1
|
Subhan F, Zizzo MG, Serio R. Motor dysfunction of the gut in Duchenne muscular dystrophy: A review. Neurogastroenterol Motil 2024; 36:e14804. [PMID: 38651673 DOI: 10.1111/nmo.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Duchenne's muscular dystrophy (DMD) is a severe type of hereditary, neuromuscular disorder caused by a mutation in the dystrophin gene resulting in the absence or production of truncated dystrophin protein. Conventionally, clinical descriptions of the disorder focus principally on striated muscle defects; however, DMD manifestations involving gastrointestinal (GI) smooth muscle have been reported, even if not rigorously studied. PURPOSE The objective of the present review is to offer a comprehensive perspective on the existing knowledge concerning GI manifestations in DMD, focusing the attention on evidence in DMD patients and mdx mice. This includes an assessment of symptomatology, etiological pathways, and potential corrective approaches. This paper could provide helpful information about DMD gastrointestinal implications that could serve as a valuable orientation for prospective research endeavors in this field. This manuscript emphasizes the effectiveness of mdx mice, a DMD animal model, in unraveling mechanistic insights and exploring the pathological alterations in the GI tract. The gastrointestinal consequences evident in patients with DMD and the mdx mice models are a significant area of focus for researchers. The exploration of this area in depth could facilitate the development of more efficient therapeutic approaches and improve the well-being of individuals impacted by the condition.
Collapse
Affiliation(s)
- Fazal Subhan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| |
Collapse
|
2
|
Foong D, Liyanage L, Zhou J, Zarrouk A, Ho V, O'Connor MD. Single-cell RNA sequencing predicts motility networks in purified human gastric interstitial cells of Cajal. Neurogastroenterol Motil 2022; 34:e14303. [PMID: 34913225 DOI: 10.1111/nmo.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gastrointestinal (GI) motility disorders affect millions of people worldwide, yet they remain poorly treated in part due to insufficient knowledge of the molecular networks controlling GI motility. Interstitial cells of Cajal (ICC) are critical GI pacemaker cells, and abnormalities in ICC are implicated in GI motility disorders. Two cell surface proteins, KIT and ANO1, are used for identifying ICC. However, difficulties accessing human tissue and the low frequency of ICC in GI tissues have meant human ICC are insufficiently characterized. Here, a range of characterization assays including single-cell RNA sequencing (scRNA-seq) was performed using KIT+ CD45- CD11B- primary human gastric ICC to better understand networks controlling human ICC biology. METHODS Excess sleeve gastrectomy tissues were dissected; ICC were analyzed by immunofluorescence, fluorescence-activated cell sorting (FACSorting), real-time PCR, mass spectrometry, and scRNA-seq. KEY RESULTS Immunofluorescence identified ANO1+ /KIT+ cells throughout the gastric muscle. Compared to the FACSorted negative cells, PCR showed the KIT+ CD45- CD11B- ICC were enriched 28-fold in ANO1 expression (p < 0.01). scRNA-seq analysis of the KIT- CD45+ CD11B+ and KIT+ CD45- CD11B- ICC revealed separate clusters of immune cells and ICC (respectively); cells in the ICC cluster expressed critical GI motility genes (eg, CAV1 and PRKG1). The scRNA-seq data for these two cell clusters predicted protein interaction networks consistent with immune cell and ICC biology, respectively. CONCLUSIONS & INFERENCES The single-cell transcriptome of purified KIT+ CD45- CD11B- human gastric ICC presented here provides new molecular insights and hypotheses into evolving models of GI motility. This knowledge will provide an improved framework to investigate targeted therapies for GI motility disorders.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Liwan Liyanage
- School of Computing, Data and Mathematical Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ali Zarrouk
- Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Campbelltown Private Hospital, Campbelltown, New South Wales, Australia
