1
|
Gao J, Sun X, Ma Y, Qin W, Li J, Jin Z, Qiu J, Zhang H. Myotube formation on micropatterns guiding by centripetal cellular motility and crowding. Mater Today Bio 2024; 28:101195. [PMID: 39205872 PMCID: PMC11357802 DOI: 10.1016/j.mtbio.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The physical microenvironment, including substrate rigidity and topology, impacts myoblast differentiation and myotube maturation. However, the interplay effect and physical mechanism of mechanical stimuli on myotube formation is poorly understood. In this study, we utilized elastic substrates, microcontact patterning technique, and particle image velocimetry to investigate the effect of substrate rigidity and topological constraints on myoblast behaviors. Our findings suggested the interplay of substrate stiffness and cellular confinement improved the myotube formation by inducing centripetal cellular motility. These results shed light on the impact of the topological substrate on myoblast differentiation and emphasize the critical role of asymmetrical cell motility during this process, which is highly correlated with cell movement and crowding. Our research provides insights into the intricate interplay between substrate properties, cell motility, and myotube formation during myogenesis. Understanding these mechanisms could trigger tissue engineering strategies and therapies to enhance muscle regeneration and function.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Xiang Sun
- Department of Stomatology, The First Hospital of Yulin, Yulin, 719000, China
| | - Yanning Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Jin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Zuolin Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Jun Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| | - Hao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
2
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 2020; 104:81-92. [PMID: 32063453 DOI: 10.1016/j.semcdb.2020.02.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.
Collapse
|
4
|
Rollins KS, Hopkins TD, Butenas AL, Felice KP, Ade CJ, Copp SW. Cyclooxygenase inhibition does not impact the pressor response during static or dynamic mechanoreflex activation in healthy decerebrate rats. Am J Physiol Regul Integr Comp Physiol 2019; 317:R369-R378. [PMID: 31241976 DOI: 10.1152/ajpregu.00080.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Passive limb movement and limb muscle stretch in humans and animals are common experimental strategies used to investigate activation of the muscle mechanoreflex independent of contraction-induced metabolite production. Cyclooxygenase (COX) metabolites, however, are produced by skeletal muscle stretch in vitro and have been found to impact various models of mechanoreflex activation. Whether COX metabolites influence the decerebrate rat triceps surae muscle stretch mechanoreflex model remains unknown. We examined the effect of rat triceps surae muscle stretch on the interstitial concentration of the COX metabolite prostaglandin E2 (PGE2). Interstitial PGE2 concentration was increased above baseline values by 4 min of both static (38% increase, P = 0.01) and dynamic (56% increase, P < 0.01) triceps surae muscle stretch (n = 10). The 4-min protocol was required to collect enough microdialysis fluid for PGE2 detection. The finding that skeletal muscle stretch in vivo was capable of producing COX metabolites prompted the hypothesis that intra-arterial administration of the COX inhibitor indomethacin (1 mg/kg) would reduce the pressor and cardioaccelerator responses evoked during 30 s (the duration most commonly used in the rat mechanoreflex model) of static and dynamic rat triceps surae muscle stretch. We found that indomethacin had no effect (P > 0.05, n = 9) on the pressor or cardioaccelerator response during 30 s of either static or dynamic stretch. We conclude that, despite the possibility of increased COX metabolite concentration, COX metabolites do not activate or sensitize thin-fiber muscle afferents stimulated during 30 s of static or dynamic hindlimb skeletal muscle stretch in healthy rats.
Collapse
Affiliation(s)
- Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tyler D Hopkins
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Alec L Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Kennedy P Felice
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
5
|
Mitchell CJ, D'Souza RF, Figueiredo VC, Chan A, Aasen K, Durainayagam B, Mitchell S, Sinclair AJ, Egner IM, Raastad T, Cameron-Smith D, Markworth JF. Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial. J Appl Physiol (1985) 2018; 124:1080-1091. [DOI: 10.1152/japplphysiol.01100.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.
Collapse
Affiliation(s)
| | | | - Vandre C. Figueiredo
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alex Chan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Kirsten Aasen
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Sarah Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - James F. Markworth
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
De Souza EO, Lowery RP, Wilson JM, Sharp MH, Mobley CB, Fox CD, Lopez HL, Shields KA, Rauch JT, Healy JC, Thompson RM, Ormes JA, Joy JM, Roberts MD. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations. PLoS One 2016; 11:e0155153. [PMID: 27182886 PMCID: PMC4868363 DOI: 10.1371/journal.pone.0155153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
Background The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Methods Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Results Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Conclusions Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.
Collapse
Affiliation(s)
- Eduardo O De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Ryan P Lowery
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Jacob M Wilson
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Matthew H Sharp
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Christopher Brooks Mobley
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Carlton D Fox
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Hector L Lopez
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH, 44224, United States of America
| | - Kevin A Shields
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Jacob T Rauch
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - James C Healy
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Richard M Thompson
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Jacob A Ormes
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Jordan M Joy
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States of America
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
7
|
Cremers NAJ, Suttorp M, Gerritsen MM, Wong RJ, van Run-van Breda C, van Dam GM, Brouwer KM, Kuijpers-Jagtman AM, Carels CEL, Lundvig DMS, Wagener FADTG. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair. Front Med (Lausanne) 2015; 2:86. [PMID: 26697429 PMCID: PMC4678194 DOI: 10.3389/fmed.2015.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/24/2015] [Indexed: 01/11/2023] Open
Abstract
Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with burns.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands ; Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Maarten Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Marlous M Gerritsen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| | - Coby van Run-van Breda
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen , Groningen , Netherlands
| | - Katrien M Brouwer
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, MOVE Research Institute Amsterdam , Amsterdam , Netherlands ; Association of Dutch Burn Centers , Beverwijk , Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Cleft Palate Craniofacial Center, Radboud University Medical Center , Nijmegen , Netherlands
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| |
Collapse
|
8
|
Abstract
In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators, including NO and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and, very importantly, can offset local sympathetic vasoconstriction. Adenosine triphosphate is released into plasma from erythrocytes and endothelial cells, and the plasma concentration increases in both the feed artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine, and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells and endothelial cells. In the interstitium, both ATP and adenosine stimulate the formation of NO and prostaglandins, but ATP has also been suggested to induce vasoconstriction and stimulate afferent nerves that signal to increase sympathetic nerve activity. Adenosine has been shown to contribute to exercise hyperaemia, whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation.
Collapse
Affiliation(s)
- Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Bengt Saltin
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Murrant CL, Dodd JD, Foster AJ, Inch KA, Muckle FR, Ruiz DA, Simpson JA, Scholl JHP. Prostaglandins induce vasodilatation of the microvasculature during muscle contraction and induce vasodilatation independent of adenosine. J Physiol 2014; 592:1267-81. [PMID: 24469074 DOI: 10.1113/jphysiol.2013.264259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood flow data from contracting muscle in humans indicates that adenosine (ADO) stimulates the production of nitric oxide (NO) and vasodilating prostaglandins (PG) to produce arteriolar vasodilatation in a redundant fashion such that when one is inhibited the other can compensate. We sought to determine whether these redundant mechanisms are employed at the microvascular level. First, we determined whether PGs were involved in active hyperaemia at the microvascular level. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of 2A arterioles (maximum diameter 40 μm, third arteriolar level up from the capillaries) at a site of overlap with the stimulated muscle fibres before and after 2 min of contraction [stimulus frequencies: 4, 20 and 60 Hz at 15 contractions per minute (CPM) or contraction frequencies of 6, 15 or 60 CPM at 20 Hz; 250 ms train duration]. Muscle fibres were stimulated in the absence and presence of the phospholipase A2 inhibitor quinacrine. Further, we applied a range of concentrations of ADO (10(-7)-10(-5) M) extraluminally, (to mimic muscle contraction) in the absence and presence of L-NAME (NO synthase inhibitor), indomethacin (INDO, cyclooxygenase inhibitor) and L-NAME + INDO and observed the response of 2A arterioles. We repeated the latter experiment on a different level of the cremaster microvasculature (1A arterioles) and on the microvasculature of a different skeletal muscle (gluteus maximus, 2A arterioles). We observed that quinacrine inhibited vasodilatation during muscle contraction at intermediate and high contraction frequencies (15 and 60 CPM). L-NAME, INDO and L-NAME + INDO were not effective at inhibiting vasodilatation induced by any concentration of ADO tested in 2A and 1A arterioles in the cremaster muscle or 2A arterioles in the gluteus maximus muscle. Our data show that PGs are involved in the vasodilatation of the microvasculature in response to muscle contraction but did not obtain evidence that extraluminal ADO causes vasodilatation through NO or PG or both. Thus, we propose that PG-induced microvascular vasodilation during exercise is independent of ADO.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nedergaard A, Henriksen K, Karsdal MA, Christiansen C. Musculoskeletal ageing and primary prevention. Best Pract Res Clin Obstet Gynaecol 2013; 27:673-88. [PMID: 23891483 DOI: 10.1016/j.bpobgyn.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
Loss of musculoskeletal mass and function is a natural ageing trait, reinforced by an unhealthy life style. Loss of bone (osteoporosis) and muscle (sarcopaenia) are conditions whose prevalence are increasing because of the change in population distribution in the western world towards an older mean age. Improvements in lifestyle factors, such as diet, smoking and exercise, are the most powerful tools to combat this decline efficiently; however, public health interventions aimed at tackling these problems have shown abysmal success at the population level, mostly due to failure in compliance. With these issues in mind, we believe that the primary prevention modality in coming decades will be pharmacological. We review the basic biology of musculoskeletal ageing and what measures can be taken to prevent ageing-associated loss of musculoskeletal mass and function, with particular emphasis on pharmacological means.
