1
|
Akash S, Sultana S, Islam MN, Or Rashid MH, Oduselu GO, Kaouche FC, Sindi ER, de Farias Morais GC, Al-Dies AAM, Oliveira JIN. Discovery of Galangin Derivatives as a Potential T-cell Leukemia Virus 1 Protease Inhibitor Through Chemoinformatics Approaches. Cell Biochem Biophys 2025; 83:2067-2088. [PMID: 39623147 DOI: 10.1007/s12013-024-01618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 05/20/2025]
Abstract
Human T-cell leukemia virus 1 (HTLV-1) has become a life-threatening problem, infecting a significant number of people every year; however, the effective treatment options for this disease are limited. This research focuses on the development of T-cell leukemia virus 1 protease inhibitor modifying galangin, a natural phytochemical with multiple pharmacological properties. However, galangin also has disadvantages, in particular poor bioavailability and solubility. To overcome these limitations, the primary structure of galangin was modified with various functional groups and computational drug design methods were applied to develop potential inhibitors for the human T-cell leukemia virus 1 protease including Lipinski's rule, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), quantum energetic descriptions, molecular docking, electrostatic potential analysis, binding free energy calculations, and molecular dynamics simulations. These techniques are essential in determining the stability and suitability of new drug molecules with target proteins. Molecular docking studies demonstrated that the newly modified galangin derivative exhibits the strongest binding affinity for the HTLV-1 protease. In particular, compounds 02 and 03 showed significantly stronger binding affinities. Subsequently, the two best compounds were subjected to molecular dynamics simulations over 100 ns, which provided insights into the stability and flexibility of the protein-ligand complexes. Principal component analysis, calculation of the binding free energy, and the dynamic cross-correlation matrix during the simulations provided new perspectives on conformational changes within the drug-protein complex. The newly developed galangin derivatives show promising efficacy as potential therapeutics against HTLV-1 protease. The findings of this study suggest that further experimental validation could be pursued to support new drug development in the fight against HTLV-1.
Collapse
Affiliation(s)
- Shopnil Akash
- Computational Biology Research Laboratory, Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.
| | - Sharifa Sultana
- Computational Biology Research Laboratory, Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | | | - Md Harun Or Rashid
- School of Natural Sciences, Macquarie University Sydney, Sydney, NSW, 2109, Australia
| | | | - Farah Chafika Kaouche
- Department of chemistry, Faculty of Engineering, Istanbul University, Istanbul, Türkiye
| | - Emad Rashad Sindi
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Al-Qunfudah, Saudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| |
Collapse
|
2
|
Abdelazim K, Hussein A, Khattab SN, El Feky SE, Noby N. Impact of Paracoccus sp. EGY7 carotenoids on triple-negative breast cancer cells: invitro study. AMB Express 2025; 15:21. [PMID: 39918669 PMCID: PMC11805741 DOI: 10.1186/s13568-025-01825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/12/2025] [Indexed: 02/09/2025] Open
Abstract
This study investigates the effect of Paracoccus sp. EGY7 carotenoids on the triple-negative breast cancer cell line (MDA-MB-231). The bacterial strain was isolated, and its carotenoids profile was analyzed via HPLC-DAD-MS. Cytotoxicity, migration tests and the expression of BAX and BCL-2 at the gene and protein levels were carried out to evaluate the therapeutic efficiency of the produced carotenoids. Molecular docking analysis estimated the binding affinity between zeaxanthin and BCL-2 protein. Chromatographic analysis revealed zeaxanthin as the major carotenoid (48.3%). The extract exhibited significant cytotoxicity against MDA-MB-231 cells with an IC50 of 1200 µg. It notably reduced cell migration, with wound closure percentages of 37.50% and 79.17% for the 600 µg group, while the percentages were 12.50% and 53.50% for the 1200 µg group, compared to 71.67% and 95.67% for the control at 24 and 48 h post-treatment, respectively. The extract induced apoptosis, as evidenced by significantly increased BAX/BCL-2 gene expression ratios at 600 and 1200 µg (p < 0.05). Western blotting showed increased BAX protein expression at 600 and 1200 µg compared to the control group (p < 0.001), and significantly lower BCL-2 protein expression (p = 0.000005 for 1200 µg and p = 0.0001 for 600 µg). Docking analysis indicated a strong affinity of zeaxanthin to BCL-2 (ΔG = -9.773241 kcal/mol) compared to obatoclax (ΔG = -7.419345 kcal/mol). Paracoccus sp. EGY7 carotenoids are a promising anticancer agent against MDA-MB-231 cells. They effectively promote apoptosis and prevent metastasis, crucial for disease advancement in cancer cells.