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
3
|
Investigating the Potential for Sulforaphane to Attenuate Gastrointestinal Dysfunction in mdx Dystrophic Mice. Nutrients 2021; 13:nu13124559. [PMID: 34960110 PMCID: PMC8706299 DOI: 10.3390/nu13124559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal (GI) dysfunction is an important, yet understudied condition associated with Duchenne muscular dystrophy (DMD), with patients reporting bloating, diarrhea, and general discomfort, contributing to a reduced quality of life. In the mdx mouse, the most commonly used mouse model of DMD, studies have confirmed GI dysfunction (reported as altered contractility and GI transit through the small and large intestine), associated with increased local and systemic inflammation. Sulforaphane (SFN) is a natural isothiocyanate with anti-inflammatory and anti-oxidative properties via its activation of Nrf2 signalling that has been shown to improve aspects of the skeletal muscle pathology in dystrophic mice. Whether SFN can similarly improve GI function in muscular dystrophy was unknown. Video imaging and spatiotemporal mapping to assess gastrointestinal contractions in isolated colon preparations from mdx and C57BL/10 mice revealed that SFN reduced contraction frequency when administered ex vivo, demonstrating its therapeutic potential to improve GI function in DMD. To confirm this in vivo, four-week-old male C57BL/10 and mdx mice received vehicle (2% DMSO/corn oil) or SFN (2 mg/kg in 2% DMSO/corn oil) via daily oral gavage five days/week for 4 weeks. SFN administration reduced fibrosis in the diaphragm of mdx mice but did not affect other pathological markers. Gene and protein analysis revealed no change in Nrf2 protein expression or activation of Nrf2 signalling after SFN administration and oral SFN supplementation did not improve GI function in mdx mice. Although ex vivo studies demonstrate SFN’s therapeutic potential for reducing colon contractions, in vivo studies should investigate higher doses and/or alternate routes of administration to confirm SFN’s potential to improve GI function in DMD.
Collapse
|
4
|
Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression. Oncotarget 2018; 7:78226-78241. [PMID: 27793025 PMCID: PMC5346634 DOI: 10.18632/oncotarget.12909] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) arise within the interstitial cell of Cajal (ICC) lineage due to activating KIT/PDGFRA mutations. Both ICC and GIST possess primary cilia (PC), which coordinate PDGFRA and Hedgehog signaling, regulators of gastrointestinal mesenchymal development. Therefore, we hypothesized that Hedgehog signaling may be altered in human GIST and controls KIT expression. Quantitative RT-PCR, microarrays, and next generation sequencing were used to describe Hedgehog/PC-related genes in purified human ICC and GIST. Genetic and pharmacologic approaches were employed to investigate the effects of GLI manipulation on KIT expression and GIST cell viability. We report that Hedgehog pathway and PC components are expressed in ICC and GIST and subject to dysregulation during GIST oncogenesis, irrespective of KIT/PDGFRA mutation status. Using genomic profiling, 10.2% of 186 GIST studied had potentially deleterious genomic alterations in 5 Hedgehog-related genes analyzed, including in the PTCH1 tumor suppressor (1.6%). Expression of the predominantly repressive GLI isoform, GLI3, was inversely correlated with KIT mRNA levels in GIST cells and non-KIT/non-PDGFRA mutant GIST. Overexpression of the 83-kDa repressive form of GLI3 or small interfering RNA-mediated knockdown of the activating isoforms GLI1/2 reduced KIT mRNA. Treatment with GLI1/2 inhibitors, including arsenic trioxide, significantly increased GLI3 binding to the KIT promoter, decreased KIT expression, and reduced viability in imatinib-sensitive and imatinib-resistant GIST cells. These data offer new evidence that genes necessary for Hedgehog signaling and PC function in ICC are dysregulated in GIST. Hedgehog signaling activates KIT expression irrespective of mutation status, offering a novel approach to treat imatinib-resistant GIST.