Collapse
Affiliation(s)
- Anders Nedergaard
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, 2720 Herlev, Denmark; Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Building 8, Bispebjerg Bakke 23, 2400 Copenhagen NW, Denmark.
| | | | | | | |
Collapse
|
11
|
Trappe TA, Liu SZ. Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J Appl Physiol (1985) 2013; 115:909-19. [PMID: 23539318 DOI: 10.1152/japplphysiol.00061.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been ∼40 yr since the discovery that PGs are produced by exercising skeletal muscle and since the discovery that inhibition of PG synthesis is the mechanism of action of what are now known as cyclooxygenase (COX)-inhibiting drugs. Since that time, it has been established that PGs are made during and after aerobic and resistance exercise and have a potent paracrine and autocrine effect on muscle metabolism. Consequently, it has also been determined that orally consumed doses of COX inhibitors can profoundly influence muscle PG synthesis, muscle protein metabolism, and numerous other cellular processes that regulate muscle adaptations to exercise loading. Although data from acute human exercise studies, as well as animal and cell-culture data, would predict that regular consumption of a COX inhibitor during exercise training would dampen the typical muscle adaptations, the chronic data do not support this conjecture. From the studies in young and older individuals, lasting from 1.5 to 4 mo, no interfering effects of COX inhibitors on muscle adaptations to resistance-exercise training have been noted. In fact, in older individuals, a substantial enhancement of muscle mass and strength has been observed. The collective findings of the PG/COX-pathway regulation of skeletal muscle responses and adaptations to exercise are compelling. Considering the discoveries in other areas of COX regulation of health and disease, there is certainly an interesting future of investigation in this re-emerging area, especially as it pertains to older individuals and the condition of sarcopenia, as well as exercise training and performance of individuals of all ages.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | |
Collapse
|
12
|
Markworth JF, Cameron-Smith D. Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway. Am J Physiol Cell Physiol 2013; 304:C56-67. [DOI: 10.1152/ajpcell.00038.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) is the metabolic precursor to a diverse range of downstream bioactive lipid mediators. A positive or negative influence of individual eicosanoid species [e.g., prostaglandins (PGs), leukotrienes, and hydroxyeicosatetraenoic acids] has been implicated in skeletal muscle cell growth and development. The collective role of AA-derived metabolites in physiological states of skeletal muscle growth/atrophy remains unclear. The present study aimed to determine the direct effect of free AA supplementation and subsequent eicosanoid biosynthesis on skeletal myocyte growth in vitro . C2C12 (mouse) skeletal myocytes induced to differentiate with supplemental AA exhibited dose-dependent increases in the size, myonuclear content, and protein accretion of developing myotubes, independent of changes in cell density or the rate/extent of myogenic differentiation. Nonselective (indomethacin) or cyclooxygenase 2 (COX-2)-selective (NS-398) nonsteroidal anti-inflammatory drugs blunted basal myogenesis, an effect that was amplified in the presence of supplemental free AA substrate. The stimulatory effects of AA persisted in preexisting myotubes via a COX-2-dependent (NS-389-sensitive) pathway, specifically implying dependency on downstream PG biosynthesis. AA-stimulated growth was associated with markedly increased secretion of PGF2α and PGE2; however, incubation of myocytes with PG-rich conditioned medium failed to mimic the effects of direct AA supplementation. In vitro AA supplementation stimulates PG release and skeletal muscle cell hypertrophy via a COX-2-dependent pathway.
Collapse
Affiliation(s)
- James F. Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Australia; and
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
13
|
N-acetyl-4-aminophenol and musculoskeletal adaptations to resistance exercise training. Eur J Appl Physiol 2012; 113:1127-36. [PMID: 23108581 DOI: 10.1007/s00421-012-2529-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
N-acetyl-4-aminophenol (ACET) may impair musculoskeletal adaptations to progressive resistance exercise training (PRT) by inhibiting exercise-induced muscle protein synthesis and bone formation. To test the hypothesis that ACET would diminish training-induced increases in fat-free mass (FFM) and osteogenesis, untrained men (n = 26) aged ≥50 years participated in 16 weeks of high-intensity PRT and bone-loading exercises and were randomly assigned to take ACET (1,000 mg/day) or placebo (PLAC) 2 h before each exercise session. Total body FFM was measured by DXA at baseline and week 16. Serum bone-specific alkaline phosphatase (BAP) and C-terminal crosslinks of type-I collagen (CTX) were measured at baseline and week 16. Vastus lateralis muscle biopsies were performed at baseline and weeks 3 and 16 for prostanoid, anabolic, and catabolic gene expression by RT-PCR. In exercise-compliant men (ACET, n = 10; PLAC, n = 7), the increase in FFM was not different between groups (p = 0.91). The changes in serum BAP and CTX were not different between groups (p > 0.7). There were no significant changes in any of the target genes at week 3. After 16 weeks of PRT, the mRNA expressions of the anabolic marker p70S6K (p = 0.003) and catabolic marker muscle-atrophy F-box (MAFbx) (p = 0.03) were significantly reduced as compared to baseline in ACET. The mRNA expression of the prostanoids were unchanged (all p ≥ 0.40) in both groups. The administration of ACET (1,000 mg) prior to each exercise session did not impair PRT-induced increases in FFM or significantly alter bone formation markers in middle aged and older men.
Collapse
|
14
|
Role of heme oxygenase-1 in inflammatory response induced by mechanical stretch in synovial cells. Inflamm Res 2011; 60:861-7. [DOI: 10.1007/s00011-011-0346-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/29/2011] [Accepted: 05/05/2011] [Indexed: 12/22/2022] Open
|
15
|
PETERSEN SUSANNEGERMANN, MILLER BENF, HANSEN METTE, KJAER MICHAEL, HOLM LARS. Exercise and NSAIDs. Med Sci Sports Exerc 2011; 43:425-31. [DOI: 10.1249/mss.0b013e3181f27375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Burd NA, Dickinson JM, Lemoine JK, Carroll CC, Sullivan BE, Haus JM, Jemiolo B, Trappe SW, Hughes GM, Sanders CE, Trappe TA. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans. Am J Physiol Endocrinol Metab 2010; 298:E354-61. [PMID: 19934404 PMCID: PMC2822477 DOI: 10.1152/ajpendo.00423.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 +/- 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [(2)H(5)]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 +/- 0.004 to 0.108 +/- 0.014%/h) compared with placebo (0.074 +/- 0.004 to 0.091 +/- 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 +/- 0.9-fold) compared with placebo (1.3 +/- 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.
Collapse
Affiliation(s)
- Nicholas A Burd
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dennis RG, Smith B, Philp A, Donnelly K, Baar K. Bioreactors for guiding muscle tissue growth and development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 112:39-79. [PMID: 19290497 DOI: 10.1007/978-3-540-69357-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Muscle tissue bioreactors are devices which are employed to guide and monitor the development of engineered muscle tissue. These devices have a modern history that can be traced back more than a century, because the key elements of muscle tissue bioreactors have been studied for a very long time. These include barrier isolation and culture of cells, tissues and organs after isolation from a host organism; the provision of various stimuli intended to promote growth and maintain the muscle, such as electrical and mechanical stimulation; and the provision of a perfusate such as culture media or blood derived substances. An accurate appraisal of our current progress in the development of muscle bioreactors can only be made in the context of the history of this endeavor. Modern efforts tend to focus more upon the use of computer control and the application of mechanical strain as a stimulus, as well as substrate surface modifications to induce cellular organization at the early stages of culture of isolated muscle cells.
