1
|
Sharma E, Fotooh Abadi L, Kombe Kombe JA, Kandala M, Parker J, Winicki N, Kelesidis T. Overview of methods that determine mitochondrial function in human disease. Metabolism 2025; 170:156300. [PMID: 40389059 DOI: 10.1016/j.metabol.2025.156300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Cellular metabolism has a key role in the pathogenesis of human disease. Mitochondria are the organelles that generate most of the energy needed for a cell to function and drive cellular metabolism. Understanding the link between metabolic and mitochondrial function can be challenging due to the variation in methods used to measure mitochondrial function and heterogeneity in mitochondria, cells, tissues, and end organs. Mitochondrial dysfunction can be determined at both the cellular and tissue levels using several methods, such as assessment of cellular bioenergetics, levels of mitochondrial DNA (mtDNA), mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mito-ROS), and levels of mitochondrial enzymes. Recent advances involving novel radiotracers in combination with PET imaging have allowed for the determination of mitochondrial function in vivo with high specificity. Understanding the barriers in existing methodologies used to study mitochondrial function may help further establish the assessment of mitochondrial function as a biologically and clinically relevant biomarker for human disease severity and prognosis. Herein, we critically review the existing literature regarding the strengths and limitations of methods that determine mitochondrial function, and we subsequently discuss how emerging research methods have begun to overcome some of these hurdles. We conclude that a combination of techniques, including respirometry and mitochondrial membrane potential assessment, is necessary to understand the complexity and biological and clinical relevance of mitochondrial function in human disease.
Collapse
Affiliation(s)
- Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA
| | - Leila Fotooh Abadi
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - John Arnaud Kombe Kombe
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Monisha Kandala
- Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Jordan Parker
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA; Lexington Medical Center, West Columbia, SC, USA
| | - Nolan Winicki
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Infectious Diseases, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
2
|
Wang W, Wu D, Liu J, Yang DA. Potential protective role of Lycium ruthenicum Murray polysaccharides against lipopolysaccharide-induced liver injury via mitochondrial biogenesis. Int J Biol Macromol 2025; 306:141365. [PMID: 39993693 DOI: 10.1016/j.ijbiomac.2025.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Acute liver injury (ALI), which manifests as abnormal liver function and hepatocyte damage, lacks effective treatment modalities and is associated with a high mortality rate. Recent studies have revealed that hepatoprotection is related to polysaccharide components. In this study, we examined the effect and mechanism of Lycium ruthenicum Murray polysaccharides (LRMP) on liver injury induced by lipopolysaccharide (LPS). Male ICR mice were pre-administered LRMP (100 and 400 mg/kg BW) once daily for 21 days. A single injection of LPS (10 mg/kg BW) was administered on day 21 to induce ALI. The difference between the groups indicated that LRMP supplementation had no adverse effect on body weight. LRMP administration considerably alleviated liver injury, as evidenced by the decreased levels of aspartate transaminase and alanine transaminase, increased levels of albumin, and preservation of liver structural integrity. Moreover, LRMP reduced oxidative stress and inflammatory responses in the liver, maintained mitochondrial structure, regulated mitochondrial apoptotic pathway, and upregulated Sirtuin 1/peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway involved in mitochondrial biogenesis. This study suggests the potential therapeutic application of LRMP in liver-related diseases, which will provide a basis for innovative strategies.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Animal Science, Ningxia University, Yinchuan 750021, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu H, Wang H, Lin X, Xu M, Lan W, Wang J. Harnessing natural saponins: Advancements in mitochondrial dysfunction and therapeutic applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156383. [PMID: 39848019 DOI: 10.1016/j.phymed.2025.156383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects. PURPOSE This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function. It focuses on their potential applications in neuroprotection, cardiovascular health, and oncology. STUDY DESIGN The review incorporates a comprehensive literature analysis, highlighting the interplay between saponins and mitochondrial signaling pathways. Specific attention is given to the effects of saponins like ginsenoside Rg2 and 20(S)-protopanaxatriol on mitophagy and their neuroprotective, anti-aging, and synergistic therapeutic effects when combined. METHODS We conducted a comprehensive review of current research and clinical trials using PubMed, Google Scholar, and SciFinder databases. The search focused on saponins' role in mitochondrial function and their therapeutic effects, including "saponins", "mitochondria" and "mitochondrial function". The analysis primarily focused on articles published between 2011 and 2024. RESULTS The findings indicate that certain saponins can enhance mitophagy and modulate mitochondrial signaling pathways, showing promise in neuroprotection and anti-aging. Additionally, combinations of saponins have demonstrated synergistic effects in myocardial protection and cancer therapy, potentially improving therapeutic outcomes. CONCLUSION Although saponins exhibit significant potential in modulating mitochondrial functions and developing innovative therapeutic strategies, their clinical applications are constrained by low bioavailability. Rigorous clinical trials are essential to translate these findings into effective clinical therapies, ultimately improving patient outcomes through a deeper understanding of saponins' impact on mitochondrial function.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Department of pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Wenying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
4
|
Hazu M, Guna A, Stevens TA, Voorhees RM. Monitoring alpha-helical membrane protein insertion into the outer mitochondrial membrane in mammalian cells. Methods Enzymol 2024; 707:63-99. [PMID: 39488394 DOI: 10.1016/bs.mie.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial function is dependent on the correct localization and insertion of membrane proteins into the outer mitochondrial membrane (OM). In mammals, the OM contains ∼150 proteins, the majority of which contain α-helical transmembrane domains. This family of α-helical proteins has significantly expanded in metazoans and has evolved to mediate critical signaling and regulatory processes including mitochondrial fusion and fission, mitophagy, apoptosis and aspects of the innate immune response. Recently, the conserved OM protein MTCH2 has been identified as an insertase for α-helical proteins in human mitochondria. However, our understanding of the targeting, insertion, folding and quality control of α-helical OM proteins remains incomplete. Here we highlight three methods to monitor α-helical protein insertion both in human cells and in vitro. First, we describe a versatile split fluorescent reporter system that can be used to monitor the insertion of α-helical proteins into the OM in human cells. Second, we delineate a streamlined approach to isolating functional, insertion competent mitochondria from human cells that are compatible with in vitro import assays. Finally, we explain in detail how to reconstitute the insertion of α-helical proteins in a minimal system, by creating functional proteoliposomes containing purified MTCH2. Together these tools represent an integrated platform to enable the detailed mechanistic analysis of biogenesis of the diverse and physiologically essential α-helical OM proteome.
Collapse
Affiliation(s)
- Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
5
|
Lu G, Wang W, Zhang S, Yang G, Zhang K, Que Y, Deng L. The first complete mitochondrial genome of Grossulariaceae: Molecular features, structure recombination, and genetic evolution. BMC Genomics 2024; 25:744. [PMID: 39080514 PMCID: PMC11290076 DOI: 10.1186/s12864-024-10654-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Mitochondria play crucial roles in the growth, development, and adaptation of plants. Blackcurrant (Ribes nigrum L.) stands out as a significant berry species due to its rich nutritional profile, medicinal properties, and health benefits. Despite its importance, the mitochondrial genome of blackcurrant remains unassembled. RESULTS This study presents the first assembly of the mitochondrial genome of R. nigrum in the Grossulariaceae family. The genome spans 450,227 base pairs (bp) and encompasses 39 protein-coding genes (PCGs), 19 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). Protein-coding regions constitute 8.88% of the entire genome. Additionally, we identified 180 simple sequence repeats, 12 tandem repeats, and 432 pairs of dispersed repeats. Notably, the dispersed sequence R1 (cotig3, 1,129 bp) mediated genome recombination, resulting in the formation of two major conformations, namely master and double circles. Furthermore, we identified 731 C-to-U RNA editing sites within the PCGs. Among these, cox1-2, nad1-2, and nad4L-2 were associated with the creation of start codons, whereas atp6-718 and rps10-391 were linked to termination codons. We also detected fourteen plastome fragments within the mitogenome, constituting 1.11% of the total length. Phylogenetic analysis suggests that R. nigrum might have undergone multiple genomic reorganization and/or gene transfer events, resulting in the loss of two PCGs (rps2 and rps11) during its evolutionary history. CONCLUSIONS This investigation unveils the molecular characteristics of the R. nigrum mitogenome, shedding light on its evolutionary trajectory and phylogenetic implications. Furthermore, it serves as a valuable reference for evolutionary research and germplasm identification within the genus.