Collapse
|
5
|
Castiella T, Muñoz G, Luesma MJ, Santander S, Soriano M, Junquera C. Primary cilia in gastric gastrointestinal stromal tumours (GISTs): an ultrastructural study. J Cell Mol Med 2013; 17:844-53. [PMID: 23672577 PMCID: PMC3822889 DOI: 10.1111/jcmm.12067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/15/2013] [Indexed: 02/02/2023] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal (non-epithelial) neoplasms of the human gastrointestinal (GI) tract. They are thought to derive from interstitial cells of Cajal (ICCs) or an ICC progenitor based on immunophenotypical and ultrastructural similarities. Because ICCs show primary cilium, our hypothesis is based on the possibility that some of these neoplastic cells could also present it. To determine this, an exhaustive ultrastructural study has been developed on four gastric GISTs. Previous studies had demonstrated considerable variability in tumour cells with two dominating phenotypes, spindly and epithelioid. In addition to these two types, we have found another cell type reminiscent of adult ICCs with a voluminous nucleus surrounded by narrow perinuclear cytoplasm with long slender cytoplasmic processes. We have also noted the presence of small undifferentiated cells. In this study, we report for the first time the presence of primary cilia (PCs) in spindle and epithelioid tumour cells, an ultrastructural feature we consider of special interest that has hitherto been ignored in the literature dealing with the ultrastructure of GISTs. We also point out the frequent occurrence of multivesicular bodies (MVBs). The ultrastructural findings described in gastric GISTs in this study appear to be relevant considering the critical roles played by PCs and MVBs recently demonstrated in tumourigenic processes.
Collapse
Affiliation(s)
- Tomás Castiella
- Department of Pathology and Human Histology and Anatomy, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Luesma MJ, Cantarero I, Castiella T, Soriano M, Garcia-Verdugo JM, Junquera C. Enteric neurons show a primary cilium. J Cell Mol Med 2012. [PMID: 23205631 PMCID: PMC3823144 DOI: 10.1111/j.1582-4934.2012.01657.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells.
Collapse
Affiliation(s)
- Ma José Luesma
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Cipriani G, Serboiu CS, Gherghiceanu M, Faussone-Pellegrini MS, Vannucchi MG. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum. J Cell Mol Med 2012; 15:2411-20. [PMID: 21535398 PMCID: PMC3822952 DOI: 10.1111/j.1582-4934.2011.01333.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins.
Collapse
Affiliation(s)
- G Cipriani
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
8
|
Wang ZY, Han YF, Huang X, Lu HL, Guo X, Kim YC, Xu WX. Actin microfilament involved in regulation of pacemaking activity in cultured interstitial cells of Cajal from murine intestine. J Membr Biol 2010; 234:217-25. [PMID: 20349180 DOI: 10.1007/s00232-010-9248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/27/2022]
Abstract
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 +/- 160.33 pA and 11.73 +/- 0.79 cycles/min to 233.12 +/- 92.00 pA and 10.29 +/- 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 +/- 0.08 (DeltaF/F0) and 2.75 +/- 0.17 cycles/min to 0.02 +/- 0.01 (DeltaF/F0) and 1.20 +/- 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 +/- 282.82 pA and 13.93 +/- 1.00 cycles/min to 1234.34 +/- 607.83 pA and 14.68 +/- 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 +/- 0.01 (DeltaF/F0) and 2.27 +/- 0.18 cycles/min to 0.43 +/- 0.03 (DeltaF/F0) and 2.87 +/- 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP(3) receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP(3)-induced calcium release signaling pathway.