Collapse
Affiliation(s)
- Karim Abdelazim
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sherine N Khattab
- Chemistery Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Essam El Feky
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
Chen L, Han D, Gu C, Huang W. Biological Effects of Calceolarioside A as a Natural Compound: Anti-Ovarian Cancer, Anti-Tyrosinase, and Anti-HMG-CoA Reductase Potentials with Molecular Docking and Dynamics Simulation Studies. Mol Biotechnol 2025:10.1007/s12033-025-01369-w. [PMID: 39820851 DOI: 10.1007/s12033-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, UWB1.289) were 24.42, 13.50, 9.31, 14.90, 20.07, and 16.18 µM, respectively. IC50 values were 19.83 and 73.48 µM for tyrosinase and HMG-CoA reductase enzymes. The chemical activities of Calceolarioside A against HMG-CoA reductase and tyrosinase were assessed by conducting the molecular docking study, MM/GBSA calculation, and molecular dynamics (MD) simulation. The anticancer activities of this compound were evaluated against some ovarian cancer cells, such as NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, and UWB1.289 cell lines. The chemical activities of Calceolarioside A against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor-Like 1, M2 muscarinic receptor, and estrogen receptors) were investigated using computational methods. The results exhibited the interplay among atoms. The compound formed robust associations with both the enzymes and receptors. Calceolarioside A can hinder the functioning of these enzymes and the proliferation of malignant cells.
Collapse
Affiliation(s)
- Liqin Chen
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Dan Han
- Department of Physical Examination Center, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - ChunYan Gu
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Wei Huang
- Department of Gynecologic and Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
5
|
Aguiar AJFC, de Medeiros WF, da Silva-Maia JK, Bezerra IWL, Piuvezam G, Morais AHDA. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int J Mol Sci 2024; 25:9646. [PMID: 39273592 PMCID: PMC11395041 DOI: 10.3390/ijms25179646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent with those predicted in the computational analysis. The review was framed by the question: "What peptides or proteins have been used to treat obesity in in silico studies?" and structured according to the acronym PECo. The systematic review protocol was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P, and all stages of the review adhered to these guidelines. Studies were sourced from the following databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria, 7 were included in this systematic review. The anti-obesity peptides identified originated from various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo reassessment and used molecular docking methodology in their in silico studies. Among the studies included in the review, 46.15% were classified as having an "uncertain risk of bias" in six of the thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably, all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The findings of this systematic review underscore the effectiveness of computational simulation as a screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the discovery of novel anti-obesity peptides.
Collapse
Affiliation(s)
- Ana Júlia Felipe Camelo Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Wendjilla Fortunato de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Ingrid Wilza Leal Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Grasiela Piuvezam
- Health Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| |
Collapse
|
6
|
Wang Y, Jia S, Wang F, Jiang R, Yin X, Wang S, Jin R, Guo H, Tang Y, Wang Y. 3D-QSAR, Scaffold Hopping, Virtual Screening, and Molecular Dynamics Simulations of Pyridin-2-one as mIDH1 Inhibitors. Int J Mol Sci 2024; 25:7434. [PMID: 39000539 PMCID: PMC11242256 DOI: 10.3390/ijms25137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.
