1
|
Meng K, Liu Y, Ruan L, Chen L, Chen Y, Liang Y. Suppression of apoptosis in osteocytes, the potential way of natural medicine in the treatment of osteonecrosis of the femoral head. Biomed Pharmacother 2023; 162:114403. [PMID: 37003034 DOI: 10.1016/j.biopha.2023.114403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes. METHODS The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled. CONCLUSIONS When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.
Collapse
Affiliation(s)
- Kairui Meng
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Yicheng Liu
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China.
| | - Lvqiang Ruan
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Lijuan Chen
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Ying Chen
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Ying Liang
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| |
Collapse
|
2
|
Barahona I, Rada P, Calero-Pérez S, Grillo-Risco R, Pereira L, Soler-Vázquez MC, LaIglesia LM, Moreno-Aliaga MJ, Herrero L, Serra D, García-Monzon C, González-Rodriguez Á, Balsinde J, García-García F, Valdecantos MP, Valverde ÁM. Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death Differ 2022; 29:2362-2380. [PMID: 35681014 PMCID: PMC9751306 DOI: 10.1038/s41418-022-01023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/31/2023] Open
Abstract
Activation of oval cells (OCs) has been related to hepatocyte injury during chronic liver diseases including non-alcoholic fatty liver disease (NAFLD). However, OCs plasticity can be affected under pathological environments. We previously found protection against hepatocyte cell death by inhibiting protein tyrosine phosphatase 1B (PTP1B). Herein, we investigated the molecular and cellular processes involved in the lipotoxic susceptibility in OCs expressing or not PTP1B. Palmitic acid (PA) induced apoptotic cell death in wild-type (Ptpn1+/+) OCs in parallel to oxidative stress and impaired autophagy. This lipotoxic effect was attenuated in OCs lacking Ptpn1 that showed upregulated antioxidant defences, increased unfolded protein response (UPR) signaling, higher endoplasmic reticulum (ER) content and elevated stearoyl CoA desaturase (Scd1) expression and activity. These effects in Ptpn1-/- OCs concurred with an active autophagy, higher mitochondrial efficiency and a molecular signature of starvation, favoring lipid droplet (LD) formation and dynamics. Autophagy blockade in Ptpn1-/- OCs reduced Scd1 expression, mitochondrial fitness, LD formation and restored lipoapoptosis, an effect also recapitulated by Scd1 silencing. PTP1B immunostaining was detected in OCs from mouse liver and, importantly, LDs were found in OCs from Ptpn1-/- mice with NAFLD. In conclusion, we demonstrated that Ptpn1 deficiency restrains lipoapoptosis in OCs through a metabolic rewiring towards a "starvation-like" fate, favoring autophagy, mitochondrial fitness and LD formation. Dynamic LD-lysosomal interations likely ensure lipid recycling and, overall, these adaptations protect against lipotoxicity. The identification of LDs in OCs from Ptpn1-/- mice with NAFLD opens therapeutic perspectives to ensure OC viability and plasticity under lipotoxic liver damage.
Collapse
Affiliation(s)
- Inés Barahona
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Silvia Calero-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Ruben Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Laura Pereira
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Laura María LaIglesia
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmelo García-Monzon
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Águeda González-Rodriguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
| | - Jesús Balsinde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Qian L, Wang Q, Wei C, Wang L, Yang Y, Deng X, Liu J, Qi F. Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid. Exp Dermatol 2021; 31:202-213. [PMID: 34370343 DOI: 10.1111/exd.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Collapse
Affiliation(s)
- Leqi Qian
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Deng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R, Gomis R. Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Sci Transl Med 2020; 11:11/497/eaar6294. [PMID: 31217339 DOI: 10.1126/scitranslmed.aar6294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by β cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Hugo Figueiredo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Escuela de Medicina y Ciencias de la Salud, Dept. Medicina Cardiovascular y Metabolómica, Tecnológico de Monterrey, 66278 San Pedro Garza García, Nuevo León, Mexico
| | - Ana Lucia C Figueroa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Ainhoa Garcia
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Montpellier, Lapeyronie Hospital, 34295 Montpellier, France.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Rita Malpique
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
5
|
Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress. J Clin Med 2020; 9:jcm9051294. [PMID: 32369900 PMCID: PMC7288314 DOI: 10.3390/jcm9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is considered a well-known pathology that is determined without using alcohol and has emerged as a growing public health problem. Lipotoxicity is known to promote hepatocyte death, which, in the context of NAFLD, is termed lipoapoptosis. The severity of NAFLD correlates with the degree of hepatocyte lipoapoptosis. Protein–tyrosine phosphatases (PTP) including PTP1B and Low molecular weight PTP (LMPTP), are negative regulators of the insulin signaling pathway and are considered a promising therapeutic target in the treatment of diabetes. In this study, we hypothesized that the inhibition of PTP1B and LMPTP may potentially prevent hepatocyte apoptosis, mitochondrial dysfunction and endoplasmic reticulum (ER) stress onset, following lipotoxicity induced using a free fatty acid (FFA) mixture. Methods: HepG2 cells were cultured in the presence or absence of two PTP inhibitors, namely MSI-1436 and Compound 23, prior to palmitate/oleate overloading. Apoptosis, ER stress, oxidative stress, and mitochondrial dynamics were then evaluated by either MUSE or RT-qPCR analysis. Results: The obtained data demonstrate that the inhibition of PTP1B and LMPTP prevents apoptosis induced by palmitate and oleate in the HepG2 cell line. Moreover, mitochondrial dynamics were positively improved following inhibition of the enzyme, with concomitant oxidative stress reduction and ER stress abrogation. Conclusion: In conclusion, PTP’s inhibitory properties may be a promising therapeutic strategy for the treatment of FFA-induced lipotoxicity in the liver and ultimately in the management of the NAFLD condition.
Collapse
|
6
|
Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cell Dev Biol Anim 2019; 55:801-811. [PMID: 31502193 DOI: 10.1007/s11626-019-00395-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
Endothelial cell apoptosis and renin-angiotensin-aldosterone system (RAAS) activation are the major pathological mechanisms for cardiovascular disease and heart failure; however, the interaction and mechanism between them remain unclear. Investigating the role of PTP1B in angiotensin II (Ang II)-induced apoptosis of primary cardiac microvascular endothelial cells (CMECs) may provide direct evidence of the link between endothelial cell apoptosis and RAAS. Isolated rat CMECs were treated with different concentrations of Ang II to induce apoptosis, and an Ang II concentration of 4 nM was selected as the effective dose for the subsequent studies. The CMECs were cultured for 48 h with or without Ang II (4 nM) in the absence or presence of the PTP1B inhibitor TCS 401 (8 μM) and the PI3K inhibitor LY294002 (10 μM). The level of CMEC apoptosis was assessed by TUNEL staining and caspase-3 activity. The protein expressions of PTP1B, PI3K, Akt, p-Akt, Bcl-2, Bax, caspase-3, and cleaved caspase-3 were determined by Western blot (WB). The results showed that Ang II increased apoptosis of CMECs, upregulated PTP1B expression, and inhibited the PI3K/Akt pathway. Furthermore, cotreatment with PTP1B inhibitor significantly decreased the number of apoptotic CMECs induced by Ang II, along with increased PI3K expression, phosphorylation of Akt and the ratio of Bcl-2/Bax, decreased caspase-3 activity, and a cleaved caspase-3/caspase-3 ratio, while treatment with LY294002 partly inhibited the anti-apoptotic effect of the PTP1B inhibitor. Ang II induces apoptosis of primary rat CMECs via regulating the PTP1B/PI3K/Akt pathway.
Collapse
|
7
|
miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20181823. [PMID: 31048362 PMCID: PMC6522750 DOI: 10.1042/bsr20181823] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been reported as an oncogene in hepatocellular carcinoma (HCC). However, how PTP1B is regulated in HCC remains unclear. MicroRNAs (miRNAs) are a class of small non-coding RNAs involved many biological processes including tumorigenesis. In this study, we investigated whether miRNA participated in the regulation of PTP1B in HCC. We found that miR-206, which was down-regulated during tumorigenesis, inhibited HCC cell proliferation and invasion. Overexpression of miR-206 inhibited proliferation, invasion, and migration of HCC cell lines HepG2 and Huh7. Mechanistically, we demonstrated that miR-206 directly targeted PTP1B by binding to the 3′-UTR of PTP1B mRNA as demonstrated by the luciferase reporter assay. Overexpression miR-206 inhibited PTP1B expression while miR-206 inhibition enhanced PTP1B expression in HepG2 and Huh7 cells. Functionally, the regulatory effect on cell proliferation/migration/invasion of miR-206 was reversed by PTP1B overexpression. Furthermore, tumor inoculation nude mice model was used to explore the function of miR-206 in vivo. Our results showed that overexpression of miR-206 drastically inhibited tumor development. In summary, our data suggest that miR-206 inhibits HCC development by targeting PTP1B.