Collapse
Affiliation(s)
- Zuo Yu Wang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mulè F, Amato A, Vannucchi MG, Faussone-Pellegrini MS, Serio R. Altered tachykinergic influence on gastric mechanical activity in mdx mice. Neurogastroenterol Motil 2006; 18:844-52. [PMID: 16918764 DOI: 10.1111/j.1365-2982.2006.00820.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study investigated whether alterations in gastric activity in dystrophic mdx mouse can be attributed to dysfunctions of tachykinins. Endoluminal pressure was recorded and the expression of neuronal nitric oxide synthase (nNOS), NK1 and NK2 neurokinin receptors was investigated by immunohistochemistry. SR48968, NK2 receptor antagonist, but not SR140333, NK1 receptor antagonist, decreased the tone only in mdx gastric preparations. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME), inhibitor of NOS, SR48968 reduced the tone also in normal stomach. [Sar(9), Met(O(2))(11)]-SP, agonist of NK1 receptors, caused tetrodotoxin-sensitive relaxations, antagonized by SR140333 or l-NAME, with no difference in the potency or efficacy between normal and mdx preparations. [beta-Ala(8)]-NKA(4-10), an NK2 receptor agonist, induced SR48968-sensitive contractions in both types of preparations, although the maximal response of mdx tissues was significantly lower than normal preparations. Immunohistochemistry demonstrated a consistent reduction of nNOS and NK2 receptor expression in mdx stomach smooth muscle cells and no change in nNOS and NK1 receptor expression in neurones. In conclusion, in mdx stomach the activation of NK2 receptors plays a role in the development of the tone, associated with a reduced NO production by muscular nNOS. The hypo-responsiveness to NK2 receptors could depend on the reduced expression of these receptors.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
10
|
Zarate N, Wang XY, Tougas G, Anvari M, Birch D, Mearin F, Malagelada JR, Huizinga JD. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol Motil 2006; 18:556-68. [PMID: 16771771 DOI: 10.1111/j.1365-2982.2006.00788.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Achalasia is dominated by injury to inhibitory nerves. As intramuscular interstitial cells of Cajal (ICC-IM) are proposed to form functional units with nitrergic nerves, their fate in achalasia may be critically important. We studied the relationship between loss of nitrergic nerves and injury to ICC-IM in patients with achalasia and determined associations between ICC-IM and mast cells (MC), using quantitative immunohistochemistry and electron microscopy. Loss of neuronal nitric oxide synthase (nNOS) immunoreactivity was completed within 3 years of acquiring achalasia. Thereafter, progressive ultrastructural injury to remaining nerve structures was evident. Within the first 2 years, the number of ICC-IM did not decline although ultrastructural injury was already present. Thereafter, loss of ICC-IM occurred unrelated to duration of disease. Damage to ICC-IM appeared unrelated to nerve injury. A significant MC infiltration was observed in the musculature; the number of MC was positively related to the persistent number of ICC-IM. Mast cell formed close contacts with ICC-IM and piecemeal-degranulation occurred towards ICC-IM. In conclusion, injury to ICC-IM in achalasia is variable, but not related to duration of disease and injury to nitrergic nerves. MC are prominent and form close functional contact with ICC-IM which may be responsible for their relatively long survival.
Collapse
Affiliation(s)
- N Zarate
- IDRP, McMaster University, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mulè F, Zizzo MG, Amato A, Feo S, Serio R. Evidence for a role of inducible nitric oxide synthase in gastric relaxation of mdx mice. Neurogastroenterol Motil 2006; 18:446-54. [PMID: 16700724 DOI: 10.1111/j.1365-2982.2006.00782.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations of gastric mechanical activity have been reported in mdx mouse, animal model for Duchenne muscular dystrophy. This study examined if alterations in the vasoactive intestinal polypeptide (VIP) system are present in mdx stomach. Gastric mechanical activity was recorded in vitro as changes of endoluminal pressure and neurally or pharmacologically evoked relaxations were analysed in mdxvs normal stomach. Reverse-transcription polymerase chain reaction was used to detect inducible nitric oxide synthase (iNOS) expression. Relaxations to sodium nitroprusside in mdx stomach showed no difference in comparison with normal preparations. In normal stomach, VIP produced relaxation, which was reduced by VIP6-28, antagonist of VIP receptors, but was not modified by Nomega-nitro-L-arginine methyl ester (L-NAME), 1-H-oxodiazol-[1,2,4]-[4,3-a]quinoxaline-1-one (ODQ) or by N-(3-(aminomethyl)-benzyl)acetamidine (1400W) and aminoguanidine, inhibitors of iNOS. In contrast, in mdx stomach VIP responses were antagonized not only by VIP6-28, but also by L-NAME, ODQ, 1400W or aminoguanidine. In normal stomach, the slow relaxation evoked by stimulation at high frequency was reduced by VIP6-28, but it was unaffected by 1400W or aminoguanidine. In mdx stomach, it was reduced by VIP6-28 or 1400W, which did not show additive effects. iNOS mRNA was expressed only in mdx stomach. The results suggest that in mdx gastric preparations, iNOS is functionally expressed, being involved in the slow relaxation induced by VIP.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia Generale, Università di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