Collapse
Affiliation(s)
- Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| | - Shunjiang Jia
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| | - Fan Wang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (F.W.); (R.J.)
| | - Ruizhe Jiang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (F.W.); (R.J.)
| | - Xiaodan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China;
| | - Shuo Wang
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi’an-Xianyang New Economic Zone, Xianyang 712046, China; (Y.W.); (S.J.); (R.J.); (H.G.); (Y.T.)
| |
Collapse
|
7
|
Amirkhosravi A, Mehrabani M, Fooladi S, Norouzmahani ME, Vasei S, Mir Y, Malekoladi Z, Faramarz S, Nematollahi MH, Mehrabani M. Rheum khorasanicum. Hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:685-697. [PMID: 38408722 DOI: 10.1016/j.pharma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30μg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mehrnaz Mehrabani
- Centre de recherche en physiologie, institut de neuropharmacologie, université des sciences médicales de Kerman, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, section de médecine cardiovasculaire, département de médecine interne, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammad-Erfan Norouzmahani
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Saeedeh Vasei
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran
| | - Yousof Mir
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Zahra Malekoladi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| | - Mitra Mehrabani
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| |
Collapse
|
8
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound. J Biomol Struct Dyn 2024; 42:3349-3362. [PMID: 37194430 DOI: 10.1080/07391102.2023.2213344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Prostate cancer (PCa) is one of the most reported cancers among men worldwide. Targeting the essential proteins associated with PCa could be a promising method for cancer treatment. Traditional and herbal remedies (HRs) are the most practical approaches for PCa treatment. Here, the proteins and enzymes associated with PCa were determined based on the information obtained from the DisGeNET database. The proteins with a gene-disease association (GDA) score greater than 0.7 and the genes that have a disease specificity index (DSI) = 1 were selected as the target proteins. 28 HRs with anti-PCa activity as a traditional treatment for PCa were chosen as potential bioactive compounds. More than 500 compound-protein complexes were screened to find the top-ranked bioactives. The results were further evaluated using the molecular dynamics (MD) simulation and binding free energy calculations. The outcomes revealed that procyanidin B2 3,3'-di-O-gallate (B2G2), the most active ingredient of grape seed extract (GSE), can act as an agonist for PTEN. PTEN has a key role in suppressing PCa cells by applying phosphatase activity and inhibiting cell proliferation. B2G2 exhibited a considerable binding affinity to PTEN (11.643 kcal/mol). The MD results indicated that B2G2 could stabilize the key residues of the phosphatase domain of PTEN and increase its activity. Based on the obtained results, the active ingredient of GSE, B2G2, could play an agonist role and effectively increase the phosphatase activity of PTEN. The grape seed extract is a useful nutrition that can be used in men's diets to inhibit PCa in their bodies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
9
|
Poustforoosh A, Faramarz S, Nematollahi MH, Mahmoodi M, Azadpour M. Structure-Based Drug Design for Targeting IRE1: An in Silico Approach for Treatment of Cancer. Drug Res (Stuttg) 2024; 74:81-88. [PMID: 38134918 DOI: 10.1055/a-2211-2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
BACKGROUND Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a key role in cancer progression. The aggregation of incorrectly folded proteins in the ER generates ER stress, which in turn activates the UPR as an adaptive mechanism to fix ER proteostasis. Inositol-requiring enzyme 1 (IRE1) is the most evolutionary conserved ER stress sensor, which plays a pro-tumoral role in various cancers. Targeting its' active sites is one of the most practical approaches for the treatment of cancers. OBJECTIVE In this study, we aimed to use the structure of 4μ8C as a template to produce newly designed compounds as IRE1 inhibitors. METHODS Various functional groups were added to the 4μ8C, and their binding affinity to the target sites was assessed by conducting a covalent molecular docking study. The potential of the designed compound for further in vitro and in vivo studies was evaluated using ADMET analysis. RESULTS Based on the obtained results, the addition of hydroxyl groups to 4μ8C enhanced the binding affinity of the designed compound to the target efficiently. Compound 17, which was constructed by the addition of one hydroxyl group to the structure of 4μ8C, can construct a strong covalent bond with Lys907. The outcomes of ADMET analysis indicated that compound 17 could be considered a drug-like molecule. CONCLUSION Our results revealed that designed compound 17 could inhibit IRE1 activity. Therefore, this designed compound is a remarkable inhibitor of IRE1 and introduces a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Azadpour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Yin Q, Zhang H, Huang T, Liu B, Negm S, El-Kott AF. Anti-collagenase, Anti-elastase, Anti-urease, and Anti-cancer Potentials of Isokaempferide as Natural Compound: In vitro and in silico Study. J Oleo Sci 2024; 73:187-199. [PMID: 38311409 DOI: 10.5650/jos.ess23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.