Collapse
Affiliation(s)
- R G Dennis
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | | | | | |
Collapse
|
18
|
Yahiaoui L, Gvozdic D, Danialou G, Mack M, Petrof BJ. CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol 2008; 586:3991-4004. [PMID: 18566004 DOI: 10.1113/jphysiol.2008.152090] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chemokines have been implicated in the promotion of leucocyte trafficking to diseased muscle. The purpose of this study was to determine whether a subset of inflammatory chemokines are able to directly drive myoblast proliferation, an essential early component of muscle regeneration, in a manner which is entirely independent of leucocytes. Cultured myoblasts (C2C12) were exposed to monocyte chemoattractant protein-1 (MCP-1; CCL2), macrophage inflammatory protein-1alpha (MIP-1alpha; CCL3) or MIP-1beta (CCL4). All chemokines induced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) and greatly increased myoblast proliferative responses. Chemokine-induced myoblast proliferation was abolished by pertussis toxin and the MEK1/2 inhibitor U0126, implicating both Galphai-coupled receptors and ERK1/2-dependent signalling. Myoblasts expressed receptors for all of the chemokines tested, and mitogenic responses were specifically inhibited by antibodies directed against CC family chemokine receptors 2 and 5 (CCR2 and CCR5). Within an in vitro myogenic wound healing assay devoid of leucocytes, all chemokines significantly accelerated the time course of myoblast wound closure after mechanical injury. Injections of MCP-1 into cardiotoxin-injured skeletal muscles in vivo also suppressed expression of the differentiation marker myogenin, consistent with a mitogenic effect. Taken together, our results indicate that CC chemokines have potent and direct effects on myoblast behaviour, thus indicating a novel role in muscle repair beyond leucocyte chemoattraction. Therefore, interventions aimed at modulating the balance between myoblast and leucocyte effects of CC chemokines in injured muscle could represent a novel strategy for the treatment of destructive muscle pathologies.
Collapse
Affiliation(s)
- Linda Yahiaoui
- Meakins-Christie Laboratories, McGill University, 3626 St Urbain Street, Montreal, Quebec, Canada H2X 2P2
| | | | | | | | | |
Collapse
|
19
|
Dennis RG, Smith B, Philp A, Donnelly K, Baar K. Bioreactors for Guiding Muscle Tissue Growth and Development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Roberts MD, Iosia M, Kerksick CM, Taylor LW, Campbell B, Wilborn CD, Harvey T, Cooke M, Rasmussen C, Greenwood M, Wilson R, Jitomir J, Willoughby D, Kreider RB. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr 2007; 4:21. [PMID: 18045476 PMCID: PMC2217562 DOI: 10.1186/1550-2783-4-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 11/28/2007] [Indexed: 12/03/2022] Open
Abstract
Background To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males. Methods In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat) ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16) or AA (AA: 1 g·day-1 AA, n = 15) while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM), leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50. Results Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content) and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression). Conclusion AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Mike Iosia
- Department of Health, Exercise Science and Secondary Education, Lee University, Cleveland, TN, USA
| | - Chad M Kerksick
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Lem W Taylor
- Department of Health, Leisure, and Exercise Science, University of West Florida, Pensacola, FL, USA
| | - Bill Campbell
- School of Physical Education and Exercise Science, University of South Florida, Tampa, FL, USA
| | - Colin D Wilborn
- Department of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Travis Harvey
- Department of Physical Education, United States Military Academy, West Point, NY, USA
| | - Matthew Cooke
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Chris Rasmussen
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Mike Greenwood
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Ronald Wilson
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Jean Jitomir
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Darryn Willoughby
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| | - Richard B Kreider
- Department of Health, Human Performance & Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
21
|
Weinheimer EM, Jemiolo B, Carroll CC, Harber MP, Haus JM, Burd NA, LeMoine JK, Trappe SW, Trappe TA. Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2241-8. [PMID: 17322116 DOI: 10.1152/ajpregu.00718.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown that ibuprofen and acetaminophen block cyclooxygenase (COX) synthesis of prostaglandin PGF2αand the muscle protein synthesis increase following resistance exercise. Confusingly, these two drugs are purported to work through different mechanisms, with acetaminophen apparently unable to block COX and ibuprofen able to nonspecifically block COX-1 and COX-2. A recently discovered intron-retaining COX, now known to have three variants, has been shown to be sensitive to both drugs. We measured the expression patterns and levels of the intron 1-retaining COX-1 variants (-1b1, -1b2, and -1b3), COX-1, and COX-2 at rest and following resistance exercise to help elucidate the COX through which PGF2α, ibuprofen, and acetaminophen regulate muscle protein synthesis. Skeletal muscle biopsy samples were taken from 16 individuals (8M, 8F) before, 4, and 24 h after a bout of resistance exercise and analyzed using real-time RT-PCR. Relatively few individuals expressed the intron 1-retaining COX-1b variants (COX-1b1, -1b2, and -1b3) at any time point, and when expressed, these variants were in very low abundance. COX-1 was the most abundant COX mRNA before exercise and remained unchanged ( P > 0.05) following exercise. COX-2 was not expressed before exercise, but increased significantly ( P < 0.05) at 4 and 24 h after exercise. The inconsistent and low levels of expression of the intron 1-retaining COX-1 variants suggest that these variants are not likely responsible for the inhibition of PGF2αproduction and skeletal muscle protein synthesis after resistance exercise by ibuprofen and acetaminophen. Skeletal muscle-specific inhibition of COX-1 or COX-2 by these drugs should be considered.
Collapse
Affiliation(s)
- E M Weinheimer
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J 2007; 21:3338-45. [PMID: 17488951 DOI: 10.1096/fj.06-7070com] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Satellite cells are stem cells that are critical for the formation and growth of skeletal muscle during myogenesis. To differentiate and fuse, proliferating satellite cells or myoblasts must migrate and establish stable cell-cell contacts. However, the factors that regulate myoblast migration and fusion are not understood completely. We have identified PGI2 as a novel regulator of myogenesis in vitro. PGI2 is a member of the family of prostaglandins (PG), autocrine/paracrine signaling molecules synthesized via the cyclooxygenase-1 and -2 pathways. Primary mouse muscle cells both secrete PGI2 and express the PGI2 receptor, IP, at various stages of myogenesis. Using genetic and pharmacological approaches, we show that PGI2 is a negative regulator of myoblast migration that also enhances cell fusion. Thus, PGI2 may act as a "brake" on migrating cells to facilitate cell-cell contact and fusion. Together, our results highlight the importance of the balance between positive and negative regulators in cell migration and myogenesis. This work may have implications for migration of other populations of adult stem cells and/or cells that undergo fusion.
Collapse
Affiliation(s)
- Brenda A Bondesen
- Emory University School of Medicine, Department of Pharmacology, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
23
|
Levy E, Fleisher-Berkovich S. Regulation of glial cyclooxygenase by bradykinin. Peptides 2007; 28:845-50. [PMID: 17316899 DOI: 10.1016/j.peptides.2007.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the short-term effect of bradykinin on the two cyclooxygenase species in neonatal rat glial cells. In spite of the fact that cyclooxygenase protein levels were not altered, an increase in cyclooxygenase activity was observed. Use of cyclooxygenase-1 inhibitors and paracetamol resulted in complete elimination of the bradykinin-induced prostaglandin E(2) synthesis and of cyclooxygenase enzyme activity. Cyclooxygenase-2 inhibitors only partially inhibited enzyme activity and prostaglandin production. Our data suggest that cyclooxygenase-1 is probably the major contributor to short-term modulation of glial prostaglandin E2 synthesis by bradykinin.