12
|
Faussone-Pellegrini MS, Vannucchi MG, Ledder O, Huang TY, Hanani M. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res 2006; 325:211-7. [PMID: 16596393 DOI: 10.1007/s00441-006-0174-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/18/2006] [Indexed: 01/27/2023]
Abstract
Ablation of the myenteric plexus in mouse colon with the detergent benzalkonium chloride (BAC) is followed by considerable recovery of the nerves, indicating that this plexus is capable of regeneration and has plasticity. Interstitial cells of Cajal (ICC) are closely associated with enteric nerves, and the acquisition and maintenance of their adult phenotype are nerve-dependent. Little is known about the regenerative processes of ICC or about the possible dependence of these processes on neurons. To address these questions, we ablated the myenteric plexus in the mouse colon with BAC and followed changes in the adjacent ICC (ICC-MP) from day 2 to day 70 after treatment, by using c-kit-immunohistochemistry and electron microscopy. In the untreated area, c-kit-positive cells and ICC-MP with normal ultrastructural features were always present. The region partially affected by BAC contained some c-kit-positive cells, and either normal or vacuolated ICC-MP were observed by electron microscopy. Moreover, at days 60-70, ICC-MP with particularly extended rough endoplasmic reticulum were present in this area. In the treated area, either denervated or reinnervated, c-kit-positive cells were always absent. By day 14 after BAC treatment, nerve fibers had started to grow back into the treated region and, in the reinnervated area, cells with fibroblast-like features appeared and were seen to contact both nerve endings and smooth muscle cells and to acquire some typical ICC features. Thus, ICC are vulnerable to external insult but appear to have some ability to regenerate.
Collapse
|
13
|
Faussone-Pellegrini MS. Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med 2006; 10:20-32. [PMID: 16563219 PMCID: PMC3933099 DOI: 10.1111/j.1582-4934.2006.tb00288.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/10/2006] [Indexed: 01/25/2023] Open
Abstract
The so-called interstitial cells of Cajal (ICC) are distributed throughout the muscle coat of the alimentary tract with characteristic intramural location and species-variations in structure and staining. Several ICC sub-types have been identified: ICC-DMP, ICC-MP, ICC-IM, ICC-SM. Gut motility is regulated by ICC and each sub-type is responsible for the electrical activities typical of each gut region and/or muscle layer. The interstitial position of the ICC between nerve endings and smooth muscle cells has been extensively considered. Some of these nerve endings contain tachykinins. Three distinct tachykinin receptors (NK1r, NK2r and NK3r) have been demonstrated by molecular biology. Each of them binds with different affinities to a series of tachykinins (SP, NKA and NKB). In the ileum, SP-immunoreactive (SP-IR) nerve fibers form a rich plexus at the deep muscular plexus (DMP), distributed around SP-negative cells, and ICC-DMP intensely express the SP-preferred receptor NK1r; conversely a faint NK1r-IR is detected on the ICC-MP and mainly after receptor internalization was induced by agonists. ICC-IM are never stained in laboratory mammals, while those of the human antrum are NK1r- IR. RT-PCR conducted on isolated ileal ICC-MP and gastric ICC-IM showed that these cells express NK1r and NK3r. Colonic ICC, except those in humans, do not express NK1r-IR, at least in resting conditions. Outside the gut, NK1r-IR cells were seen in the arterial wall and exocrine pancreas. In the mouse gut only, NK1r-IR is present in non-neuronal cells located within the intestinal villi, so-called myoid cells, which are c-kit-negative and alpha-smooth muscle actin-positive. Immunohistochemistry and functional studies confirmed that ICC receive input from SP-IR terminals, with differences between ICC sub-types. In the rat, very early after birth, NK1r is expressed by the ICC-DMP and SP by the related nerve varicosities. Studies on pathological conditions are few and those on mutant strains practically absent. It has only been reported that in the inflamed ileum of rats the NK1r-IR ICC-DMP disappear and that at the peak of inflammatory conditions ICC-MP are NK1r-IR. In the ileum of mice with a mutation in the W locus, ICC-DMP were seen to express c-kit-IR but not NK1-IR, and SP-IR innervation seems unchanged. In summary, there are distinct ICC populations, each of them under a different tachykininergic control and, likely, having different functions. Further studies are recommended at the aim of understanding ICC involvement in modulating/transmitting tachykininergic inputs.