Collapse
Affiliation(s)
- Qian Yin
- Department of Pathology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Hao Zhang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Ting Huang
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry
| | - Bin Liu
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, Faculty of Science, Damanhour University
| |
Collapse
|
11
|
Li L, Zhu Y, Huang YG, Hou DZ, Ahmed Zaki MS, Sideeg AM, Mohammed H, El-Kott AF, Al-Saeed FA, Ling P. Therapeutic properties, biological effects, antiliver cancer, and anticolon cancer effects of some natural compounds: A biochemical approach. J Biochem Mol Toxicol 2024; 38:e23573. [PMID: 37934567 DOI: 10.1002/jbt.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.
Collapse
Affiliation(s)
- Long Li
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying-Guang Huang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - De-Zhi Hou
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | | | - Abulqasim M Sideeg
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Heitham Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ping Ling
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
12
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
13
|
Amiri S, Pashizeh F, Moeinabadi-Bidgoli K, Eyvazi Y, Akbari T, Salehi Moghaddam Z, Eskandarisani M, Farahmand F, Hafezi Y, Nouri Jevinani H, Seif M, Mousavi-Niri N, Chiani M, Tavakkoli Yaraki M. Co-encapsulation of hydrophilic and hydrophobic drugs into niosomal nanocarrier for enhanced breast cancer therapy: In silico and in vitro studies. ENVIRONMENTAL RESEARCH 2023; 239:117292. [PMID: 37806480 DOI: 10.1016/j.envres.2023.117292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.
Collapse
Affiliation(s)
- Sahar Amiri
- Department of Genetic, Islamic Azad University, Tehran North Branch, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science Yazd, Iran
| | - Kasra Moeinabadi-Bidgoli
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yalda Eyvazi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Tanin Akbari
- Department of Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Iran
| | | | - Faranak Farahmand
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Hafezi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hoda Nouri Jevinani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Seif
- Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
14
|
Zhang J, Feng J, Li Y, Wang J, Mo P, Luo C. Anticancer and Biological Effects of Some Natural Compounds and Theoretical Investigation of them Against RdRP of SARS-COV-2: In Silico and In Vitro Studies. Mol Biotechnol 2023; 65:1764-1776. [PMID: 36780057 PMCID: PMC9923641 DOI: 10.1007/s12033-023-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 02/14/2023]
Abstract
In this study, Skullcapflavone I and Skullcapflavone II molecules showed good inhibitory activities against α-glucosidase and sorbitol dehydrogenase enzymes with IC50 values of 102.66 ± 8.43 and 95.04 ± 11.52 nM for α-glucosidase and 38.42 ± 3.82 and 28.81 ± 3.26 µM for sorbitol dehydrogenase. The chemical activities of Skullcapflavone I and Skullcapflavone II against α-glucosidase and sorbitol dehydrogenase were assessed by conducting the molecular docking study. The anticancer activities of the compounds were examined against SW-626, SK-OV-3, OVCAR3, and Caov-3 cell lines. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (estrogen receptor, EGFR, androgen receptor, and GnRH receptor) in the mentioned cell lines were investigated using in silico calculations. Moreover, the activity of the compounds against RNA polymerase of SARS-COVE-2 was also assessed using the molecular modeling study. These compounds created strong contacts with the enzymes and receptors. The considerable binding affinity of the compounds to the enzymes and proteins showed their ability as inhibitors. Furthermore, even at modest dosages, these substances markedly reduced the viability of ovarian cancer cells. Additionally, the viability of ovarian cancer cells was significantly decreased by a 300 μM dosage of all compounds. Antiovarian cancer results of Skullcapflavone I on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 63.14, 1.55, 19.42, and 52.04 µM, respectively. Also, cytotoxicity results of Skullcapflavone II on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 5.18, 21.44, 33.87, and 72.66 µM, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- Department of Oncology, The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingyu Feng
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Yang Li
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jiguo Wang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Panyan Mo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Changguo Luo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.