Collapse
Affiliation(s)
- Einat Levy
- Department of Clinical Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | |
Collapse
|
24
|
Hornberger TA, Esser KA. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc 2007; 63:331-5. [PMID: 15294051 DOI: 10.1079/pns2004357] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Repeated bouts of resistance exercise produce an increase in skeletal muscle mass. The accumulation of protein associated with the growth process results from a net increase in protein synthesis relative to breakdown. While the effect of resistance exercise on muscle mass has long been recognized, the mechanisms underlying the link between high-resistance contractions and the regulation of protein synthesis and breakdown are, to date, poorly understood. In the present paper skeletal muscle will be viewed as a mechanosensitive cell type and the possible mechanisms through which mechanically-induced signalling events lead to changes in rates of protein synthesis will be examined.
Collapse
Affiliation(s)
- T A Hornberger
- Muscle Biology Laboratory, School of Kinesiology (m/c 194), University of Illinois, Chicago, 901 W Roosevelt Road, Chicago, IL 60608, USA
| | | |
Collapse
|
25
|
Shen W, Prisk V, Li Y, Foster W, Huard J. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol (1985) 2006; 101:1215-21. [PMID: 16778000 DOI: 10.1152/japplphysiol.01331.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat skeletal muscle injury. However, studies have shown that NSAIDs may be detrimental to the healing process. Mediated by prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)), the cycloxygenase-2 (COX-2) pathway plays an important role in muscle healing. We hypothesize that the COX-2 pathway is important for the fusion of muscle cells and the regeneration of injured muscle. For the in vitro experiments, we isolated myogenic precursor cells from wild-type (Wt) and COX-2 gene-deficient (COX-2(-/-)) mice and examined the effect of PGE(2) and PGF(2alpha) on cell fusion. For the in vivo experiments, we created laceration injury on the tibialis anterior (TA) muscles of Wt and COX-2(-/-) mice. Five and 14 days after injury, we examined the TA muscles histologically and functionally. We found that the secondary fusion between nascent myotubes and myogenic precursor cells isolated from COX-2(-/-) mice was severely compromised compared with that of Wt controls but was restored by the addition of PGF(2alpha) or, to a lesser extent, PGE(2) to the culture. Histological and functional assessments of the TA muscles in COX-2(-/-) mice revealed decreased regeneration relative to that observed in the Wt mice. The findings reported here demonstrate that the COX-2 pathway plays an important role in muscle healing and that prostaglandins are key mediators of the COX-2 pathway. It suggests that the decision to use NSAIDs to treat muscle injuries warrants critical evaluation because NSAIDs might impair muscle healing by inhibiting the fusion of myogenic precursor cells.
Collapse
Affiliation(s)
- Wei Shen
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4100 Rangos Research Center, 3460 Fifth Ave., PA 15213-2583, USA
| | | | | | | | | |
Collapse
|
26
|
Trappe T, Raue U, Williams R, Carrithers J, Hickner R. Effects of age and resistance exercise on skeletal muscle interstitial prostaglandin F(2alpha). Prostaglandins Leukot Essent Fatty Acids 2006; 74:175-81. [PMID: 16520030 DOI: 10.1016/j.plefa.2006.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/07/2005] [Accepted: 01/07/2006] [Indexed: 02/02/2023]
Abstract
Prostaglandin (PG) F2alpha has been shown to contribute to the anabolic events in skeletal muscle. We measured the skeletal muscle interstitial concentration of PGF2alpha at rest and following a standard bout of resistance exercise in eight young (27+/-2 year) and eight old (75+/-4 year) men. Interstitial PGF2alpha concentration was determined from microdialysate samples obtained from two microdialysis probes placed in the vastus lateralis. Microdialysates were collected 1h pre- and 5-6, 8-9, and 24-25 h postexercise. The exercise bout consisted of 4 exercises (3 sets of 8 replications at 80% 1 RM per exercise) emphasizing the quadriceps. Interstitial PGF2alpha levels were not different (P>0.05) between young and old at rest (1.50+/-0.35 vs. 1.52+/-0.30 ng ml-1) or at any time point following the resistance exercise bout. For the young and old combined there was a change (P<0.05) in PGF2alpha levels at 5-6 h (93%) and 8-9 h (95%), which had returned to preexercise levels by 24-25 h. These results show that PGF2alpha is increased in skeletal muscle following a standard bout of resistance exercise and aging does not alter interstitial levels of this PG at rest or after exercise. These data, coupled with previous findings, suggest that the anabolic factor PGF2alpha should be considered when discussing the complex processes that regulate muscle mass in young and old individuals.
Collapse
Affiliation(s)
- T Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA.
| | | | | | | | | |
Collapse
|
27
|
Bondesen BA, Mills ST, Pavlath GK. The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms. Am J Physiol Cell Physiol 2006; 290:C1651-9. [PMID: 16467402 DOI: 10.1152/ajpcell.00518.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of muscle mass occurs with disease, injury, aging, and inactivity. Restoration of normal muscle mass depends on myofiber growth, the regulation of which is incompletely understood. Cyclooxygenase (COX)-2 is one of two isoforms of COX that catalyzes the synthesis of prostaglandins, paracrine hormones that regulate diverse physiological and pathophysiological processes. Previously, we demonstrated that the COX-2 pathway regulates early stages of myofiber growth during muscle regeneration. However, whether the COX-2 pathway plays a common role in adult myofiber growth or functions specifically during muscle regeneration is unknown. Therefore, we examined the role of COX-2 during myofiber growth following atrophy in mice. Muscle atrophy was induced by hindlimb suspension (HS) for 2 wk, followed by a reloading period, during which mice were treated with either the COX-2-selective inhibitor SC-236 (6 mg x kg(-1) x day(-1)) or vehicle. COX-2 protein was expressed and SC-236 attenuated myofiber growth during reloading in both soleus and plantaris muscles. Attenuated myofiber growth in the soleus was associated with both decreased myonuclear addition and decreased inflammation, whereas neither of these processes mediated the effects of SC-236 on plantaris growth. In addition, COX-2(-/-) satellite cells exhibited impaired activation/proliferation in vitro, suggesting direct regulation of muscle cell activity by COX-2. Together, these data suggest that the COX-2 pathway plays a common regulatory role during various types of muscle growth via multiple mechanisms.
Collapse
Affiliation(s)
- Brenda A Bondesen
- Emory Univ. School of Medicine, Dept. of Pharmacology, O. W. Rollins Research Bldg., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
28
|
Amma H, Naruse K, Ishiguro N, Sokabe M. Involvement of reactive oxygen species in cyclic stretch-induced NF-kappaB activation in human fibroblast cells. Br J Pharmacol 2006; 145:364-73. [PMID: 15778740 PMCID: PMC1576145 DOI: 10.1038/sj.bjp.0706182] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Uniaxial cyclic stretch leads to an upregulation of cyclooxygenase (COX)-2 through increases in the intracellular Ca(2+) concentration via the stretch-activated (SA) channel and following nuclear factor kappa B (NF-kappaB) activation in human fibroblasts. However, the signaling mechanism as to how the elevated Ca(2+) activates NF-kappaB is unknown. In this study, we examined the involvement of reactive oxygen species (ROS) as an intermediate signal, which links the elevated Ca(2+) with NF-kappaB activation. 2 4-Hydroxy-2-nonenal (HNE) was produced and modified IkappaB peaking at 2 min. The phosphorylation of IkappaB peaked at 8 min. HNE modification and IkappaB phosphorylation, NF-kappaB translocation to the nucleus, and following COX-2 production were inhibited by extracellular Ca(2+) removal or Gd(3+) application, as well as by the antioxidants. The stretch-induced Ca(2+) increase was inhibited by extracellular Ca(2+) removal, or Gd(3+) application. 3 IkappaB kinase (IKK) activity peaked at 4 min, which was inhibited by extracellular Ca(2+) removal, Gd(3+) or the antioxidants. IKK was also HNE-modified and, similarly to IkappaB, peaked at 2 min. IKK under static conditions was activated by exogenously applied HNE at a relatively low dose (1 microM), while it was inhibited at higher concentrations, suggesting that HNE could be one of the candidate signals in the stretch-induced NF-kappaB activation. 4 The present study suggests that the NF-kappaB activation by cyclic stretch is mediated by the following signal cascade: SA channel activation --> intracellular Ca(2+) increase --> production of ROS --> activation of IKK --> phosphorylation of IkappaB --> NF-kappaB translocation to the nucleus.