Collapse
Affiliation(s)
- Guilong Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Wenhua Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Shanshan Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Guang Yang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Kun Zhang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Youxiong Que
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lan Deng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China.
| |
Collapse
|
6
|
Jankovic A, Kalezic A, Korac A, Buzadzic B, Storey KB, Korac B. Integrated Redox-Metabolic Orchestration Sustains Life in Hibernating Ground Squirrels. Antioxid Redox Signal 2024; 40:345-368. [PMID: 36802926 DOI: 10.1089/ars.2021.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Significance: The ultimate manifestations of life, birth, survival under various environmental pressures and death are based on bioenergetics. Hibernation is a unique survival strategy for many small mammals that is characterised by severe metabolic depression and transition from euthermia to hypothermia (torpor) at body temperatures close to 0°C. These manifestations of life were made possible by the remarkable "social" behavior of biomolecules during billions of years of evolution: the evolution of life with oxygen. Oxygen was necessary for energy production and the evolutionary explosion of aerobic organisms. Recent Advances: Nevertheless, reactive oxygen species, formed through oxidative metabolism, are dangerous-they can kill a cell and, on the other hand, play a plethora of fundamentally valuable roles. Therefore, the evolution of life depended on energy metabolism and redox-metabolic adaptations. The more extreme the conditions for survival are, the more sophisticated the adaptive responses of organisms become. Hibernation is a beautiful illustration of this principle. Hibernating animals use evolutionarily conserved molecular mechanisms to survive adverse environmental conditions, including reducing body temperature to ambient levels (often to ∼0°C) and severe metabolic depression. This long-built secret of life lies at the intersection of oxygen, metabolism, and bioenergetics, and hibernating organisms have learned to exploit all the underlying capacities of molecular pathways to survive. Critical Issues: Despite such drastic changes in phenotype, tissues and organs of hibernators sustain no metabolic or histological damage during hibernation or upon awakening from hibernation. This was made possible by the fascinating integration of redox-metabolic regulatory networks whose molecular mechanisms remain undisclosed to this day. Future Directions: Discovering these molecular mechanisms is not warranted only to understand hibernation in itself but to help explain complex medical conditions (hypoxia/reoxygenation, organ transplantation, diabetes, and cancer) and to even help overcome limitations associated with space travel. This is a review of integrated redox-metabolic orchestration in hibernation. Antioxid. Redox Signal. 40, 345-368.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
8
|
Verma P, Chauhan A, Thakur R, Lata K, Sharma A, Chattopadhyay K, Mukhopadhaya A. Vibrio parahaemolyticus thermostable direct haemolysin induces non-classical programmed cell death despite caspase activation. Mol Microbiol 2023; 120:845-873. [PMID: 37818865 DOI: 10.1111/mmi.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Thermostable direct haemolysin (TDH) is the key virulence factor secreted by the human gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin. It evokes potent cytotoxicity, the mechanism of which still remains under-explored. Here, we have elucidated the mechanistic details of cell death response elicited by TDH. Employing Caco-2 intestinal epithelial cells and THP-1 monocytic cells, we show that TDH induces some of the hallmark features of apoptosis-like programmed cell death. TDH triggers caspase-3 and 7 activations in the THP-1 cells, while caspase-7 activation is observed in the Caco-2 cells. Interestingly, TDH appears to induce caspase-independent cell death. Higher XIAP level and lower Smac/Diablo level upon TDH intoxication provide plausible explanation for the functional inability of caspases in the THP-1 cells, in particular. Further exploration reveals that mitochondria play a central role in the TDH-induced cell death. TDH triggers mitochondrial damage, resulting in the release of AIF and endonuclease G, responsible for the execution of caspase-independent cell death. Among the other critical mediators of cell death, ROS is found to play an important role in the THP-1 cells, while PARP-1 appears to play a critical role in the Caco-2 cells. Altogether, our work provides critical new insights into the mechanism of cell death induction by TDH, showing a common central theme of non-classical programmed cell death. Our study also unravels the interplay of crucial molecules in the underlying signalling processes. Our findings add valuable insights into the role of TDH in the context of the host-pathogen interaction processes.
Collapse
Affiliation(s)
- Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Reena Thakur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
9
|
Tiwari S, Srivastava R, Kulkarni NA, Raval K, Patidar P, Fernandes A, Bhakat M, Mohanty TK. Filtration techniques are advantageous over colloidal centrifugation in improving freezability of low-quality buffalo bull ( Bubalus bubalis) ejaculates. Anim Biotechnol 2023; 34:2835-2845. [PMID: 36112062 DOI: 10.1080/10495398.2022.2121715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The study compared efficacy of three sperm selection techniques in improving freezability of low-quality Murrah buffalo bull ejaculates. Sephadex (SEP), Sephadex ion-exchange filtration (SIE), and 40/80% BoviPure™ (BP) gradient centrifugation protocols were standardized (ejaculates, n = 24). In Experiment-I, Sephadex G-75, G-100, and combined Sephadex G (75-100) column filtrates were compared. In Experiment-II, BP protocols: 200 g-10 min, 250 g-5, and 10 min, 300 g-10, and 15 min were compared. In fresh semen, Sephadex G (75-100) filtration and 250 g-5 min BP protocol improved sperm functions and were used in Experiment-III, where SEP G (75-100), SIE G (75-100), and 250 g-5 min BP processed ejaculates (n = 48) were cryopreserved and compared at post-thaw stage. The mean recovery rate differed in order: SEP > SIE > BP. SIE filtration significantly improved progressive motility, livability, membrane integrity, bovine cervical mucus penetration and live non-apoptotic sperm. Compared with control, all three techniques equally reduced post-dilution and post-thaw lipid peroxidation (LPO) rate. SEP post-thaw filtrates observed lower cryocapacitation-like changes, LPO (C11-BODIPY581/591), and higher active mitochondria than other treatments. SIE and SEP equally improved post-thaw acrosome-intact sperm over BP. Filtration techniques, preferably, Sephadex ion-exchange filtration can most efficiently process low-quality buffalo bull ejaculates for cryopreservation and improve freezability.
Collapse
Affiliation(s)
- Saurabh Tiwari
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Rashika Srivastava
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Nitish Arun Kulkarni
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Kathan Raval
- LPM Division, Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Prakash Patidar
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Abhijeet Fernandes
- LPM Division, Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- LPM Division, Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
10
|
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Anim Biotechnol 2023; 34:1988-2005. [PMID: 35389299 DOI: 10.1080/10495398.2022.2059490] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Camel milk (CM) is the key component of human diet specially for the population belongs to the arid and semi-arid regions of the world. CM possess unique composition as compare to the cow milk with abundant amount of medium chain fatty acids in fat low lactose and higher concentration of whey protein and vitamin C. Besides the nutritional significance of CM, it also contains higher concentration of bioactive compounds including bioactive peptides, lactic acid bacteria (LAB), lactoferrin (LF), lactoperoxidase, lysozyme casein and immunoglobulin. Recently, CM and their bioactive compounds gaining more attention toward scientific community owing to their multiple health benefits, especially in the current era of emerging drug resistance and untold side effects of synthetic medicines. Consumption of fresh or fermented CM and its products presumed exceptional nutraceutical and medicinal properties, including antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, hepatoprotective, nephroprotective, anticancer and immunomodulatory activities. Moreover, CM isolated LAB exhibit antioxidant and probiotic effects leading to enhance the innate and adaptive immune response against both gram-negative and gram-positive pathogenic bacteria. The main objective of this review is to highlight the nutritional significance, pharmaceutical potential, medicinal value and salient beneficial health aspect of CM for human and animals.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
11
|
Ahmed H, Jahan S, Ijaz MU, Riaz M, Ullah F. Relaxin (a regulatory-peptide) enhances cryotolerance, fertility potential and plasma reproductive hormones of Nili Ravi buffalo (Bubalus bubalis) during low breeding season. Res Vet Sci 2023; 164:104996. [PMID: 37688902 DOI: 10.1016/j.rvsc.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the beneficial effects of relaxin on cryotolerance of buffalo spermatozoa and reproductive hormones during low breeding season. Collected semen was diluted in five aliquots with relaxin addition (0.25 mg/mL, 0.50 mg/mL, 0.75 mg/mL, 1 mg/mL, and control). After gentle dilution (37°C), cooling (4°C, 2 h), equilibration (4°C, 4 h), and packaging (straws, polyvinyl French, 0.5 mL), frozen (cell freezer), and thawed (37°C, 30 s) for analysis. Blood samples were collected at different time intervals i.e., -60, -30 and 0 min (pre-dose) and 30, 60, 90, 120 and 150 min (post-dose) from a jugular vein. This study manifest that adding relaxin (1 mg/ mL) in freezing medium ameliorates sperm motility, functionality (%), and seminal plasma total antioxidant capacity (TAC, μM/L) than control during low breeding season. Furthermore, we found that relaxin supplementation at 1 mg/mL significantly improves seminal plasma ATP concentrations (nmol/million) than control, 0.25 mg/mL, and 0.50 mg/mL, and fertility (control, and 0.75 mg/mL). Further, relaxin injection significantly improves plasma T, LH and IGF-1 levels (150 and 120 min vs. -60, and - 30), and FSH, KP, and GnRH concentrations (150 min vs. -60), during low breeding season. Taken together, this study revealed that relaxin ameliorates motility, functionality, and fertility of buffalo spermatozoa. Moreover, relaxin injection (1 mg/mL) improves essential reproductive hormones levels in buffalo signifying its importance in the field of reproductive physiology. Further studies are required to determine the exact mechanism of action of relaxin in enhancing semen quality, fertility and reproductive hormones.