| |
Collapse
|
15
|
Kekeçmuhammed H, Tapera M, Aydoğdu E, Sarıpınar E, Aydin Karatas E, Mehtap Uc E, Akyuz M, Tüzün B, Gulcin İ, Emin Bora R, Özer İlhan İ. Synthesis, Biological Activity Evaluation and Molecular Docking of Imidazole Derivatives Possessing Hydrazone Moiety. Chem Biodivers 2023; 20:e202200886. [PMID: 37132191 DOI: 10.1002/cbdv.202200886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
In an attempt to identify potential active anticancer agents with low cytotoxic properties and CA inhibitors, a new series of hybrid compounds incorporating imidazole ring and hydrazone moiety as part of their structure were synthesized by aza-Michael addition reaction followed by intramolecular cyclization. The structure of synthesized compounds was elucidated using various spectral techniques. Synthesized compounds were evaluated for their in vitro anticancer (prostate cell lines; PC3) and CA inhibitory (hCA I and hCA II) activity. Among them, some compound displayed remarkable anticancer activity and CA inhibitory activity with Ki values in range of 17.53±7.19-150.50±68.87 nM against cytosolic hCA I isoform associated with epilepsy, and 28.82±14.26-153.27±55.80 nM against dominant cytosolic hCA II isoforms associated with glaucoma. Furthermore, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities. The proteins used for the calculations are prostate cancer protein (PDB ID: 3RUK and 6XXP). ADME/T analysis was carried out to examine the drug properties of the studied molecules.
Collapse
Affiliation(s)
- Hüseyin Kekeçmuhammed
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Michael Tapera
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Ekrem Aydoğdu
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Emin Sarıpınar
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Eda Mehtap Uc
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, 58140-, Sivas, Turkey
| | - İlhami Gulcin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Rıfat Emin Bora
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - İlhan Özer İlhan
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
16
|
Özmen ÜÖ, Tüzün B, Ayan EB, Çevrimli BS. Eco-friendly and potential colin esterase enzyme inhibitor agent sulfonyl hydrazone series: Synthesis, Bioactivity Screening, DFT, ADME Properties, and Molecular Docking Study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
17
|
Çetinkaya S, Eyupoglu V, Çetintaş Hİ, Yenidünya AF, Kebabcı Ö, Tüzün B. Removal of Erythrosine B dye from wastewater by Penicillium italicum: experimental, DFT, and molecular docking studies. J Biomol Struct Dyn 2023; 41:14212-14223. [PMID: 36889933 DOI: 10.1080/07391102.2023.2186704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
The study involved the adsorption of Erythrosine B onto the dead, dry, and unmodified Penicillium italicum cells and the analytical, visual, theoretical assessment of the adsorbent-adsorbate interactions. It also included desorption studies and reiterative usability of the adsorbent. The fungus was a local isolate and it was identified by partial proteomic experiment in a MALDI-TOFF mass spectrometer. Chemical features of the adsorbent surface were analysed by FT-IR and EDX. Surface topology was visualized by SEM. Isotherm parameters of the adsorption were determined by using three most frequently used models. Erythrosine B appeared to form a monolayer onto the biosorbent and some of the dye molecules could have also penetrated into the adsorbent particles. Kinetic results suggested a spontaneous and exothermic reaction taken place between the dye molecules and the biomaterial. Theoretical approach involved the determination of some of the quantum parameters as well as the toxic or drug potentials of the some of the components of the biomaterial.