Collapse
Affiliation(s)
- Hideki Amma
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Keiji Naruse
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Cell Mechanosensing Project, ICORP, JST, Nagoya 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Cell Mechanosensing Project, ICORP, JST, Nagoya 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Author for correspondence:
| |
Collapse
|
29
|
Abstract
Tissue engineering is a discipline of great promise. In some areas, such as the cornea, tissues engineered in the laboratory are already in clinical use. In other areas, where the tissue architecture is more complex, there are a number of obstacles to manoeuvre before clinically relevant tissues can be produced. However, even in areas where clinically relevant tissues are decades away, the tissues being produced at the moment provide powerful new models to aid the understanding of complex physiological processes. This article provides a personal view of the role of tissue engineering in advancing our understanding of physiology, with specific attention being paid to musculoskeletal tissues.
Collapse
Affiliation(s)
- Keith Baar
- Division of Molecular Physiology, University of Dundee, MSI/WTB Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Otis JS, Burkholder TJ, Pavlath GK. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 2005; 310:417-25. [PMID: 16168411 DOI: 10.1016/j.yexcr.2005.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 12/15/2022]
Abstract
Skeletal muscle increases in size due to weight bearing loads or passive stretch. This growth response is dependent in part upon myoblast proliferation. Although skeletal muscles are responsive to mechanical forces, the effect on myoblast proliferation remains unknown. To investigate the effects of mechanical stretch on myoblast proliferation, primary myoblasts isolated from Balb/c mice were subjected to 25% cyclical uniaxial stretch for 5 h at 0.5 Hz. Stretch stimulated myoblast proliferation by 32% and increased cell number by 41% 24 and 48 h after stretch, respectively. COX2 mRNA increased 3.5-fold immediately poststretch. Prostaglandin E2 and F2alpha increased 2.4- and 1.6-fold 6 h after stretch, respectively. Because COX2 has been implicated in regulating muscle growth and regeneration, we hypothesized that stretched myoblasts may proliferate via a COX2-dependent mechanism. We employed two different models to disrupt COX2 activity: (1) treatment with a COX2-selective drug, and (2) transgenic mice null for COX2. Treating myoblasts with a COX2-specific inhibitor blocked stretch-induced proliferation. Likewise, stretched COX2-/- myoblasts failed to proliferate compared to controls. However, supplementing stretched, COX2-/- myoblasts with prostaglandin E2 or fluprostenol increased proliferation. These data suggest that the COX2 pathway is critical for myoblast proliferation in response to stretch.
Collapse
Affiliation(s)
- Jeffrey S Otis
- Emory University School of Medicine, Department of Pharmacology, O.W. Rollins Research Building, Room 5027, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
31
|
Hatziefthimiou AA, Karetsi E, Pratzoudis E, Gourgoulianis KI, Molyvdas PA. Resting tension effect on airway smooth muscle: the involvement of epithelium. Respir Physiol Neurobiol 2005; 145:201-8. [PMID: 15705535 DOI: 10.1016/j.resp.2004.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
We studied the influence of resting tension (RT) on rabbit tracheal smooth muscle (TSM) contractions induced by acetylcholine or KCl as well as the role of epithelium and the endogenously produced nitric oxide, prostanoids and endothelin on these responses. The alteration of RT from 0.5 to 2.5 g increased the responsiveness of TSM to KCl. The presence of atropine decreased KCl-induced contractions obtained only at 2.5 g RT. The removal of epithelium increased acetylcholine-induced contractions, only at 2.5 g RT. At 0.5 g RT, the presence of L-NAME had no effect on acetylcholine-induced contractions while indomethacin decreased contractions induced by 10(-3) M acetylcholine. At 2.5 g RT, the presence of L-NAME increased acetylcholine-induced contractions while indomethacin, BQ-123 and BQ-788 had no effect. These results demonstrate that RT affects the responsiveness of TSM differentially, depending on the agonist or integrity of the epithelium. Airway epithelium modulates acetylcholine-induced contractions, only at 2.5 g RT partly via NO release. At 0.5 g RT, the endogenous production of prostanoids by sources other than epithelium modulates the contractility of TSM to acetylcholine.
Collapse
Affiliation(s)
- Apostolia A Hatziefthimiou
- Department of Physiology, Medical School, University of Thessaly, Papakiriazi 22, 41222 Larissa, Greece.
| | | | | | | | | |
Collapse
|
32
|
Bellott AC, Patel KC, Burkholder TJ. Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. J Appl Physiol (1985) 2005; 98:1554-61. [PMID: 15516368 DOI: 10.1152/japplphysiol.01070.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanotransduction is critical to the maintenance and growth of skeletal muscle, but the mechanism by which cellular deformations are converted to biochemical signals remains unclear. Among the earliest and most ubiquitous responses to mechanical stimulation is the phosphorylation and activation of mitogen-activated protein kinases, in particular ERK2. Caveolin-3 (CAV-3) binds ERK2 and its upstream activators in inactive states on the caveolae of resting muscle. Caveolae are deformed by stretch, and it was hypothesized that this deformation might disrupt the CAV-3-dependent inhibition of ERK2 to affect stretch-induced activation. Stretch-induced phosphorylation of ERK2 in myotubes was both amplitude and velocity dependent, consistent with a viscoelastic mechanism, such as deformation of caveolae. Chemical disruption of caveolae by cholesterol depletion increased ERK2 activation by up to 176%. Small interfering RNA oligomers were then used to knock down expression of CAV-3 in cultured myotubes before mechanical stimulation, with the expectation that reducing CAV-3 expression would eliminate the stretch-induced activation of ERK2. Knockdown reduced CAV-3 protein content by 55% but did not significantly alter the stretch-induced increase in ERK2 phosphorylation, suggesting that CAV-3 is not an essential element of the mechanotransduction pathway, although the limited extent of knockdown limits the strength of this conclusion.
Collapse
Affiliation(s)
- Anne Claire Bellott
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Dr., Atlanta, GA 30332-0356, USA
| | | | | |
Collapse
|
33
|
Ferré PJ, Thein E, Raymond-Letron I, Toutain PL, Lefebvre HP. Acute Changes in Muscle Blood Flow and Concomitant Muscle Damage after an Intramuscular Administration. Pharm Res 2005; 22:405-12. [PMID: 15835746 DOI: 10.1007/s11095-004-1878-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The intramuscular route (IM) is widely used but commonly induces injection site muscle damage. This study investigates the hemodynamic changes in an acute lesion induced by the IM administration of propylene glycol (PG) in rabbits. METHODS Control groups received 1, 2, or 3 ml of PG (IM). Others were pretreated with pancuronium, dantrolene, indomethacin, or SR140333 and then received 2 ml of PG. The muscle blood flow (MBF) was assessed using fluorescent microspheres before and at 15, 45, 60, 90 min, 3 and 6 h after IM administration. Different areas within the muscle damage were quantified. RESULTS Muscle contractions as well as a transient but major MBF increase were observed at the injection site. All treatments reduced hyperemia by up to 81% (dantrolene, 15 min) at 15, 45, and 90 min (p < 0.05). MBF had returned to basal values in all groups at 6 h. The central necrotic area was not modified, but peripheral damage (8.0 +/- 1.3 g) was reduced by dantrolene, indomethacin, and SR140333 (p < 0.05), but not by pancuronium. CONCLUSIONS Muscle contraction and hyperemia are not responsible for muscle damage at the injection site, which is the multifactorial phenomenon, involving intracellular calcium and inflammation.
Collapse
Affiliation(s)
- Pierre Jean Ferré
- UMR 181 Physiopathologie et Toxicologie Expérimentales INRA-ENVT, Ecole Nationale Véterinaire, BP 87614, 31076 Toulouse Cedex 03, France
| | | | | | | | | |
Collapse
|
34
|
Tsivitse SK, Mylona E, Peterson JM, Gunning WT, Pizza FX. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am J Physiol Cell Physiol 2004; 288:C721-9. [PMID: 15548571 DOI: 10.1152/ajpcell.00237.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to 1) test the hypothesis that skeletal muscle cells (myotubes) after mechanical loading and/or injury are a source of soluble factors that promote neutrophil chemotaxis and superoxide anion (O(2)(-).) production and 2) determine whether mechanical loading and/or injury causes myotubes to release cytokines that are known to influence neutrophil responses [tumor necrosis factor-alpha (TNF-alpha), IL-8, and transforming growth factor-beta1 (TGF-beta1)]. Human myotubes were grown in culture and exposed to either a cyclic strain (0, 5, 10, 20, or 30% strain) or a scrape injury protocol. Protocols of 5, 10, and 20% strain did not cause injury, whereas 30% strain and scrape injury caused a modest and a high degree of injury, respectively. Conditioned media from strained myotubes promoted chemotaxis of human blood neutrophils and primed them for O(2)(-). production in a manner that was dependent on a threshold of strain and independent from injury. Neutrophil chemotaxis, but not priming, progressively increased with higher magnitudes of strain. Conditioned media only from scrape-injured myotubes increased O(2)(-). production from neutrophils. Concentrations of IL-8 and total TGF-beta1 in conditioned media were reduced by mechanical loading, whereas TNF-alpha and active TGF-beta1 concentrations were unaffected. In conclusion, skeletal muscle cells after mechanical loading and injury are an important source of soluble factors that differentially influence neutrophil chemotaxis and the stages of neutrophil-derived reactive oxygen species production. Neutrophil responses elicited by mechanical loading, however, did not parallel changes in the release of IL-8, TGF-beta1, or TNF-alpha from skeletal muscle cells.