Collapse
Affiliation(s)
- Hussain Ahmed
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan; Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Sarwat Jahan
- Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University Swabi, KP, Pakistan
| | - Farhad Ullah
- Department of Zoology, Islamia College University Peshawar, KP, Pakistan
| |
Collapse
|
12
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
13
|
Imani S, Zhandi M, Towhidi A, Zaghari M, Yousefi AR, Sharafi M, Nadri T. Determining the Optimal Dosage of Lecithin Nanoliposome in Rooster Semen Freezing Medium and Fertility Potential. Biopreserv Biobank 2022; 21:191-199. [PMID: 35788145 DOI: 10.1089/bio.2021.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Lecithin nanoliposome (nano-LPO), with its cryoprotective properties, is considered to enhance the performance of a traditional semen cryoprotectant. Objective: To determine the optimal dose of lecithin nano-LPO added to the rooster semen extender. Materials and Methods: Semen samples collected weekly from eight broiler breeder roosters were mixed and aliquoted into five equal subsamples, during the five successive weeks. The subsamples were then diluted with a semen extender containing 0%, 0.5%, 1%, 1.5%, or 2% of lecithin nano-LPO. Post-thawed semen quality attributes, including sperm motility and velocity parameters, plasma membrane functionality, mitochondrial membrane potential (MMP), apoptosis-like changes, and fertility potential, were evaluated. Results: Total motility and velocity parameters, including curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity μm/s (VAP), straightness (STR), linearity (LIN), lateral head displacement (ALH), and wobble (WOB) were quadratically (p < 0.01) influenced by graded levels of lecithin nano-LPO, such that the highest values were obtained when 1% of lecithin nano-LPO was used. Treatments had no significant effect on plasma membrane functionality; however, MMP (p < 0.08) and percentages of live and dead spermatozoa (p < 0.05) quadratically responded to increasing levels of lecithin nano-LPO, where the best outcome was found when about 1% of lecithin nano-LPO was used in the semen extender. The percentage of apoptotic spermatozoa cubically responded to increasing levels of lecithin nano-LPO (p ≤ 0.07). No significant trend of fertility rate was found in response to addition of lecithin nano-LPO levels. Conclusions: Supplementing an extender with 1.10% of lecithin nano-LPO is shown to be the optimal dose associated with the most improvement in post-thawed rooster sperm velocity measurements.
Collapse
Affiliation(s)
- Saeideh Imani
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Armin Towhidi
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Sharafi
- Department of Poultry Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.,Department of Embryology, Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| |
Collapse
|
14
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
15
|
Zemgulyte G, Umbrasas D, Cizas P, Jankeviciute S, Pampuscenko K, Grigaleviciute R, Rastenyte D, Borutaite V. Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats-a Study Evaluating Neuroinflammation and Mitochondrial Functions. Mol Neurobiol 2022; 59:2977-2991. [PMID: 35257284 DOI: 10.1007/s12035-022-02765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
Imeglimin is a novel oral antidiabetic drug modulating mitochondrial functions. However, neuroprotective effects of this drug have not been investigated. The aim of this study was to investigate effects of imeglimin against ischemia-induced brain damage and neurological deficits and whether it acted via inhibition of mitochondrial permeability transition pore (mPTP) and suppression of microglial activation. Ischemia in rats was induced by permanent middle cerebral artery occlusion (pMCAO) for 48 h. Imeglimin (135 μg/kg/day) was injected intraperitoneally immediately after pMCAO and repeated after 24 h. Immunohistochemical staining was used to evaluate total numbers of neurons, astrocytes, and microglia as well as interleukin-10 (IL-10) producing cells in brain slices. Respiration of isolated brain mitochondria was assessed using high-resolution respirometry. Assessment of ionomycin-induced mPTP opening in intact cultured primary rat neuronal, astrocytic, and microglial cells was performed using fluorescence microscopy. Treatment with imeglimin significantly decreased infarct size, brain edema, and neurological deficits after pMCAO. Moreover, imeglimin protected against pMCAO-induced neuronal loss as well as microglial proliferation and activation, and increased the number of astrocytes and the number of cells producing anti-inflammatory cytokine IL-10 in the ischemic hemisphere. Imeglimin in vitro acutely prevented mPTP opening in cultured neurons and astrocytes but not in microglial cells; however, treatment with imeglimin did not prevent ischemia-induced mitochondrial respiratory dysfunction after pMCAO. This study demonstrates that post-stroke treatment with imeglimin exerts neuroprotective effects by reducing infarct size and neuronal loss possibly via the resolution of neuroinflammation and partly via inhibition of mPTP opening in neurons and astrocytes.
Collapse
Affiliation(s)
- Gintare Zemgulyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania.
| | - Danielius Umbrasas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Paulius Cizas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Silvija Jankeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Katryna Pampuscenko
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological research center, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181, Kaunas, Lithuania
| | - Daiva Rastenyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| |
Collapse
|
16
|
Diallyl Trisulfide Induces Apoptosis in Breast Ductal Carcinoma In Situ Derived and Minimally Invasive Breast Cancer Cells. Nutrients 2022; 14:nu14071455. [PMID: 35406068 PMCID: PMC9002892 DOI: 10.3390/nu14071455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is a localized form of breast cancer that can progress to invasive breast cancer. Diallyl trisulfide (DATS) is a bioactive compound from Allium vegetables reported to induce anticancer effects in several cancer models. The objective of this study was to characterize DATS-induced apoptosis in breast DCIS and minimally invasive breast cancer cells. Breast DCIS cells SUM 102PT (ductal carcinoma in situ with areas of micro-invasion) and SUM 225CWN (chest wall recurrence of ductal carcinoma in situ) were used in this study. DATS induced a dose-dependent reduction in the colony formation ability of breast DCIS cells. DATS inhibited DCIS cell growth by inducing apoptosis as shown by a dose-dependent increase in cytoplasmic histone-associated DNA fragmentation. Induction of apoptosis was more pronounced in SUM 102PT cells than in SUM 225CWN cells at similar concentrations of DATS. DATS-induced apoptosis was characterized by a dose-dependent increase in cleaved poly-ADP ribose polymerase (PARP). DATS treatment resulted in an increase in the cytochrome c levels and cleavage of caspases 3, 7, and 9. This study shows that DATS inhibits cell proliferation and induces apoptosis in breast DCIS derived and minimally invasive breast cancer cells, and supports further investigation of DATS as a potential chemopreventive agent for DCIS.
Collapse
|
17
|
Serum Folate deficiency in HCV related Hepatocellular Carcinoma. Sci Rep 2022; 12:5025. [PMID: 35322130 PMCID: PMC8943167 DOI: 10.1038/s41598-022-09030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Nutritional and environmental factors had been reporting in the progression of hepatocellular carcinoma (HCC). In this study, we focused our intervention in the correlation between the folate status and the progression of HCC in patients with chronic virus C (HCV) infection. Nine-eight patients, HCV positive with HCC and one hundred of patients with HCV positive liver cirrhosis (LC) and one hundred patients with HCV positive chronic hepatitis (CHC) and one hundred control subjects were enrolled. The viremia for hepatitis C patients (HCV) was determined by HCV RNA with polymerase chain reaction. HCV was confirmed by HCV RNA or a positive anti-HCV test with chronic liver disease. The comparison of folate serum levels in HCC patients vs Liver Cirrhosis (LC) patients showed a significant decrease of 1.16 ng/ml P = 0.0006 (95% CI-1.925 to − 0.395), in HCC patients versus CHC a decrease of 1.40 ng/ml P < 0.0001 (95% CI-2.16 to − 0.63), in HCC vs controls a decrease of 3.80 ng/ml P < 0.0001 (95% CI-4.56 to − 3.03). The comparison of homocysteine Hcy serum levels showed a significant increase in HCC vs LC of 4 nmol/L (P < 0.0001, 95% CI 2.77 to 5.22) versus CHC of 9 nmol/L (P < 0.0001, 95% CI 7.78 to 10.22) and vs Controls 9.30 nmol/L (P < 0.0001, 95% CI 8.07 to 10.52). With progression of HCV infection from chronic hepatitis to cirrhosis, then to HCC development, serum folate levels are progressively decreasing together with a progressive increase in serum homocysteine levels reflecting its role in disease progress and carcinogenesis.