Collapse
Affiliation(s)
- Serap Çetinkaya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Volkan Eyupoglu
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankırı, Turkey
| | - Halil İbrahim Çetintaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Ali Fazıl Yenidünya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Özgür Kebabcı
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
18
|
Bag S, Burman MD, Bhowmik S. Structural insights and shedding light on preferential interactions of dietary flavonoids with G-quadruplex DNA structures: A new horizon. Heliyon 2023; 9:e13959. [PMID: 36879969 PMCID: PMC9984854 DOI: 10.1016/j.heliyon.2023.e13959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| |
Collapse
|
19
|
Modeling and affinity maturation of an anti-CD20 nanobody: a comprehensive in-silico investigation. Sci Rep 2023; 13:582. [PMID: 36631511 PMCID: PMC9834265 DOI: 10.1038/s41598-023-27926-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell Non-Hodgkin lymphomas are the malignancies of lymphocytes. CD20 is a membrane protein, which is highly expressed on the cell surface of the B-cells in NHL. Treatments using monoclonal antibodies (mAbs) have resulted in failure in some cases. Nanobodies (NBs), single-domain antibodies with low molecular weights and a high specificity in antigen recognition, could be practical alternatives for traditional mAbs with superior characteristics. To design an optimized NB as a candidate CD20 inhibitor with raised binding affinity to CD20, the structure of anti-CD20 NB was optimized to selectively target CD20. The 3D structure of the NB was constructed based on the optimal templates (6C5W and 5JQH), and the key residues were determined by applying a molecular docking study. After identifying the key residues, some mutations were introduced using a rational protocol to improve the binding affinity of the NB to CD20. The rational mutations were conducted using the experimental design (Taguchi method). Six residues (Ser27, Thr28, Phe29, Ile31, Asp99, and Asn100) were selected as the key residues, and five residues were targeted for rational mutation (Trp, Phe, His, Asp, and Tyr). Based on the mutations suggested by the experimental design, two optimized NB structures were constructed. NB2 showed a remarkable binding affinity to CD20 in docking studies with a binding energy of - 853 kcal/mol. The optimized NB was further evaluated using molecular dynamics simulation. The results revealed that CDR1 (complementarity determining regions1) and CDR3 are essential loops for recognizing the antigen. NB2 could be considered as a potential inhibitor of CD20, though experimental evaluations are needed to confirm it.
Collapse
|
20
|
Yang B, Yuan K, Lu M, El-Kott AF, Negm S, Sun QP, Yang L. Anti-cancer, Anti-collagenase and Anti-elastase Potentials of Some Natural Derivatives: In vitro and in silico Studies. J Oleo Sci 2023; 72:557-570. [PMID: 37121681 DOI: 10.5650/jos.ess22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The anti-cancer activities of the compounds were evaluated against KYSE-150, KYSE-30, and KYSE-270 cell lines and also on investigated esophageal line HET 1 A as a standard. Modified inhibitory impact on enzymes of collagenase and elastase were used Thring and Moon methods, respectively. Among both compounds, both of them recorded impact on cancer cells being neutral against the control, both had IC50 lower than 100 µM and acted as a potential anticancer drug. The chemical activities of Skullcapflavone I and Skullcapflavone II against elastase and collagenase were investigated utilizing the molecular modeling study. IC50 values of Skullcapflavone I and Skullcapflavone II on collagenase enzyme were obtained 106.74 and 92.04 µM and for elastase enzyme were 186.70 and 123.52 µM, respectively. Anticancer effects of these compounds on KYSE 150, KYSE 30, and KYSE 270 esophageal cancer cell lines studied in this work. For Skullcapflavone I, IC50 values for these cell lines were obtained 14.25, 19.03, 25.10 µM, respectively. Also, for Skullcapflavone II were recorded 20.42, 34.17, 22.40 µM, respectively. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (CD44, EGFR, and PPARγ) in the mentioned cell lines were assessed using the molecular docking calculations. The calculations showed the possible interactions and their characteristics at an atomic level.