Collapse
Affiliation(s)
- Susan K Tsivitse
- Department of Kinesiology, University. of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
35
|
Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 2004; 380:795-804. [PMID: 15030312 PMCID: PMC1224227 DOI: 10.1042/bj20040274] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 03/13/2004] [Accepted: 03/19/2004] [Indexed: 11/17/2022]
Abstract
In response to growth factors, mTOR (mammalian target of rapamycin) has been identified as a central component of the signalling pathways that control the translational machinery and cell growth. Signalling through mTOR has also been shown to be necessary for the mechanical load-induced growth of cardiac and skeletal muscles. Although the mechanisms involved for mechanically induced activation of mTOR are not known, it has been suggested that activation of PI3K (phosphoinositide 3-kinase) and protein kinase B (Akt), via the release of locally acting growth factors, underlies this process. In the present study, we show that mechanically stimulating (passive stretch) the skeletal muscle ex vivo results in the activation of mTOR-dependent signalling events. The activation of mTOR-dependent signalling events was necessary for an increase in translational efficiency, demonstrating the physiological significance of this pathway. Using pharmacological inhibitors, we show that activation of mTOR-dependent signalling occurs through a PI3K-independent pathway. Consistent with these results, mechanically induced signalling through mTOR was not disrupted in muscles from Akt1-/- mice. In addition, ex vivo co-incubation experiments, along with in vitro conditioned-media experiments, demonstrate that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for the activation of the mTOR pathway. Taken together, our results demonstrate that mechanical stimuli can activate the mTOR pathway independent of PI3K/Akt1 and locally acting growth factors. Thus mechanical stimuli and growth factors provide distinct inputs through which mTOR co-ordinates an increase in the translational efficiency.
Collapse
Affiliation(s)
- Troy A Hornberger
- School of Kinesiology, University of Illinois at Chicago, 901 W. Roosevelt, Chicago, IL 60608, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within ∼30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.
Collapse
Affiliation(s)
- Philip S Clifford
- Department of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | |
Collapse
|
37
|
Abstract
Mechanical stimulation has been proposed as a fundamental determinant of muscle physiology. The mechanotransduction of strain and strain rate in C2C12 myoblasts were investigated utilizing a radiolabeled GTP analogue to detect stretch-induced GTP-binding protein activation. Cyclic uniaxial strains of 10% and 20% at a strain rate of 20% s(-1) rapidly (within 1 min) activated a 25-kDa GTPase (183 +/- 17% and 186 +/- 19%, respectively), while 2% strain failed to elicit a response (109 +/- 11%) relative to controls. One, five, and sixty cycles of 10% strain elicited 187 +/- 20%, 183 +/- 17%, and 276 +/- 38% increases in activation. A single 10% stretch at 20% s(-1), but not 0.3% s(-1), resulted in activation. Insulin activated the same 25-kDa band in a dose-dependent manner. Western blot analysis revealed a panel of GTP-binding proteins in C2C12 myoblasts, and tentatively identified the 25-kDa GTPase as rab5. In separate experiments, a 40-kDa protein tentatively identified as Galpha(i) was activated (240 +/- 16%) by 10% strain at 1 Hz for 15 min. These results demonstrate the rapid activation of GTP-binding proteins by mechanical strain in myoblasts in both a strain magnitude- and strain rate-dependent manner.
Collapse
Affiliation(s)
- Craig B Clark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0142, USA
| | | | | |
Collapse
|
38
|
Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch 2003; 447:247-53. [PMID: 14534791 DOI: 10.1007/s00424-003-1177-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 08/26/2003] [Indexed: 10/26/2022]
Abstract
Effects of heat stress, mechanical stretching or a combination of both on the expression of heat shock proteins (HSPs) and total protein level were studied in a culture system. Rat skeletal muscle cells (L6) were cultured on flexible-bottomed culture plates. They were subjected to one of the four following conditions: (1) 97 h incubation at 37 degrees C, (2) 1 h incubation at 41 degrees C followed by 96 h incubation at 37 degrees C, (3) 1 h incubation at 37 degrees C followed by 96 h cyclic stretching (18% of initial length, 2-s stretch and 4-s release) at 37 degrees C or (4) 1 h incubation at 41 degrees C followed by 96 h cyclic stretching at 37 degrees C. The expression of HSP72 and HSP90 and total protein was determined in the crude homogenates, supernatant and pellets. Cellular protein concentrations in the homogenates and pellets were increased by heat stress and/or mechanical stress (stretch). A cumulative effect of the combination of heating and stretch on the protein concentration in the homogenates and in the pellets was noted. The expressions of HSP72 and HSP90 in the pellets were also increased by heat stress and/or stretch. However, HSP90 in the supernatant did not change following heat stress and/or stretch. The regulation of HSP72 and HSP90 expression in skeletal muscle cells may be closely related to total protein, the abundance of which is also stimulated by mechanical and heat stresses. These observations suggest strongly that heating and passive stretch of muscle may be useful as a means of increasing muscle mass, not only in athletes but also in patients during rehabilitation.
Collapse
Affiliation(s)
- K Goto
- Department of Physiology, St. Marianna University School of Medicine, 216-8511 Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Trudel G, Jabi M, Uhthoff HK. Localized and adaptive synoviocyte proliferation characteristics in rat knee joint contractures secondary to immobility 11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil 2003; 84:1350-6. [PMID: 13680573 DOI: 10.1016/s0003-9993(03)00233-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the proliferative activity of synoviocytes in joint contracture. DESIGN Experimental controlled trial. SETTING Laboratory in vivo study. ANIMALS Adult male Sprague-Dawley rats (avg weight, 340g). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES We immobilized the knee joints of 24 rats, in 135 degrees of flexion, for up to 32 weeks. Controls were 24 sham-operated and 5 unoperated rats. On sagittal sections, synoviocytes that stained with a proliferating cell nuclear antigen antibody were counted over the anterior and posterior synovial intima. The length of the synovial intima was also measured. RESULTS The absolute number of proliferating synoviocytes decreased markedly in the posterior capsule of knee joints immobilized for more than 2 weeks (2.4+/-1.0 vs 22.7+/-7.1 at week 16, P<.05), and so did the synovial intima length (1.4+/-0.1mm vs 8.6+/-0.5mm at week 16, P<.05). No change occurred anteriorly. CONCLUSION A decreased number of proliferating synoviocytes and increased intima adhesion in the posterior capsule characterized joint contractures. The data further suggest that the synovial intima adapted to the new position of the joint. Phenomena of mechanotransduction could explain the fact that adaptations were restricted to the posterior synovial intima.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Laboratory, Department of Pathology, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
40
|
Höffner L, Nielsen JJ, Langberg H, Hellsten Y. Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium. J Physiol 2003; 550:217-25. [PMID: 12754306 PMCID: PMC2343029 DOI: 10.1113/jphysiol.2002.037051] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the present study we examined whether exercise and prostanoids have an effect on the muscle interstitial concentration of vascular endothelial growth factor (VEGF) and on the proliferative effect of muscle interstitial fluid. Dialysate from resting and exercising human skeletal muscle, obtained either during control conditions or during cyclooxygenase inhibition, was examined for its content of VEGF and for its effect on endothelial cell proliferation. Microdialysis probes with high (960 kDa) and low (5 kDa) molecular-mass cut-off membranes were placed in the vastus lateralis muscle of healthy young males. The subjects performed one-legged knee extensions (20 W). The concentration of VEGF in the 960 kDa dialysate was greater (P < 0.05) during exercise compared to at rest (67 +/- 28 vs. 230 +/- 22 pg ml-1). The rate of endothelial cell proliferation was 2.7-fold higher (P < 0.05) with the 960 kDa dialysate from resting muscle than with perfusate and was 5.8-fold higher (P < 0.05) than the perfusate value with dialysate from exercising muscle. VEGF was not enhanced with exercise in the 5 kDa dialysate, yet the exercise dialysate induced a 1.9-fold higher (P < 0.05) proliferation than the resting dialysate. Cyclooxygenase inhibition did not affect the VEGF concentration or the proliferating effect of the dialysates (P > 0.05). This study demonstrates for the first time that VEGF is present in the interstitium of human skeletal muscle and that exercise enhances the interstitial concentration of VEGF and of other, as yet unidentified, angiogenic compounds. Products of cyclooxygenase do not appear to have an effect on the release of VEGF or other proliferative agents in human skeletal muscle.