Collapse
|
18
|
Das T, Mishra S, Nag S, Saha KD. Green-synthesized gold nanoparticles from black tea extract enhance the chemosensitivity of doxorubicin in HCT116 cells via a ROS-dependent pathway. RSC Adv 2022; 12:8996-9007. [PMID: 35424889 PMCID: PMC8985146 DOI: 10.1039/d1ra08374k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Green gold nanoparticles (GNPs) were prepared from black tea extract (BTE) and used to examine the chemosensitivity of doxorubicin in colon cancer cell line HCT116. BTE-GNPs were prepared by a single-step method and characterized by UV-Vis spectroscopy, FTIR spectroscopy, SEM, DLS and zeta-potential. The MTT assay was performed to determine the cytotoxicity of HCT116 cells and also normal kidney cells HEK293. Apoptosis and ROS generation were investigated by flow cytometry. The inhibition of ROS levels by the inhibitor NAC was determined by both spectrofluorimetry and confocal microscopy. Expression levels of pro- and anti-apoptotic proteins were determined by a western blot technique. BTE-GNPs significantly enhanced the cytotoxic effect of DOX with its co-treatment in HCT116 cells. The cytotoxic effect of BTE-GNP + DOX was involved in apoptosis via a ROS-dependent pathway by enhancing the pro-apoptotic protein expression. Therefore, our results indicated that green gold nanoparticles of black tea extract (BTE-GNP) may be potent chemosensitizers of doxorubicin. Green gold nanoparticles (GNPs) were prepared from black tea extract (BTE) and used to examine the chemosensitivity of doxorubicin in colon cancer cell line HCT116.![]()
Collapse
Affiliation(s)
- Tanushree Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology Kolkata-700032 West Bengal India +91-33-2473 5197 +91-33-2499 5810
| | - Snehasis Mishra
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology Kolkata-700032 West Bengal India +91-33-2473 5197 +91-33-2499 5810
| | - Sayoni Nag
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology Kolkata-700032 West Bengal India +91-33-2473 5197 +91-33-2499 5810
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology Kolkata-700032 West Bengal India +91-33-2473 5197 +91-33-2499 5810
| |
Collapse
|
19
|
Nadri T, Towhidi A, Zeinoaldini S, Riazi G, Sharafi M, Zhandi M, Kastelic J, Gholami D. Supplementation of freezing medium with encapsulated or free glutathione during cryopreservation of bull sperm. Reprod Domest Anim 2022; 57:515-523. [PMID: 35088462 DOI: 10.1111/rda.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 11/28/2022]
Abstract
The objective was to compare effects of encapsulated or free glutathione (GSH) on quality of frozen-thawed bull sperm. Ejaculates were collected via artificial vagina from six mature Holstein bulls once weekly for 6 weeks. All ejaculates had motility ≥70%, sperm concentration ≥1.0 × 109 /mL and ≤15% morphologically abnormal sperm. Each week, semen was pooled and diluted with lecithin-based extenders containing various concentrations of encapsulated (E0, E1, E2.5 and E5 mM) or free (F0, F1, F2.5 and F5 mM) GSH, with total glutathione content determined before and after cryopreservation. Total GSH in fresh semen was (mean+SEM) 4.8 ± 0.2 nmol/108 sperm, whereas in frozen-thawed semen of group F0 (control), it decreased to 1.4 ± 0.2 nmol/108 sperm, a 70.8% reduction (P<0.05). In addition, total GSH in frozen-thawed semen from groups E2.5, E5 and F5 were 2.4 ± 0.2, 2.8 ± 0.2 and 1.8 ± 0.2 nmol/108 sperm, respectively (E5 vs. F0, P<0.05). Compared to group F0, frozen-thawed sperm from group E2.5 had greater (P<0.05) percentages of sperm that were viable (Annexin-V) (61.1 ± 1.8 vs 71.1 ± 1.8) and that had cell membrane integrity (eosin-nigrosin) (64.5 ± 3.1 vs 80.0 ± 3.1). Furthermore, frozen-thawed sperm from group E2.5 had the numerically highest total and progressive motility (CASA) and cell membrane functionality (HOS) and the lowest percentage of early apoptotic sperm (Annexin-V). However, acrosome membrane integrity (PSA) of E5 had the lowest mean (P<0.05), whereas E2.5 caused a small nonsignificant decrease (69.1 ± 1.4%) compared to E0 and F0. In conclusion, 2.5 mM encapsulated GSH in semen extender significantly improved the quality of frozen-thawed bull sperm.
Collapse
Affiliation(s)
- Touba Nadri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Armin Towhidi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Gholamhossein Riazi
- Department of Biochemistry, Institute of Biochemistry and biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dariush Gholami
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
20
|
Liu Q, Wu B, Li M, Huang Y, Li L. Heterostructures Made of Upconversion Nanoparticles and Metal-Organic Frameworks for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103911. [PMID: 34791801 PMCID: PMC8787403 DOI: 10.1002/advs.202103911] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Indexed: 05/02/2023]
Abstract
Heterostructure nanoparticles (NPs), constructed by two single-component NPs with distinct nature and multifunctional properties, have attracted intensive interest in the past few years. Among them, heterostructures made of upconversion NPs (UCNPs) and metal-organic frameworks (MOFs) can not only integrate the advantageous characteristics (e.g., porosity, structural regularity) of MOFs with unique upconverted optical features of UCNPs, but also induce cooperative properties not observed either for single component due to their special optical or electronic communications. Recently, diverse UCNP-MOF heterostructures are designed and synthesized via different strategies and have demonstrated appealing potential for applications in biosensing and imaging, drug delivery, and photodynamic therapy (PDT). In this review, the synthesis strategies of UCNP-MOF heterostructures are first summarized, then the authors focus mainly on discussion of their biomedical applications, particularly as PDT agents for cancer treatment. Finally, the authors briefly outlook the current challenges and future perspectives of UCNP-MOF hybrid nanocomposites. The authors believe that this review will provide comprehensive understanding and inspirations toward recent advances of UCNP-MOF heterostructures.
Collapse
Affiliation(s)
- Qing Liu
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| | - Mengyuan Li
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Yuanyu Huang
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
21
|
Barati M, Darvishi B, Javidi MA, Mohammadian A, Shariatpanahi SP, Eisavand MR, Madjid Ansari A. Cellular stress response to extremely low-frequency electromagnetic fields (ELF-EMF): An explanation for controversial effects of ELF-EMF on apoptosis. Cell Prolif 2021; 54:e13154. [PMID: 34741480 PMCID: PMC8666288 DOI: 10.1111/cpr.13154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Impaired apoptosis is one of the hallmarks of cancer, and almost all of the non‐surgical approaches of eradicating tumour cells somehow promote induction of apoptosis. Indeed, numerous studies have stated that non‐ionizing non‐thermal extremely low‐frequency magnetic fields (ELF‐MF) can modulate the induction of apoptosis in exposed cells; however, much controversy exists in observations. When cells are exposed to ELF‐EMF alone, very low or no statistically significant changes in apoptosis are observed. Contrarily, exposure to ELF‐EMF in the presence of a co‐stressor, including a chemotherapeutic agent or ionizing radiation, can either potentiate or inhibit apoptotic effects of the co‐stressor. In our idea, the main point neglected in interpreting these discrepancies is “the cellular stress responses” of cells following ELF‐EMF exposure and its interplay with apoptosis. The main purpose of the current review was to outline the triangle of ELF‐EMF, the cellular stress response of cells and apoptosis and to interpret and unify discrepancies in results based on it. Therefore, initially, we will describe studies performed on identifying the effect of ELF‐EMF on induction/inhibition of apoptosis and enumerate proposed pathways through which ELF‐EMF exposure may affect apoptosis; then, we will explain cellular stress response and cues for its induction in response to ELF‐EMF exposure; and finally, we will explain why such controversies have been observed by different investigators.
Collapse
Affiliation(s)
- Mojdeh Barati
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ali Mohammadian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Eisavand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
23
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
24
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
25
|
Park SY, Kim JT, Park ES, Hwang YS, Yoon HR, Baek KE, Jung H, Yoon SR, Kim BY, Cho HJ, Lee HG. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol Rep 2021; 45:6. [PMID: 33655336 PMCID: PMC7877015 DOI: 10.3892/or.2021.7957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is an effective treatment against various types of cancer, but some radiation‑resistant cancer cells remain a major therapeutic obstacle; thus, understanding radiation resistance mechanisms is essential for cancer treatment. In this study, we established radiation‑resistant colon cancer cell lines and examined the radiation‑induced genetic changes associated with radiation resistance. Using RNA‑sequencing analysis, collapsin response mediator protein 4 (<em>CRMP4</em>) was identified as the candidate gene associated with radiation sensitivity. When cells were exposed to radiation, intracellular Ca2+ influx, collapse of mitochondrial membrane potential, and cytochrome c release into the cytosol were increased, followed by apoptosis induction. Radiation treatment‑ or Ca2+ ionophore A23187‑induced apoptosis was significantly inhibited in <em>CRMP4</em>‑deficient cells, including radiation‑resistant or <em>CRMP4</em>‑shRNA cell lines. Furthermore, treatment of <em>CRMP4</em>‑deficient cells with low levels (<5 µM) of BAPTA‑AM, a Ca2+ chelator, resulted in radiation resistance. Conversely, Ca2+ deficiency induced by a high BAPTA‑AM concentration (>10 µM) resulted in higher cell death in the <em>CRMP4</em>‑depleted cells compared to <em>CRMP4</em>‑expressing control cells. Our results suggest that <em>CRMP4</em> plays an important role in Ca2+‑mediated cell death pathways under radiation exposure and that CRMP4 may be a therapeutical target for colon cancer treatment.