Collapse
Affiliation(s)
- Binfeng Yang
- Department of Medical Oncology, Suzhou Ninth People's Hospital·Suzhou Ninth Hospital Affiliated to Soochow University
| | - Kaisheng Yuan
- Department of Gastroenterology, People's Hospital of Hongze District
| | - Ming Lu
- Department of General Surgery-Gastrointestinal Surgery JiLin Central Hospital
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, College of Science, Damanhour University
| | - Sally Negm
- Department of Life Sciences, Faculty of Science and Art Mahail, King Khalid University
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health
| | - Qiu Ping Sun
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| | - Lu Yang
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Department of Comprehensive Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| |
Collapse
|
21
|
Poustforoosh A, Farmarz S, Nematollahi MH, Hashemipour H, Pardakhty A. Construction of Bio-conjugated nano-vesicles using non-ionic surfactants for targeted drug delivery: A computational supported experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Yang X, Zhao Z, Zhao C, Li Y, El-Kott AF, Bani-Fwaz MZ. Anti-breast Adenocarcinoma and Anti-urease Anti-tyrosinase Properties of 5-Pentylresorcinol as Natural Compound with Molecular Docking Studies. J Oleo Sci 2022; 71:1031-1038. [PMID: 35781255 DOI: 10.5650/jos.ess22024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
5-Pentylresorcinol is a type of the group of resorcinol compounds that is resorcinol in that has hydrogen atom at position 5 is replaced by a pentyl group. It has a role as a lichen metabolite. This compound showed excellent to good inhibitory activities against studied these enzymes with IC50 values of 65.96 µM for urease and 34.81 µM for tyrosinase. Standard compounds for enzymes had IC50 values of 1.94±0.24 µM against urease and 84.36±5.17 µM against tyrosinase. The IC50 of 5-pentylresorcinol against MCF7 cell line was 165.72 µg/mL; against Hs 578Bst cell line was 102.14 µg/mL; against Hs 319.T cell line was 12.34 µg/mL; and against UACC-3133 cell line was 73.07 µg/mL, respectively. The chemical activities of 5-pentylresorcinol against urease and tyrosinase were evaluated using the molecular modeling study. The anti-cancer activity of 5-pentylresorcinol was also investigated by treating the compound on the BRCT repeat region from the breast cancer-associated protein (BRCA1), and their interactions were assessed utilizing the molecular docking calculations. The results revealed the probable interactions and their characteristics at an atomic level. The docking scores of 5-pentylresorcinol against urease, tyrosinase, and BRCA1 are -3.073, -5.262, and -3.238 (kcal/mol), respectively.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Department of Thyroid and Breast Surgery, The First People's Hospital of Wenling
| | - Zhenyu Zhao
- Department of Oncology, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University
| | - Chenhui Zhao
- Department of General Surgery, The Second People's Hospital of Jiulongpo District
| | - Yan Li
- Department of General Surgery, Puren Hospital of Wuhan University of Science and Technology
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University.,Department of Zoology, College of Science, Damanhour University
| | | |
Collapse
|
23
|
Poustforoosh A, Hashemipour H, Tüzün B, Azadpour M, Faramarz S, Pardakhty A, Mehrabani M, Nematollahi MH. The Impact of D614G Mutation of SARS-COV-2 on the Efficacy of Anti-viral Drugs: A Comparative Molecular Docking and Molecular Dynamics Study. Curr Microbiol 2022; 79:241. [PMID: 35792936 PMCID: PMC9258457 DOI: 10.1007/s00284-022-02921-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
D614G is one of the most reported mutations in the spike protein of SARS-COV-2 that has altered some crucial characteristics of coronaviruses, such as rate of infection and binding affinities. The binding affinity of different antiviral drugs was evaluated using rigid molecular docking. The reliability of the docking results was evaluated with the induced-fit docking method, and a better understanding of the drug-protein interactions was performed using molecular dynamics simulation. The results show that the D614G variant could change the binding affinity of antiviral drugs and spike protein remarkably. Although Cytarabine showed an appropriate interaction with the wild spike protein, Ribavirin and PMEG diphosphate exhibited a significant binding affinity to the mutated spike protein. The parameters of the ADME/T analysis showed that these drugs are suitable for further in-vitro and in-vivo investigation. D614G alteration affected the binding affinity of the RBD and its receptor on the cell surface.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr, University of Rafsanjan, Rafsanjan, Iran.
