- Department of Plastic and Reconstructive Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Chunling Chen
- Blood Transfusion Department; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Shu Zhang
- Department of Plastic and Reconstructive Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
39
|
Amend SR, Pienta KJ. Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget 2015; 6:9669-78. [PMID: 25895024 PMCID: PMC4496388 DOI: 10.18632/oncotarget.3430] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022] Open
Abstract
As they grow, tumors fundamentally alter their microenvironment, disrupting the homeostasis of the host organ and eventually the patient as a whole. Lethality is the ultimate result of deregulated cell signaling and regulatory mechanisms as well as inappropriate host cell recruitment and activity that lead to the death of the patient. These processes have striking parallels to the framework of ecological biology: multiple interacting ecosystems (organ systems) within a larger biosphere (body), alterations in species stoichiometry (host cell types), resource cycling (cellular metabolism and cell-cell signaling), and ecosystem collapse (organ failure and death). In particular, as cancer cells generate their own niche within the tumor ecosystem, ecological engineering and autoeutrophication displace normal cell function and result in the creation of a hypoxic, acidic, and nutrient-poor environment. This "cancer swamp" has genetic and epigenetic effects at the local ecosystem level to promote metastasis and at the systemic host level to induce cytokine-mediated lethal syndromes, a major cause of death of cancer patients.
Collapse
Affiliation(s)
- Sarah R. Amend
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD
| | - Kenneth J. Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
40
|
Zarif JC, Taichman RS, Pienta KJ. TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunology 2014; 3:e941734. [PMID: 25954596 PMCID: PMC4341447 DOI: 10.4161/21624011.2014.941734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
Cancer continues to be the major cause of morbidity and death of more than 500,000 people in the US annually. Alternatively activated macrophages (M2 macrophages or TAMs) can facilitate tumor invasiveness and metastasis. As an invasive species in the tumor microenvironment, they provide an ideal therapeutic target.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute; Johns Hopkins School of Medicine ; Baltimore, MD USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry ; Ann Arbor, MI USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute; Johns Hopkins School of Medicine ; Baltimore, MD USA ; Department of Oncology; Johns Hopkins School of Medicine ; Baltimore, MD USA ; Department of Pharmacology and Molecular Sciences; Johns Hopkins School of Medicine ; Baltimore, MD USA ; Chemical and Biomolecular Engineering; The Johns Hopkins University ; Baltimore, MD USA
| |
Collapse
|