Collapse
Affiliation(s)
- Sang Yoon Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun Sun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence to: Dr Hee Gu Lee or Dr Hee Jun Cho, Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail: , E-mail:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Correspondence to: Dr Hee Gu Lee or Dr Hee Jun Cho, Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail: , E-mail:
| |
Collapse
|
26
|
Molani Gol R, Kheirouri S. The Effects of Quercetin on the Apoptosis of Human Breast Cancer Cell Lines MCF-7 and MDA-MB-231: A Systematic Review. Nutr Cancer 2021; 74:405-422. [PMID: 33682528 DOI: 10.1080/01635581.2021.1897631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This systematic review was performed with a focus on the effects of quercetin (QT) on the human breast cancer cell lines MCF-7 and MDA-MB-231. PubMed, Scopus, Science Direct, and Google Scholar databases were searched up to May 2020 using relevant keywords. All articles written in English evaluating the effects of QT on the human breast cancer cell lines MCF-7 and/or MDA-MB-231 were eligible for the review. Totally, 31 articles were included in this review. Out of them, 23 studies investigated the effects of QT on MCF-7 cells and indicated that QT induces apoptosis in the cells. Of 15 studies that examined the effects of QT on MDA-MB-231 cells, 14 reports showed successful apoptosis. It is concluded that QT might be beneficial in the eliminating of breast cancer cells. However, further clinical trials are warranted to further verify these outcomes.
Collapse
Affiliation(s)
- Roghayeh Molani Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Luo R, Xia Y. Fluorescent Cadmium Sulfide Supraparticles: One-Step In situ Self-Assembly Fabrication and Cationic Surfactant Chain Length-Dependent Mitochondria Targeting Capacity. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Juvêncio da Silva L, Dias Barroso FD, Vieira LS, Carlos Mota DR, da Silva Firmino BK, Rocha da Silva C, de Farias Cabral VP, Cândido TM, Sá LGDAV, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, de Moraes MO, Júnior HVN, de Andrade Neto JB. Diazepam's antifungal activity in fluconazole-resistant Candida spp. and biofilm inhibition in C. albicans: evaluation of the relationship with the proteins ALS3 and SAP5. J Med Microbiol 2021; 70. [PMID: 33560202 DOI: 10.1099/jmm.0.001308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Candida spp. has been highlighted as one of the main etiological agents causing fungal infections, with Candida albicans being the most prominent, responsible for most cases of candidemia. Due to its capacity for invasion and tissue adhesion, it is associated with the formation of biofilms, mainly in the environment and hospital devices, decreasing the effectiveness of available treatments. The repositioning of drugs, which is characterized by the use of drugs already on the market for other purposes, together with molecular-docking methods can be used aiming at the faster development of new antifungals to combat micro-organisms. This study aimed to evaluate the antifungal effect of diazepam on mature C. albicans biofilms in vitro and its action on biofilm in formation, as well as its mechanism of action and interaction with structures related to the adhesion of C. albicans, ALS3 and SAP5. To determine the MIC, the broth microdilution test was used according to protocol M27-A3 (CLSI, 2008). In vitro biofilm formation tests were performed using 96-well plates, followed by molecular-docking protocols to analyse the binding agent interaction with ALS3 and SAP5 targets. The results indicate that diazepam has antimicrobial activity against planktonic cells of Candida spp. and C. albicans biofilms, interacting with important virulence factors related to biofilm formation (ALS3 and SAP5). In addition, treatment with diazepam triggered a series of events in C. albicans cells, such as loss of membrane integrity, mitochondrial depolarization and increased production of EROs, causing DNA damage and consequent cell apoptosis.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Cecília Rocha da Silva
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago Mesquita Cândido
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jacilene Silva
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group for Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Bruno Coelho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
29
|
Lv C, Larbi A, Memon S, Liang J, Fu X, Wu G, Quan G. The Effects of Antifreeze Protein III Supplementation on the Cryosurvival of Goat Spermatozoa During Cryopreservation. Biopreserv Biobank 2021; 19:298-305. [PMID: 33524297 DOI: 10.1089/bio.2020.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antifreeze protein (AFP) has been shown to have beneficial effects on frozen mammalian spermatozoa. However, rare reports have been published regarding the use of AFPs in storage of goat spermatozoa. The aim of this study was to investigate the effects of AFPIII on the quality of goat semen during cryopreservation. Ejaculates were collected from six Yunshang black goats through an artificial vagina. The collected semen was pooled, divided into five aliquots, and diluted with the commercial bull semen extender containing: no AFPIII (AFP-0, control), 1 μg/mL AFPIII (AFP-1), 10 μg/mL AFPIII (AFP-10), 50 μg/mL AFPIII (AFP-50), and 100 μg/mL AFPIII (AFP-100), respectively. Spermatozoa motility, membrane integrity, acrosome integrity, mitochondrial function, distribution of phosphatidylserine, and formation of reactive oxygen species (ROS) were measured after the freezing and thawing process. The results showed that the spermatozoa motility, membrane integrity, acrosome integrity, and mitochondrial function were significantly higher in frozen spermatozoa using the extender containing 1 μg/mL AFPIII as compared with the other groups (p < 0.05). Furthermore, the extender supplemented with 1 μg/mL of AFPIII resulted in higher viable and lower nonviable spermatozoa compared with the other treated groups (p < 0.05), after staining using Annexin V-fluoresceine isothiocyanate (Annexin V-FITC) and Propidium Iodide. No significant differences were found between these groups in relation to viable cells with lower ROS production. In conclusion, the addition of AFPIII to the freezing extender improved the post-thaw quality of goat semen. The optimal concentration used in this study was 1 μg/mL. However, excessively high concentrations of AFPIII were unable to exhibit their cryoprotective effects on goat spermatozoa. However, the presence of AFPIII cannot mitigate oxidative stress caused by the freezing and thawing process. In addition, in vitro fertilization or artificial insemination can further evaluate the effects of AFPIII on frozen-thawed goat spermatozoa.
Collapse
Affiliation(s)
- Chunrong Lv
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China.,Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Allai Larbi
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Sameeullah Memon
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiachong Liang
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China.,Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China.,Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Guobo Quan
- Department of Small Ruminant Research, Yunnan Animal Science and Veterinary Institute, Kunming, China.,Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| |
Collapse
|
30
|
Afsharirad T, Tahmasvand R, Amini M, Daraei B, Salimi M. Two novel anticancer compounds with minimum cardiotoxic property. BMC Pharmacol Toxicol 2020; 21:79. [PMID: 33213519 PMCID: PMC7678303 DOI: 10.1186/s40360-020-00457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. METHODS Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. RESULTS MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 μM) at 24 and 48 h. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. CONCLUSIONS Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.
Collapse
Affiliation(s)
- Tayebeh Afsharirad
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran
| | - Raheleh Tahmasvand
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Teharn, Iran
| | - Bahram Daraei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran.
| |
Collapse
|
31
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
32
|
Ahmed H, Jahan S, Riaz M, Khan BT, Ijaz MU. Epigallocatechin-3-gallate (EGCG) addition as an antioxidant in a cryo-diluent media improves microscopic parameters, and fertility potential, and alleviates oxidative stress parameters of buffalo spermatozoa. Cryobiology 2020; 97:101-109. [PMID: 33010294 DOI: 10.1016/j.cryobiol.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
The disparity between the endogenous antioxidants concentration and free radicals in spermatozoa results in reactive oxygen species (ROS) generation. In this prospect, epigallocatechin-3-gallate (EGCG) preserves vigorous antioxidant features. Current study explored the influence of EGCG in a cryo-diluent media on microscopic parameters, oxidative stress parameters, and fertility potential of buffalo spermatozoa during cryopreservation. Concisely, collected semen from three donor bulls for four times were then evaluated for volume, motility, concentrations and then dilution in a cryo-diluent media with different concentrations of EGCG (EGCG-0 = control; EGCG-50 = 50 μM, EGCG-100 = 100 μM, EGCG-200 = 200 μM, and EGCG-300 = 300 μM) at 37 °C, cooled to 4 °C in 2 h, equilibrated for 4 h at 4 °C, and cryopreserved. At post-thawing, Computer-Assisted Sperm motion Analysis motilities (total and progressive, %) and rapid velocity (%), plasma membrane functionality, supravital plasma membrane integrity, and mitochondrial potential (%) were found higher (P < 0.05) in EGCG-200, and EGCG-300 than control, whereas average-path, straight-line, and curved-linear velocities (μm/sec), and acrosome integrity (%) were recorded higher in EGCG-300 than control. Further, comet length (μm), and tail length (μm), LPO (lipid peroxidation, μM/mL), and apoptosis-like changes (%) in spermatozoa were significantly decreased in EGCG-300 than control. Seminal plasma antioxidant enzymes activities (glutathione peroxidase, U/mL, and superoxide dismutase, U/mL) were increased with EGCG-300 than control. Moreover, EGCG-300 addition in a cryo-diluent media improves the fertility potential (%) of buffalo spermatozoa. In a nutshell, the inclusion of EGCG-300 in a cryo-diluent media enhances post-thaw microscopic parameters, and fertility potential, whereas decreases oxidative stress parameters in buffalo spermatozoa.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa (KP), Pakistan; Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Bakht Tarin Khan
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa (KP), Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
33
|
Mitochondrial Transfer by Human Mesenchymal Stromal Cells Ameliorates Hepatocyte Lipid Load in a Mouse Model of NASH. Biomedicines 2020; 8:biomedicines8090350. [PMID: 32937969 PMCID: PMC7554948 DOI: 10.3390/biomedicines8090350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC) transplantation ameliorated hepatic lipid load; tissue inflammation; and fibrosis in rodent animal models of non-alcoholic steatohepatitis (NASH) by as yet largely unknown mechanism(s). In a mouse model of NASH; we transplanted bone marrow-derived MSCs into the livers; which were analyzed one week thereafter. Combined metabolomic and proteomic data were applied to weighted gene correlation network analysis (WGCNA) and subsequent identification of key drivers. Livers were analyzed histologically and biochemically. The mechanisms of MSC action on hepatocyte lipid accumulation were studied in co-cultures of hepatocytes and MSCs by quantitative image analysis and immunocytochemistry. WGCNA and key driver analysis revealed that NASH caused the impairment of central carbon; amino acid; and lipid metabolism associated with mitochondrial and peroxisomal dysfunction; which was reversed by MSC treatment. MSC improved hepatic lipid metabolism and tissue homeostasis. In co-cultures of hepatocytes and MSCs; the decrease of lipid load was associated with the transfer of mitochondria from the MSCs to the hepatocytes via tunneling nanotubes (TNTs). Hence; MSCs may ameliorate lipid load and tissue perturbance by the donation of mitochondria to the hepatocytes. Thereby; they may provide oxidative capacity for lipid breakdown and thus promote recovery from NASH-induced metabolic impairment and tissue injury.