Collapse
Affiliation(s)
- Maria-Simonetta Faussone-Pellegrini
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale G. Pieraccini, 6, 50134 Florence, Italy.
| |
Collapse
|
14
|
De Stefano ME, Leone L, Lombardi L, Paggi P. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice. Neurobiol Dis 2005; 20:929-42. [PMID: 16023353 DOI: 10.1016/j.nbd.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 12/31/2022] Open
Abstract
Autonomic imbalance is a pathological aspect of Duchenne muscular dystrophy. Here, we show that the sympathetic superior cervical ganglion (SCG) of mdx mice, which lack dystrophin (Dp427), has 36% fewer neurons than that of wild-type animals. Cell loss occurs around P10 and affects those neurons innervating muscular targets (heart and iris), which, differently from the submandibular gland (non-muscular target), are precociously damaged by the lack of Dp427. In addition, although we reveal altered axonal defasciculation in the submandibular gland and reduced terminal sprouting in all SCG target organs, poor adrenergic innervation is observed only in the heart and iris. These alterations, detected as early as P5, when neuronal loss has not yet occurred, suggest that in mdx mice the absence of Dp427 directly impairs the axonal growth and terminal sprouting of sympathetic neurons. However, when these intrinsic alterations combine with structural and/or functional damages of muscular targets, neuronal death occurs.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/genetics
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/physiopathology
- Cell Death/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Heart/growth & development
- Heart/innervation
- Iris/growth & development
- Iris/innervation
- Iris/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Microscopy, Electron, Transmission
- Muscle, Smooth/innervation
- Muscle, Smooth/physiopathology
- Muscles/innervation
- Muscles/ultrastructure
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardium/ultrastructure
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neuronal Plasticity/genetics
- Neurons/metabolism
- Neurons/pathology
- Superior Cervical Ganglion/metabolism
- Superior Cervical Ganglion/pathology
- Superior Cervical Ganglion/physiopathology
Collapse
Affiliation(s)
- M Egle De Stefano
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
15
|
Daniel EE, Willis A, Cho WJ, Boddy G. Comparisons of neural and pacing activities in intestinal segments from W/W++ and W/W(V) mice. Neurogastroenterol Motil 2005; 17:355-65. [PMID: 15916623 DOI: 10.1111/j.1365-2982.2005.00639.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied pacing and neurotransmission in longitudinal (LM) and circular muscle (CM) in intestine of W/W++ and W/W(V) mice. Electrical field-stimulation (EFS) of nerves in LM segments was more inhibitory in W/W(V) mice than in W/W++ mice. No inhibitory input to CM segments of W/W(V) mice was found. The EFS, after nerve block, entrained segments of both W/W++ and mutant mice with 10 ms pulses, and entrained those of mutant mice more readily at 1 and 3 ms pulses. Pacing with external electrodes did not depend on interstitial cells of Cajal in the myenteric plexus (ICC-MP). 2-Aminoethoxydiphenyl borate (2-APB), putative antagonist at IP3 receptors, store-operated channels and the Sacro-endoplasmic reticulum Ca2+ ATPase pump, reduced frequency and amplitudes of pacing of LM segments from W/W(V) mice as it did in BALB/c mice. Thus, its actions may not require ICC-MP. SKF 96365, a putative inhibitor of store-operated channels, reduced frequencies and amplitudes of intestinal segments in W/W++ mice at 10 or 30 micromol L-1. This resulted from blocking L-Ca2+-channels. Thus, no evidence was found that store-operated channels play a role in pacing. In LM segments of W/W(V), SKF 96365 had no effects on frequency of contractions. We conclude, results from models of severely reduced systems may not be applicable to intact ICC networks.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