Collapse
|
8
|
Campisano S, Bertran E, Caballero-Díaz D, La Colla A, Fabregat I, Chisari AN. Paradoxical role of the NADPH oxidase NOX4 in early preneoplastic stages of hepatocytes induced by amino acid deprivation. Biochim Biophys Acta Gen Subj 2019; 1863:714-722. [DOI: 10.1016/j.bbagen.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 01/13/2023]
|
9
|
Mojena M, Pimentel-Santillana M, Povo-Retana A, Fernández-García V, González-Ramos S, Rada P, Tejedor A, Rico D, Martín-Sanz P, Valverde AM, Boscá L. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B. Redox Biol 2018; 17:213-223. [PMID: 29705509 PMCID: PMC6006913 DOI: 10.1016/j.redox.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant.
Collapse
Affiliation(s)
- Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Alberto Tejedor
- Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| |
Collapse
|
10
|
Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Mol Metab 2017; 7:132-146. [PMID: 29126873 PMCID: PMC5784331 DOI: 10.1016/j.molmet.2017.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. Protein tyrosine phosphatase 1B (PTP1B), a negative modulator of insulin and cytokine signaling, is a therapeutic target for type 2 diabetes and obesity. We investigated the impact of PTP1B deficiency during NAFLD, particularly in non-alcoholic steatohepatitis (NASH). Methods NASH features were evaluated in livers from wild-type (PTP1BWT) and PTP1B-deficient (PTP1BKO) mice fed methionine/choline-deficient diet (MCD) for 8 weeks. A recovery model was established by replacing MCD to chow diet (CHD) for 2–7 days. Non-parenchymal liver cells (NPCs) were analyzed by flow cytometry. Oval cells markers were measured in human and mouse livers with NASH, and in oval cells from PTP1BWT and PTP1BKO mice. Results PTP1BWT mice fed MCD for 8 weeks exhibited NASH, NPCs infiltration, and elevated Fgf21, Il6 and Il1b mRNAs. These parameters decreased after switching to CHD. PTP1B deficiency accelerated MCD-induced NASH. Conversely, after switching to CHD, PTP1BKO mice rapidly reverted NASH compared to PTP1BWT mice in parallel to the normalization of serum triglycerides (TG) levels. Among NPCs, a drop in cytotoxic natural killer T (NKT) subpopulation was detected in PTP1BKO livers during recovery, and in these conditions M2 macrophage markers were up-regulated. Oval cells markers (EpCAM and cytokeratin 19) significantly increased during NASH only in PTP1B-deficient livers. HGF-mediated signaling and proliferative capacity were enhanced in PTP1BKO oval cells. In NASH patients, oval cells markers were also elevated. Conclusions PTP1B elicits a dual role in NASH progression and reversion. Additionally, our results support a new role for PTP1B in oval cell proliferation during NAFLD. PTP1B deficiency accelerates MCD-induced NASH. The liver inflammatory responses during NASH are enhanced in PTP1B-deficient mice. PTP1B deficiency accelerates the reversion of NASH in a recovery dietary model. In a DCC model PTP1BKO livers increased oval cells markers and proliferative capacity. PTP1B deficiency enhances HGF-mediated signaling and proliferation of oval cells.
Collapse
|
11
|
Eshkiki ZS, Ghahremani MH, Shabani P, Firuzjaee SG, Sadeghi A, Ghanbarian H, Meshkani R. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells. Mol Cell Biochem 2016; 425:95-102. [PMID: 27826746 DOI: 10.1007/s11010-016-2865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.
Collapse
Affiliation(s)
- Zahra Shokati Eshkiki
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Shabani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical sciences, Tehran, Islamic Republic of Iran
| | - Asie Sadeghi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
12
|
Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B. Arch Pharm Res 2016; 39:1454-1464. [PMID: 27544192 DOI: 10.1007/s12272-016-0819-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.