Collapse
|
34
|
Pagano N, Longobardi V, De Canditiis C, Zuchegna C, Romano A, Michal Andrzej K, Pero ME, Gasparrini B. Effect of caspase inhibitor Z-VAD-FMK on bovine sperm cryotolerance. Reprod Domest Anim 2020; 55:530-536. [PMID: 31985871 DOI: 10.1111/rda.13648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the treatment of bovine semen with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), before or after freezing on semen quality. After the initial assessment, sperm from 4 bulls were pooled (Experiment 1) and cryopreserved in BioXcell containing 0, 20 and 100 μM Z-VAD-FMK. After thawing semen viability, motility, membrane integrity, as well as DNA fragmentation and ΔΨm were evaluated. In Experiment 2, bovine frozen/thawed sperm were incubated for 1 hr with 0, 20 and 100 µM Z-VAD-FMK before assessing the semen quality. The treatment with Z -VAD-FMK before cryopreservation improved post-thawing sperm motility compared to the control group (p < .05), while no differences were recorded in sperm viability and membrane integrity among groups (on average 86.8 ± 1.5 and 69.1 ± 1.4, respectively). Interestingly, at the highest concentration, DNA fragmentation decreased (p < .05), while the percentage of spermatozoa with high ΔΨm increased (p < .05). The results of Experiment 2 showed that 1-hr treatment with Z-VAD-FMK did not affect sperm motility and viability (on average 63.4 ± 5.8 and 83.7.1 ± 1.2, respectively). However, Z-VAD-FMK improved sperm membrane integrity (p < .05) and at the highest concentration tested decreased the proportion of sperm showing DNA fragmentation (p < .05). No differences were recorded in the percentage of spermatozoa with high ΔΨm (on average 57.0 ± 11.4). In conclusion, the treatment with 100 µM of the caspase inhibitor Z-VAD-FMK before freezing increased bovine sperm mass motility and ΔΨm, while decreasing sperm DNA fragmentation. Treatment of semen after thawing with 100 µM Z-VAD-FMK improved sperm membrane integrity and reduced DNA fragmentation.
Collapse
Affiliation(s)
- Nunzia Pagano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Valentina Longobardi
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Carolina De Canditiis
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | | | - Kosior Michal Andrzej
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Maria Elena Pero
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
35
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
36
|
The protective effect of cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway. Biomed Pharmacother 2020; 124:109834. [PMID: 31978767 DOI: 10.1016/j.biopha.2020.109834] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Cerebral ischemia is a common refractory brain disease, resulting from a reduction in the blood flow to the brain. Mitochondrial dysfunction leads to ischemic stroke and brain injury. Cordyceps sinensis (CS) is an important traditional Chinese medicine, which has been linked to neuroprotection in recent studies. In this study, we investigated the role of the mitochondrial respiratory chain and the mitochondrial apoptotic pathway on the protective effect of Cordyceps sinensis extract (CSE) against cerebral ischemia injury both in vivo and in vitro. In a murine middle cerebral artery occlusion (MCAO) model, administration of CSE relieved neuronal morphological damage and attenuated the neuronal apoptosis. CSE also reduced neurobehavioral scores and oxygen free radical (OFR), while improving the levels of ATP, cytochrome c oxidase (COX), and mitochondrial complexes I-IV. Furthermore, the mRNA expression of Bax, cytochrome c (Cyt c) and caspase-3 were down-regulated. In brain microvascular endothelial cells (BMECs) exposed to oxygen and glucose deprivation (OGD), CSE prevented OGD-induced cellular apoptosis, and recovered the reduction of mitochondrial membrane potential (MMP). Moreover, CSE treatment induced an increase of Bcl-2 protein expression and a decrease of Bax, Cyt c and caspase-3 protein expression. Meanwhile, the caspase-3, -8, and -9 activities were also inhibited. The results indicate that CSE can relieve cerebral ischemia injury and exhibit protective effects via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway.
Collapse
|
37
|
Guo X, Wu H, Miao W, Wu Y, Hao E, Jiao L. Mitochondria-targeted porphyrin-based photosensitizers containing triphenylphosphonium cations showing efficient in vitro photodynamic therapy effects. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Subcellular organelle-targeted photosensitizers have recently reported to be effective photodynamic therapy (PDT) agents. In this work, three porphyrin-derived photosensitizers, containing one, two or four triphenylphosphonium targeting groups, were synthesized and characterized by NMR, HRMS, UV-vis and fluorescence spectroscopy. These photosensitizers showed similar photophysical properties to classical porphyrins and exhibited excellent [Formula: see text]O[Formula: see text] quantum yields in acetonitrile. Subcellular colocalization indicated that all three photosensitizers specifically stain the mitochondria of HeLa cells. Photosensitizer mito-dp, containing two triphenylphosphonium cations was found to be the most uptaken by cells and exhibited the best PDT effect with an effective phototoxicity (IC[Formula: see text] (light) [Formula: see text] 12.4 nM), suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Wei Miao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yangchun Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
38
|
Potential of Thai Herbal Extracts on Lung Cancer Treatment by Inducing Apoptosis and Synergizing Chemotherapy. Molecules 2020; 25:molecules25010231. [PMID: 31935933 PMCID: PMC6983161 DOI: 10.3390/molecules25010231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
The incidence of lung cancer has increased while the mortality rate has continued to remain high. Effective treatment of this disease is the key to survival. Therefore, this study is a necessity in continuing research into new effective treatments. In this study we determined the effects of three different Thai herbs on lung cancer. Bridelia ovata, Croton oblongifolius, and Erythrophleum succirubrum were extracted by ethyl acetate and 50% ethanol. The cytotoxicity was tested with A549 lung cancer cell line. We found four effective extracts that exhibited toxic effects on A549 cells. These extracts included ethyl acetate extracts of B. ovata (BEA), C. oblongifolius (CEA), and E. succirubrum (EEA), and an ethanolic extract of E. succirubrum (EE). Moreover, these effective extracts were tested in combination with chemotherapeutic drugs. An effective synergism of these treatments was found specifically through a combination of BEA with methotrexate, EE with methotrexate, and EE with etoposide. Apoptotic cell death was induced in A549 cells by these effective extracts via the mitochondria-mediated pathway. Additionally, we established primary lung cancer and normal epithelial cells from lung tissue of lung cancer patients. The cytotoxicity results showed that EE had significant potential to be used for lung cancer treatment. In conclusion, the four effective extracts possessed anticancer effects on lung cancer. The most effective extract was found to be E. succirubrum (EE).
Collapse
|
39
|
Mao Z, Zhang Y, Lu N, Cheng S, Hong R, Liu QH. Carbon Nanotubes Enabling Highly Efficient Cell Apoptosis by Low-Intensity Nanosecond Electric Pulses via Perturbing Calcium Handling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904047. [PMID: 31799810 DOI: 10.1002/smll.201904047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Effective induction of targeted cancer cells apoptosis with minimum side effects has always been the primary objective for anti-tumor therapy. In this study, carbon nanotubes (CNTs) are employed for their unique ability to target tumors and amplify the localized electric field due to the high aspect ratio. Highly efficient and cancer cell specific apoptosis is finally achieved by combining carbon nanotubes with low intensity nanosecond electric pulses (nsEPs). The underlying mechanism may be as follows: the electric field produced by nsEPs is amplified by CNTs, causing an enhanced plasma membrane permeabilization and Ca2+ influx, simultaneously triggering Ca2+ release from intracellular storages to cytoplasm in a direct/indirect manner. All the changes above lead to excessive mitochondrial Ca2+ uptake. Substructural damage and obvious mitochondria membrane potential depolarization are caused subsequently with the combined action of numerously reactive oxygen species production, ultimately initiating the apoptotic process through the translocation of cytochrome c to the cytoplasm and activating apoptotic markers including caspase-9 and -3. Thus, the combination of nanosecond electric field with carbon nanotubes can actually promote HCT116 cell death via mitochondrial signaling pathway-mediated cell apoptosis. These results may provide a new and highly efficient strategy for cancer therapy.