16
|
Borrelli O, Salvia G, Mancini V, Santoro L, Tagliente F, Romeo EF, Cucchiara S. Evolution of gastric electrical features and gastric emptying in children with Duchenne and Becker muscular dystrophy. Am J Gastroenterol 2005; 100:695-702. [PMID: 15743370 DOI: 10.1111/j.1572-0241.2005.41303.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Although muscular dystrophy (MD) affects primarily striated muscles, smooth muscle cells of the gastrointestinal tract may also be involved. We recorded gastric electrical activity and gastric emptying time (GET) in children with MD at initial presentation and at 3-yr follow-up in order to detect gastric motor abnormalities and study their evolution along the clinical course. METHODS Twenty children with MD (median age: 4.6 yr; range age: 3-7 yr) were investigated by means of ultrasonography, for measuring GET, and by electrogastrography (EGG); 70 children served as controls. RESULTS Ten patients had Duchenne muscular dystrophy (DMD) and 10 Becker muscular dystrophy (BMD). GET was significantly more delayed in MD patients (DMD, median: 195 min; range 150-260 min; BMD, median: 197 min; range: 150-250 min) than in controls (median: 150 min; 110-180 min; p < 0.05); it markedly worsened at the follow-up in DMD (median: 270 min; range 170-310 min; p < 0.001 vs controls) but not in BMD patients (median: 205 min; 155-275 min; p < 0.05 vs DMD). Baseline EGG showed a significantly lower prevalence of normal rhythm and significantly higher prevalence of dysrhythmias in both groups of patients as compared to controls (% of normal rhythm: DMD 66.7 +/- 8.2, BMB 67.2 +/- 11.5, controls 85.3 +/- 7.2, p < 0.001; % of tachygastria: DMD 28.4 +/- 8.0, BMB 29.8 +/- 12.3, controls 10.6 +/- 5.1, p < 0.001; % of dominant frequency instability coefficient: DMD 36.1 +/- 6.0, BMB 33.2 +/- 2.9, controls 17.9 +/- 7.1, p < 0.001); furthermore, no difference in fed-to-fasting ratio of the dominant EGG power was found between the two groups and controls (DMD 2.84 +/- 1.27, BMB 2.82 +/- 0.98, controls 3.04 +/- 0.85, ns). However, at the follow-up no significant change in the prevalence of normal rhythm and dysrhythmias occurred in both groups (ns vs baseline values), whereas only DMD patients showed a marked reduction in fed-to-fasting power ratio (0.78 +/- 0.59; p < 0.001 vs controls and BMD; p < 0.05 vs baseline), which correlated with the progressive neuromuscular weakness occurring in DMD subjects (r, 0.75; p < 0.001). CONCLUSIONS In children with MD, there is an early abnormality in gastric motility that is due to deranged regulatory mechanisms, whereas contractile activity of smooth muscle cells seems to be preserved. At the follow-up, DMD patients exhibited a progressive failure in neuromuscular function, which was accompanied by a gastric motility derangement with worsening in GET and in EGG features suggesting an altered function of gastric smooth muscle cells.
Collapse
Affiliation(s)
- Osvaldo Borrelli
- Department of Pediatrics, Pediatric Gastroenterology Unit, University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|