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahdiyeh Azadpour
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Yalazan H, Tüzün B, Akkaya D, Barut B, Kantekin H, Yıldırmış S. Quinoline‐fused both non‐peripheral and peripheral Zn
II
and Mg
II
phthalocyanines: Anti‐cholinesterase, anti‐α‐glucosidase, DNA nuclease, antioxidant activities and in silico studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Halise Yalazan
- Faculty of Sciences, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University Sivas Turkey
| | - Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Halit Kantekin
- Faculty of Sciences, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Sermet Yıldırmış
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| |
Collapse
|
25
|
Matsuzaka Y, Uesawa Y. A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance. Int J Mol Sci 2022; 23:ijms23042141. [PMID: 35216254 PMCID: PMC8877122 DOI: 10.3390/ijms23042141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Molecular design and evaluation for drug development and chemical safety assessment have been advanced by quantitative structure–activity relationship (QSAR) using artificial intelligence techniques, such as deep learning (DL). Previously, we have reported the high performance of prediction models molecular initiation events (MIEs) on the adverse toxicological outcome using a DL-based QSAR method, called DeepSnap-DL. This method can extract feature values from images generated on a three-dimensional (3D)-chemical structure as a novel QSAR analytical system. However, there is room for improvement of this system’s time-consumption. Therefore, in this study, we constructed an improved DeepSnap-DL system by combining the processes of generating an image from a 3D-chemical structure, DL using the image as input data, and statistical calculation of prediction-performance. Consequently, we obtained that the three prediction models of agonists or antagonists of MIEs achieved high prediction-performance by optimizing the parameters of DeepSnap, such as the angle used in the depiction of the image of a 3D-chemical structure, data-split, and hyperparameters in DL. The improved DeepSnap-DL system will be a powerful tool for computer-aided molecular design as a novel QSAR system.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan;
- Center for Gene and Cell Therapy, Division of Molecular and Medical Genetics, The Institute of Medical Science, University of Tokyo, Minato City 108-8639, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan;
- Correspondence: ; Tel.: +81-42-495-8983
| |
Collapse
|
26
|
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J Control Release 2022; 343:777-797. [DOI: 10.1016/j.jconrel.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
27
|
Li L, Song X, Ouyang M, El-kott AF, Bani-Fwaz MZ, Yu Z. Anti-HMG-CoA Reductase, Anti-diabetic, Anti-urease, Anti-tyrosinase and Anti-leukemia Cancer Potentials of Panicolin as a Natural Compound:<i>In vitro</i> and <i>in silico</i> Study. J Oleo Sci 2022; 71:1469-1480. [DOI: 10.5650/jos.ess22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ling Li
- Department of Hematology, Inner Mongolia People’s Hospital
| | - Xiyue Song
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science
| | - Meng Ouyang
- Department of Pharmacy, The First People’s Hospital of JiangXia District
| | | | | | - Zebing Yu
- Department of Pharmacy, Nanning Social Welfare Hospital
| |
Collapse
|
28
|
Majumdar D, Elizabeth Philip J, Roy S, Tüzün B. Reinvigorate the synthesis, spectroscopic findings, SEM morphology investigation, and antimicrobial silhouette of contemporary Salen ligands: A comprehensive DFT landscape. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|