Collapse
Affiliation(s)
- Zheng Mao
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Nan Lu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Shun Cheng
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Ronghan Hong
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Qing Huo Liu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
40
|
Trisolini L, Gambacorta N, Gorgoglione R, Montaruli M, Laera L, Colella F, Volpicella M, De Grassi A, Pierri CL. FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an Ancient Function. J Clin Med 2019; 8:jcm8122117. [PMID: 31810296 PMCID: PMC6947548 DOI: 10.3390/jcm8122117] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Flavoprotein oxidoreductases are members of a large protein family of specialized dehydrogenases, which include type II NADH dehydrogenase, pyridine nucleotide-disulphide oxidoreductases, ferredoxin-NAD+ reductases, NADH oxidases, and NADH peroxidases, playing a crucial role in the metabolism of several prokaryotes and eukaryotes. Although several studies have been performed on single members or protein subgroups of flavoprotein oxidoreductases, a comprehensive analysis on structure-function relationships among the different members and subgroups of this great dehydrogenase family is still missing. Here, we present a structural comparative analysis showing that the investigated flavoprotein oxidoreductases have a highly similar overall structure, although the investigated dehydrogenases are quite different in functional annotations and global amino acid composition. The different functional annotation is ascribed to their participation in species-specific metabolic pathways based on the same biochemical reaction, i.e., the oxidation of specific cofactors, like NADH and FADH2. Notably, the performed comparative analysis sheds light on conserved sequence features that reflect very similar oxidation mechanisms, conserved among flavoprotein oxidoreductases belonging to phylogenetically distant species, as the bacterial type II NADH dehydrogenases and the mammalian apoptosis-inducing factor protein, until now retained as unique protein entities in Bacteria/Fungi or Animals, respectively. Furthermore, the presented computational analyses will allow consideration of FAD/NADH oxidoreductases as a possible target of new small molecules to be used as modulators of mitochondrial respiration for patients affected by rare diseases or cancer showing mitochondrial dysfunction, or antibiotics for treating bacterial/fungal/protista infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna De Grassi
- Correspondence: (A.D.G.); or (C.L.P.); Tel.: +39-080-544-3614 (A.D.G. & C.L.P.); Fax: +39-080-544-2770 (A.D.G. & C.L.P.)
| | - Ciro Leonardo Pierri
- Correspondence: (A.D.G.); or (C.L.P.); Tel.: +39-080-544-3614 (A.D.G. & C.L.P.); Fax: +39-080-544-2770 (A.D.G. & C.L.P.)
| |
Collapse
|
41
|
Mehaisen GMK, Partyka A, Ligocka Z, Niżański W. Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Anim Reprod Sci 2019; 212:106238. [PMID: 31864488 DOI: 10.1016/j.anireprosci.2019.106238] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) and free radicals are one of the major detrimental factors that can negatively affect the quality of sperm during cryopreservation. Melatonin is an effective antioxidant and free radical scavenger in various cells. In this study, therefore, the aim was to evaluate the post-thawed quality of spermatozoa after cryopreservation of rooster semen in freezing extender supplemented with melatonin. Semen samples from seven Green-legged Partridge roosters were pooled and diluted with EK extender supplemented with 10-3, 10-6, or 10-9 M melatonin (control sample was prepared without supplementation with melatonin), and the pooled sample was subjected to cryopreservation. Post-thawed sperm motility was determined using the IVOS system, whereas plasma membrane status, acrosome integrity, mitochondrial activity, lipid peroxidation, chromatin status, and apoptotic-like changes were determined using fluorochromes and flow cytometry. Results, indicate post-thaw motile sperm cell count was greater (P < 0.05) in the frozen samples supplemented with melatonin (10-3 and 10-6 M) than the control sample. Although no significant differences were observed in post-thawed acrosomal integrity, plasma membrane integrity and mitochondrial activity were greater (P < 0.05) in samples frozen with melatonin (10-3 and 10-6 M) than that of the control sample. In addition, with supplementation of melatonin there was a decrease (P < 0.05) in the amount of lipid peroxidation, DNA fragmentation, and apoptotic-like changes after thawing. These results indicate there is a positive effect of melatonin supplementation in rooster semen freezing extenders on post-thaw sperm quality.
Collapse
Affiliation(s)
- Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamaa Street, 12613, Giza, Egypt.
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland.
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland
| |
Collapse
|
42
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Tsai IJ, Lin WC, Yang YH, Tseng YL, Lin YH, Chou CH, Tsau YK. High Concentration of C5a-Induced Mitochondria-Dependent Apoptosis in Murine Kidney Endothelial Cells. Int J Mol Sci 2019; 20:ijms20184465. [PMID: 31510052 PMCID: PMC6770645 DOI: 10.3390/ijms20184465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with a relapse of idiopathic nephrotic syndrome have significantly increased levels of serum complement component 5a (C5a), and proteinuria has been noted in mice treated with C5a via changes in permeability of kidney endothelial cells (KECs) in established animal models. However, the apoptosis of KECs treated with high concentrations of C5a has also been observed. As mitochondrial damage is known to be important in cell apoptosis, the aim of this study was to examine the association between C5a-induced mouse KEC apoptosis and mitochondrial damage. Mouse KECs were isolated and treated with different concentrations of C5a. Cell viability assays showed that a high-concentration mouse recombinant protein C5a (rmC5a) treatment reduced mouse KEC growth. Cell cycle phase analysis, including apoptosis (sub-G1 phase) showed an increased percentage of the subG1 phase with a high-concentration rmC5a treatment. Cytochrome c and caspase 3/9 activities were significantly induced in the mouse KECs after a high-dose rmC5a (50 ng/mL) treatment, and this was rescued by pretreatment with the C5a receptor (C5aR) inhibitor (W-54011) and N-acetylcysteine (NAC). Reactive oxygen species (ROS) formation was detected in C5a-treated mouse KECs; however, W-54011 or NAC pretreatment inhibited high-dose rmC5a-induced ROS formation and also reduced cytochrome c release, apoptotic cell formation, and apoptotic DNA fragmentation. These factors determined the apoptosis of mouse KECs treated with high-dose C5a through C5aR and subsequently led to apoptosis via ROS regeneration and cytochrome c release. The results showed that high concentrations of C5a induced mouse KEC apoptosis via a C5aR/ROS/mitochondria-dependent pathway. These findings may shed light on the potential mechanism of glomerular sclerosis, a process in idiopathic nephrotic syndrome causing renal function impairment.
Collapse
Affiliation(s)
- I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yu-Lin Tseng
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yong-Kwei Tsau
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
44
|
Mahmoud NN, Abu-Dahab R, Hamadneh LA, Abuarqoub D, Jafar H, Khalil EA. Insights into the Cellular Uptake, Cytotoxicity, and Cellular Death Modality of Phospholipid-Coated Gold Nanorods toward Breast Cancer Cell Lines. Mol Pharm 2019; 16:4149-4164. [PMID: 31398052 DOI: 10.1021/acs.molpharmaceut.9b00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanorods (GNRs) have gained pronounced recognition in the diagnosis and treatment of cancers driven by their distinctive properties. Herein, a gold-based nanosystem was prepared by utilizing a phospholipid moiety linked to thiolated polyethylene glycol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG-SH, as a surface decorating agent. The synthesized phospholipid-PEG-GNRs displayed good colloidal stability upon exposure to the tissue culture medium. Cytotoxicity of phospholipid-PEG-GNRs was investigated toward MCF-7 and T47D breast cancer cells using sulforhodamine B test. The results revealed that phospholipid-PEG-GNRs demonstrated high cytotoxicity to MCF-7 cells compared to T47D cells, and minimal cytotoxicity to human dermal fibroblasts. The cellular uptake studies performed by imaging and quantitative analysis demonstrated massive internalization of phospholipid-coated GNRs into MCF-7 cells in comparison to T47D cells. The cellular death modality of cancer cells after treatment with phospholipid-PEG-GNRs was evaluated using mitochondrial membrane potential assay (JC-1 dye), gene expression analysis, and flow cytometry study. The overall results suggest that phospholipid-modified GNRs enhanced mainly the cellular apoptotic events in MCF-7 cells in addition to necrosis, whereas cellular necrosis and suppression of cellular invasion contributed to the cellular death modality in the T47D cell line upon treatment with phospholipid-PEG-GNRs. The phospholipid-coated GNRs interact in a different manner with breast cancer cell lines and could be considered for breast cancer treatment.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman 11733 , Jordan
| | | | - Lama A Hamadneh
- Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman 11733 , Jordan
| | | | | | | |
Collapse
|
45
|
Lv C, Larbi A, Wu G, Hong Q, Quan G. Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with resveratrol. Anim Reprod Sci 2019; 208:106127. [PMID: 31405456 DOI: 10.1016/j.anireprosci.2019.106127] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023]
Abstract
The purpose of the current study was to evaluate the effects of resveratrol (RSV) on the quality of frozen-thawed goat sperm. Semen samples from four bucks were divided into five aliquots and diluted with a commercial bull semen extender containing: no antioxidant (RSV-0, control), 10 μM RSV (RSV-10), 50 μM RSV (RSV-50), 100 μM RSV (RSV-100) and 250 μM RSV (RSV-250). After thawing, sperm motility, abnormal morphology, membrane and acrosome integrity, mitochondrial activity, phosphatidylserine (PS) distribution, and oxidative stress were evaluated. The results indicated that in comparison with the control, when the concentration of RSV was 10 or 50 μM, the total motility, progressive motility, membrane and acrosome integrity, and mitochondrial activity of post-thaw spermatozoa was greater (P < 0.05). Additionally, the use of extenders containing RSV-10 or RSV-50 resulted in a greater percentage of viable spermatozoa as compared to the other groups (P < 0.05). Importantly, there were more viable spermatozoa (49.61 ± 0.61%) and less non-viable spermatozoa (49.16 ± 1.01%) in the RSV-50 group compared to the other extenders (P < 0.05). Furthermore, the use of the extenders containing RSV-10 and -50 resulted in a reduction in ROS production in frozen-thawed spermatozoa as compared to the control (P < 0.05). There, however, was no difference among extenders for abnormal morphology and PS distribution. In conclusion, supplementation with RSV, at a concentration of 10 or 50 μM in the semen extender, can improve the post-thaw goat sperm quality, which may occur as a consequence of inhibition of ROS generation.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong county, Kunming city, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming city, China.