Collapse
Affiliation(s)
- Lotte Höffner
- Copenhagen Muscle Research Centre, Institute for Exercise and Sport Science, Copenhagen University, and Sports Medicine Research Unit, Bispebjerg Hospital, Denmark
| | | | | | | |
Collapse
|
41
|
Abstract
Mechanical signals are critical to the growth and maintenance of skeletal muscle, but the mechanism by which these signals are transduced by the cell remains unknown. This work examined the hypothesis that stretch conditions influence membrane permeability consistent with a role for membrane permeability in mechanotransduction. C2C12 myotubes were grown in conditions that encourage uniform alignment and subjected to uniform mechanical deformation in the presence of fluorescein labeled dextran to evaluate membrane permeability as a function of stretch amplitude and velocity. Within a physiologically relevant range of conditions, a complex interaction between the two aspects of stretch was observed, with velocity contributing most strongly at large stretch amplitudes. This suggests that membrane viscosity could contribute to mechanotransduction.
Collapse
Affiliation(s)
- Thomas J Burkholder
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA.
| |
Collapse
|
42
|
Horsley V, Pavlath GK. Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol 2003; 161:111-8. [PMID: 12695501 PMCID: PMC2172881 DOI: 10.1083/jcb.200208085] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle growth requires multiple steps to form large multinucleated muscle cells. Molecules that stimulate muscle growth may be therapeutic for muscle loss associated with aging, injury, or disease. However, few factors are known to increase muscle cell size. We demonstrate that prostaglandin F2alpha (PGF2alpha) as well as two analogues augment muscle cell size in vitro. This increased myotube size is not due to PGF2alpha-enhancing cell fusion that initially forms myotubes, but rather to PGF2alpha recruiting the fusion of cells with preexisting multinucleated cells. This growth is mediated through the PGF2alpha receptor (FP receptor). As the FP receptor can increase levels of intracellular calcium, the involvement of the calcium-regulated transcription factor nuclear factor of activated T cells (NFAT) in mediating PGF2alpha-enhanced cell growth was examined. We show that NFAT is activated by PGF2alpha, and the isoform NFATC2 is required for PGF2alpha-induced muscle cell growth and nuclear accretion, demonstrating the first intersection between prostaglandin receptor activation and NFAT signaling. Given this novel role for PGF2alpha in skeletal muscle cell growth, these studies raise caution that extended use of drugs that inhibit PG production, such as nonsteroidal antiinflammatory drugs, may be deleterious for muscle growth.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Size/drug effects
- Cell Size/genetics
- Cells, Cultured
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Dinoprost/analogs & derivatives
- Dinoprost/metabolism
- Dinoprost/pharmacology
- Growth Substances/metabolism
- Growth Substances/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Receptors, Prostaglandin/drug effects
- Receptors, Prostaglandin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Valerie Horsley
- Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Kumar A, Chaudhry I, Reid MB, Boriek AM. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 2002; 277:46493-503. [PMID: 12221078 DOI: 10.1074/jbc.m203654200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the diaphragm muscle we tested the hypothesis that MAP kinase signaling pathways are activated by mechanical stress and such signaling pathways are dependent on the direction in which mechanical stress is applied. Although equal magnitudes of mechanical stress were applied axially and transversely a greater level of activation of ERK1/2, p38, Raf-1, p90 RSK, Elk-1, and the DNA binding activity of AP-1 transcription factor was produced when the muscle was stretched transversely than when stretched axially. A significant up-regulation in protein tyrosine phosphorylation was observed in axially or transversely loaded diaphragm muscles and the activation of ERK1/2 was completely inhibited by genistein (protein-tyrosine kinase inhibitor). Pretreatment of muscles with wortmannin (phosphoinositide 3-kinase inhibitor), TMB-8 (antagonist of intracellular calcium release), GF109203X (PKC inhibitor), or PD98059 (MEK1/2 inhibitor) blocked the activation of ERK1/2 kinases in response to axial but not to transverse loading. On the other hand, pretreatment of muscles with protein kinase A inhibitors H-7 and KT5720 completely suppressed the activation of ERK1/2 in response to transverse loading only. Taken together with the alterations of MAP kinases and the findings of elevations of downstream transcription targets, our data are consistent with two distinct MAP kinase signal transduction pathways in response to mechanical stress.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
44
|
Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol Cell Physiol 2002; 283:C500-11. [PMID: 12107060 DOI: 10.1152/ajpcell.00529.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dystrophin-glycoprotein complex (DGC) is a sarcolemmal complex whose defects cause muscular dystrophies. The normal function of this complex is not clear. We have proposed that this is a signal transduction complex, signaling normal interactions with matrix laminin, and that the response is normal growth and homeostasis. If so, the complex and its signaling should be altered in other physiological states such as atrophy. The amount of some of the DGC proteins, including dystrophin, beta-dystroglycan, and alpha-sarcoglycan, is reduced significantly in rat skeletal muscle atrophy induced by tenotomy. Furthermore, H-Ras, RhoA, and Cdc42 decrease in expression levels and activities in muscle atrophy. When the small GTPases were assayed after laminin or beta-dystroglycan depletion, H-Ras, Rac1, and Cdc42 activities were reduced, suggesting a physical linkage between the DGC and the GTPases. Dominant-negative Cdc42, introduced with a retroviral vector, resulted in fibers that appeared atrophic. These data support a putative role for the DGC in transduction of mechanical signals in muscle.
Collapse
Affiliation(s)
- Priya Sethu Chockalingam
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
45
|
Correa-Meyer E, Pesce L, Guerrero C, Sznajder JI. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L883-91. [PMID: 11943650 DOI: 10.1152/ajplung.00203.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical stimuli are transduced into intracellular signals in lung alveolar epithelial cells (AEC). We studied whether mitogen-activated protein kinase (MAPK) pathways are activated during cyclic stretch of AEC. Cyclic stretch induced a rapid (within 5 min) increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in AEC. The inhibition of Na(+), L-type Ca(2+) and stretch-activated ion channels with amiloride, nifedipine, and gadolinium did not prevent the stretch-induced ERK1/2 activation. The inhibition of Grb2-SOS interaction with an SH3 binding sequence peptide, Ras with a farnesyl transferase inhibitor, and Raf-1 with forskolin did not affect the stretch-induced ERK1/2 phosphorylation. Moreover, cyclic stretch did not increase Ras activity, suggesting that stretch-induced ERK1/2 activation is independent of the classical receptor tyrosine kinase-MAPK pathway. Pertussis toxin and two specific epidermal growth factor receptor (EGFR) inhibitors (AG-1478 and PD-153035) prevented the stretch-induced ERK1/2 activation. Accordingly, in primary AEC, cyclic stretch activates ERK1/2 via G proteins and EGFR, in Na(+) and Ca(2+) influxes and Grb2-SOS-, Ras-, and Raf-1-independent pathways.
Collapse
Affiliation(s)
- Eduardo Correa-Meyer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
46
|
Hernández J, Astudillo H, Escalante B. Angiotensin II stimulates cyclooxygenase-2 mRNA expression in renal tissue from rats with kidney failure. Am J Physiol Renal Physiol 2002; 282:F592-8. [PMID: 11880319 DOI: 10.1152/ajprenal.00194.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown increased cyclooxygenase-2 (COX-2) expression in rats with kidney failure. Increased angiotensin II concentration, hypertension, and renal mass reduction have been described during development of kidney failure. Thus we explored each of these mechanisms, because any one of them could be responsible for COX-2 induction. Kidney failure increased systolic blood pressure from 104 +/- 5 to 138 +/- 2 mmHg, urinary PGE(2) from 74 +/- 17 to 185 +/- 25 ng/24 h, and COX-2 expression from 0.06 +/- 0.04 to 0.17 +/- 0.03 arbitraty units (AU). Treatment of the rats with ramipril or losartan prevented the increase in blood pressure, urinary PGE(2), and COX-2 expression in the rats with kidney failure. Infusion of angiotensin II increased blood pressure from 101 +/- 6 to 132 +/- 6 mm Hg, urinary PGE(2) excretion from 62 +/- 15 to 155 +/- 17 ng/24 h, and COX-2 expression from 0.23 +/- 0.01 to 1.6 +/- 0.3 AU. When the angiotensin II-infused rats were treated with nitrendipine, blood pressure decreased from 132 +/- 6 to 115 +/- 2 mm Hg, and urinary PGE(2) excretion decreased from 152 +/- 18 to 97 +/- 12 ng/24 h, whereas COX-2 expression was 1.6 +/- 0.7 and 1.7 +/- 0.5 AU for rats with and without nitrendipine. Blood pressure of the rats with renal pole resection was similar to that in sham rats (97 +/- 7 and 91 +/- 4 mmHg, respectively), whereas COX-2 expression was increased in rats with renal pole resection, from 0.06 +/- 0.04 to 0.12 +/- 0.03 AU. We suggest that in kidney failure, the increase in angiotensin II concentration regulates COX-2 expression, thereby increasing prostaglandin synthesis, which contributes to the development of kidney failure.
Collapse
|
47
|
Inoh H, Ishiguro N, Sawazaki SI, Amma H, Miyazu M, Iwata H, Sokabe M, Naruse K. Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor kappaB in human fibroblast cells. FASEB J 2002; 16:405-7. [PMID: 11790721 DOI: 10.1096/fj.01-0354fje] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of uni-axial cyclic mechanical stretch on the activation of the transcription factor nuclear factor kappaB (NF-kappaB) was investigated in a human fibroblast cell line (TIG-1). In response to uni-axial cyclic stretch, NF-kappaB was found to be translocated into the nucleus. The NF-kappaB was first detectable 2 min after the onset of stretch and then peaked at 4 min and returned to the basal level within 10 min. To investigate whether NF-kappaB is activated following the translocation into the nucleus, we measured the luciferase activity in the cells transfected with pNF-kappaB-luciferase. The activity of luciferase increased 4 min after the initiation of cyclic stretch, peaked at 15 min (6.4-fold increase), and decreased gradually. We examined the involvement of the stretch-activated (SA) channel in the stretch-induced NF-kappaB activation. The application of Gd3+, a blocker of the SA channel, or the removal of extracellular Ca2+ inhibited both the translocation into the nucleus and the activation of NF-kB, which suggests that NF-kappaB is activated by uni-axial cyclic stretch via SA channel activation in human lung fibroblasts.
Collapse
Affiliation(s)
- Hidefumi Inoh
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Cell Mechano-sensing Project, ICORP, JST, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
de Bold AJ, Ma KKY, Zhang Y, de Bold MLK, Bensimon M, Khoshbaten A. The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-038] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under physiological conditions, the endocrine heart contributes to the maintenance of cardiovascular homeostasis through the polypeptide hormones ANF and BNP, which are members of the natriuretic peptide (NP) family. Given that NPs are of interest from the basic and clinical points of view, the genetic expression and secretion of ANF and BNP as well as the nature of the interaction of these hormones with their receptors has been the subject of extensive studies since the discovery of ANF in 1980. Following hemodynamic overload, increased secretion of NPs by the heart can be seen. This change may occur without an increase in gene expression as observed for atrial NPs following acute volume expansion, or it can occur with an increase in both ANF and BNP gene expression in atria only as seen in mineralocorticoid escape during which it is obvious that a critical decrease in hormone stores must be reached before transcriptional activation occurs. Chronic hemodynamic pressure or volume overload results in increased expression of NPs in atria and ventricles. Under these circumstances, the increased production of BNP by hypertrophic ventricles changes the normal plasma concentration ratio of ANF to BNP, a fact that has clinical diagnostic and prognostic implications. There are exceptions to this rule: chronic, severe L-NAME hypertension, which may occur without left ventricular hypertrophy, does not cause this effect and increased ventricular NP gene expression can occur in mineralocorticoid hypertension before detectable ventricular hypertrophy. Atrial and ventricular NP gene expression appears to be under different transcriptional control because pharmacological treatments such as chronic ACE inhibition or ETA receptor blockade can reverse the increased ventricular NP expression but has no detectable effect on atrial NP gene expression. This is not unlike the myosin heavy chain switch that is observed in certain pathologies, and can be pharmacologically reversed in a manner similar to NPs in the ventricles but it does not occur in atrial muscle. These observations made in vivo or using isolated adult atria often differ strikingly from results obtained using the mixed phenotype afforded by cardiocytes in culture, indicating that the kinds of questions addressed by each approach must be judiciously chosen. G-protein coupled receptor-mediated actions of neurohumors such as endothelin and phenylephrine are normally used to stimulate NP gene expression and release in different in vitro models. The main physiological stimulus for increased ANF release, atrial muscle stretch, also appears to rely on G-protein-coupled mechanisms. Alternative agonists and receptor types at play are suggested by the finding that circulating levels of BNP are selectively increased before and during overt cardiac allograft rejection episodes in human patients. The data suggest that enhanced BNP plasma levels could form a basis for a noninvasive test for cardiac allograft rejection. However, the molecular mechanism by which expression of NPs are regulated in the transplanted heart is not well understood. Conditioned medium from mixed lymphocyte reaction cultures, considered an in vitro model of transplantation immunity, induces specific upregulation of BNP as do individual pro-inflammatory cytokines. Findings such as these suggest that the study of NPs will continue to produce a wealth of information relevant to basic and clinical scientists.Key words: atrial natriuretic factor, hypertension, hypertrophy, heart failure, cytokines.
Collapse
|
49
|
Kemp TJ, Sadusky TJ, Simon M, Brown R, Eastwood M, Sassoon DA, Coulton GR. Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics 2001; 72:260-71. [PMID: 11401441 DOI: 10.1006/geno.2000.6461] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is able to respond to a range of stimuli, including stretch and increased load, by increasing in diameter and length in the absence of myofiber division. This type of cellular growth (hypertrophy) is a highly complex process involving division of muscle precursor cells (myoblasts) and their fusion to existing muscle fibers as well as increased protein synthesis and decreased protein degradation. Underlying the alterations in protein levels are increases in a range of specific mRNAs including those coding for structural proteins and proteins that regulate the hypertrophic process. Seven days of passive stretch in vivo of tibialis anterior (TA) muscle has been shown to elicit muscle hypertrophy. We have identified a cDNA corresponding to an mRNA that exhibits increased expression in response to 7 days of passive stretch imposed on TA muscles in vivo. This 944-bp novel murine transcript is expressed primarily in cardiac and skeletal muscle and to a lesser extent in brain. Translation of the transcript revealed an open reading frame of 85 amino acids encoding a nuclear localization signal and two overlapping casein kinase II phosphorylation sites. This gene has been called "small muscle protein (X chromosome)" (Smpx; HGMW-approved human gene symbol SMPX) and we hypothesize that it plays a role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Differentiation/genetics
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Immunohistochemistry
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Porins/genetics
- Porins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Specific Pathogen-Free Organisms
- Stress, Mechanical
- Tissue Distribution
- X Chromosome/genetics
Collapse
Affiliation(s)
- T J Kemp
- Molecular Pathology, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
MURAKAMI S, HOMMA K, ATOMI Y. Dynamic Response to Mechanical Stimulation in Myoblasts. ACTA ACUST UNITED AC 2001. [DOI: 10.1299/jsmec.44.920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sayuri MURAKAMI
- Department of Mechanical and Control Engineering, The University of Electro-Communications
| | - Kyoji HOMMA
- Department of Mechanical and Control Engineering, The University of Electro-Communications
| | - Yoriko ATOMI
- Department of Life Science, The University of Tokyo
| |
Collapse
|