| |
Collapse
|
46
|
Halczy-Kowalik L, Drozd A, Stachowska E, Drozd R, Żabski T, Domagała W. Fatty acids distribution and content in oral squamous cell carcinoma tissue and its adjacent microenvironment. PLoS One 2019; 14:e0218246. [PMID: 31242216 PMCID: PMC6594603 DOI: 10.1371/journal.pone.0218246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Squamous cell carcinoma of the oral cavity mucosa grows under conditions of poor oxygenation and nutrient scarcity. Reprogramming of lipid biosynthesis accompanies tumor growth, but the conditions under which it occurs are not fully understood. The fatty acid content of the serum, tumor tissue and adjacent tumor microenvironment was measured by gas chromatography in 30 patients with squamous cell carcinoma grade 1-3. Twenty-five fatty acids were identified; their frequencies and percentages in each of the environments were assessed. Nineteen of the twenty-five fatty acids were found in tumor tissue, tumor adjacent tissue and blood serum. Of them, 8 were found in all thirty patients. Percentages of C16:0 and C18:1n9 were highest in the tumor, C18:1n9 and C16:0 were highest in tumor adjacent tissue, and C16:0 and C18:0 were highest in blood serum. The frequencies and amounts of C22:1n13, C22:4n6, C22:5n3 and C24:1 in tumor adjacent tissues were higher than those in blood serum, independent of the tumor grade. The correlations between the amount of fatty acid and tumor grade were the strongest in tumor adjacent tissues. The correlations between particular fatty acids were most prevalent for grade 1+2 tumors and were strongest for grade 3 tumors. In the adjacent tumor microenvironment, lipogenesis was controlled by C22:6w3. In blood serum, C18:1trans11 limited the synthesis of long-chain fatty acids. Our research reveals intensive lipid changes in oral cavity SCC adjacent to the tumor microenvironment and blood serum of the patients. Increase in percentage of some of the FAs in the path: blood serum-tumor adjacent microenvironment-tumor, and it is dependent on tumor grade. This dependency is the most visible in the tumor adjacent environment.
Collapse
Affiliation(s)
- Ludmiła Halczy-Kowalik
- Clinic of Maxillofacial Surgery, Pomeranian Medical University, Szczecin, Poland
- * E-mail:
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Radosław Drozd
- Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology, Szczecin, Poland
| | - Tomasz Żabski
- Clinic of Maxillofacial Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Wenancjusz Domagała
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
47
|
Agbas A, Krishnamurthy P, Michaelis ML, Michaelis EK. Mitochondrial Electron Transfer Cascade Enzyme Activity Assessment in Cultured Neurons and Select Brain Regions. CURRENT PROTOCOLS IN TOXICOLOGY 2019; 80:e73. [PMID: 30951613 PMCID: PMC6585421 DOI: 10.1002/cptx.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Measurement of the electron transfer cascade (ETC) enzyme activities and their kinetic profiles is important in assessing mitochondrial function in the nervous system in health and disease or following exposure to toxic agents. The optimization of enzymatic assays for brain tissues and neurons is critical to the development of high-throughput assay formats. This article describes a step-by-step protocol for reliable and reproducible assessment of ETC enzyme kinetics (Complex I-IV) for mitochondria from small quantities of tissue from different brain regions, such as the hippocampus, cerebellum, and frontal cortex, or from neurons in culture. Methods for differential and density gradient centrifugation are detailed for isolating cell body and synaptic mitochondria from brain, as well as measurement of ETC activities in microwell plate or single-cuvette format using spectrophotometric methods. Easy-to follow assay layouts and useful tips are presented, allowing the user to perform these assays in under 3 hr. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Abdulbaki Agbas
- Department of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, Missouri
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Mary L. Michaelis
- Higuchi Biosciences Center and University of Kansas Alzheimer’s Disease Center, Lawrence, Kansas
| | - Elias K. Michaelis
- Higuchi Biosciences Center and University of Kansas Alzheimer’s Disease Center, Lawrence, Kansas
| |
Collapse
|
48
|
Kumar N, Kaushal R, Chaudhary A, Arora S, Awasthi P. Titanium based mixed ligand complexes: Synthesis, spectroscopic and in vitro antiproliferative studies. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1569690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Govt Degree College Jukhala District Bilaspur, Himachal Pradesh -174033, India
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh -177005, India
| | - Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh -177005, India
| | - Ashun Chaudhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab -143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab -143005, India
| | - Pamita Awasthi
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh -177005, India
| |
Collapse
|
49
|
Zhang Q, Chen K, Wu T, Song H. Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 23:21-28. [PMID: 30627006 PMCID: PMC6315090 DOI: 10.4196/kjpp.2019.23.1.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
Abstract
Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride (CCl4)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a CCl4 group, a CCl4+STM 100 mg/kg group, and a CCl4+STM 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% CCl4 twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of TGF-β1, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the CCl4 group. The levels of Bax and cleaved caspase-3 proteins, and TGF-β1, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the CCl4 group. In addition, STM markedly abrogated the repression of Bcl-2 by CCl4. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated CCl4-induced hepatocyte apoptosis in rats.
Collapse
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Kang Chen
- Department of Pharmacy, Huanggang Central Hospital, Huanggang 438000, China
| | - Tao Wu
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongping Song
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Midazolam and Dexmedetomidine Affect Neuroglioma and Lung Carcinoma Cell Biology In Vitro and In Vivo. Anesthesiology 2018; 129:1000-1014. [DOI: 10.1097/aln.0000000000002401] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Several factors within the perioperative period may influence postoperative metastatic spread. Dexmedetomidine and midazolam are widely used general anesthetics during surgery. The authors assessed their effects on human lung carcinoma (A549) and neuroglioma (H4) cell lines in vitro and in vivo.
Methods
Cell proliferation and migration were measured after dexmedetomidine (0.001 to 10 nM) or midazolam (0.01 to 400 μM) treatment. Expression of cell cycle and apoptosis markers were assessed by immunofluorescence. Mitochondrial membrane potential and reactive oxygen species were measured by JC-1 staining and flow cytometry. Antagonists atipamezole and flumazenil were used to study anesthetic mechanisms of action. Tumor burden after anesthetic treatment was investigated with a mouse xenograft model of lung carcinoma.
Results
Dexmedetomidine (1 nM) promoted cell proliferation (2.9-fold in A549 and 2-fold in H4 cells vs. vehicle, P < 0.0001; n = 6), migration (2.2-fold in A549 and 1.9-fold in H4 cells vs. vehicle, P < 0.0001; n = 6), and upregulated antiapoptotic proteins in vitro. In contrast, midazolam (400 μM) suppressed cancer cell migration (2.6-fold in A549 cells, P < 0.0001; n = 4), induced apoptosis via the intrinsic mitochondrial pathway, decreased mitochondrial membrane potential, and increased reactive oxygen species expression in vitro—effects partly attributable to peripheral benzodiazepine receptor activation. Furthermore, midazolam significantly reduced tumor burden in mice (1.7-fold vs. control; P < 0.05; n = 6 per group).
Conclusions
Midazolam possesses antitumorigenic properties partly mediated by the peripheral benzodiazepine receptor, whereas dexmedetomidine promotes cancer cell survival through signaling via the α2-adrenoceptor in lung carcinoma and neuroglioma cells.
Collapse
|