Collapse
|
13
|
Zhu X, Zhou Y, Tao R, Zhao J, Chen J, Liu C, Xu Z, Bao G, Zhang J, Chen M, Shen J, Cheng C, Zhang D. Upregulation of PTP1B After Rat Spinal Cord Injury. Inflammation 2016; 38:1891-902. [PMID: 25894283 DOI: 10.1007/s10753-015-0169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a member of the protein tyrosine phosphatase family, attaches to the endoplasmic reticulum (ER) via its C-terminal tail. Previous studies have reported that PTP1B participates in various signal transduction pathways in many human diseases, including diabetes, cancers, osteoporosis, and obesity. It also plays an important role in the ER stress. ER stress induced by spinal cord injury (SCI) was reported to result in cell apoptosis. Till now, the role of PTP1B in the injury of the central nervous system remains unknown. In the present study, we built an adult rat SCI model to investigate the potential role of PTP1B in SCI. Western blot analysis detected a notable alteration of PTP1B expression after SCI. Immunohistochemistry indicated that PTP1B expressed at a low level in the normal spinal cord and greatly increased after SCI. Double immunofluorescence staining revealed that PTP1B immunoreactivity was predominantly increased in neurons following SCI. In addition, SCI resulted in a significant alteration in the level of active caspase-3, caspase-12, and 153/C/EBP homologous transcription factor protein, which were correlated with the upregulation of PTP1B. Co-localization of PTP1B/active caspase-3 was also detected in neurons. Taken together, our findings elucidated the PTP1B expression in the SCI for the first time. These results suggested that PTP1B might be deeply involved in the injury response and probably played an important role in the neuro-pathological process of SCI.
Collapse
Affiliation(s)
- Xinhui Zhu
- Department of Osteology, The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gogiraju R, Schroeter MR, Bochenek ML, Hubert A, Münzel T, Hasenfuss G, Schäfer K. Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovasc Res 2016; 111:204-16. [PMID: 27207947 DOI: 10.1093/cvr/cvw101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/27/2016] [Indexed: 12/25/2022] Open
Abstract
AIMS Cardiac angiogenesis is an important determinant of heart failure. We examined the hypothesis that protein tyrosine phosphatase (PTP)-1B, a negative regulator of vascular endothelial growth factor (VEGF) receptor-2 activation, is causally involved in the cardiac microvasculature rarefaction during hypertrophy and that deletion of PTP1B in endothelial cells prevents the development of heart failure. METHODS AND RESULTS Cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice with endothelial-specific deletion of PTP1B (End.PTP1B-KO) and controls (End.PTP1B-WT). Survival up to 20 weeks after TAC was significantly improved in mice lacking endothelial PTP1B. Serial echocardiography revealed a better systolic pump function, less pronounced cardiac hypertrophy, and left ventricular dilation compared with End.PTP1B-WT controls. Histologically, banded hearts from End.PTP1B-KO mice exhibited increased numbers of PCNA-positive, proliferating endothelial cells resulting in preserved cardiac capillary density and improved perfusion as well as reduced hypoxia, apoptotic cell death, and fibrosis. Increased relative VEGFR2 and ERK1/2 phosphorylation and greater eNOS expression were present in the hearts of End.PTP1B-KO mice. The absence of PTP1B in endothelial cells also promoted neovascularization following peripheral ischaemia, and bone marrow transplantation excluded a major contribution of Tie2-positive haematopoietic cells to the improved angiogenesis in End.PTP1B-KO mice. Increased expression of caveolin-1 as well as reduced NADPH oxidase-4 expression, ROS generation and TGFβ signalling were observed and may have mediated the cardioprotective effects of endothelial PTP1B deletion. CONCLUSIONS Endothelial PTP1B deletion improves cardiac VEGF signalling and angiogenesis and protects against chronic afterload-induced heart failure. PTP1B may represent a useful target to preserve cardiac function during hypertrophy.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marco R Schroeter
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Magdalena L Bochenek
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
15
|
Growth Hormone Protects the Intestine Preserving Radiotherapy Efficacy on Tumors: A Short-Term Study. PLoS One 2015; 10:e0144537. [PMID: 26670463 PMCID: PMC4682900 DOI: 10.1371/journal.pone.0144537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
The efficacy of radiotherapy on tumors is hampered by its devastating adverse effects on healthy tissue, particularly that of the gastrointestinal tract. These effects cause acute symptoms that are so disruptive to patients that they can lead to interruption of the radiotherapy program. These adverse effects could limit the intensity of radiation received by the patient, resulting in a sublethal dose to the tumor, thus increasing the risk of tumor resistance. The lack of an effective treatment to protect the bowel during radiation therapy to allow higher radiation doses that are lethal to the tumor has become a barrier to implementing effective therapy. In this study, we present a comparative analysis of both intestinal and tumor tissue in regard to the efficacy and the preventive impact of a short-term growth hormone (GH) treatment in tumor-bearing rats as a protective agent during radiotherapy. Our data show that the exogenous administration of GH improved intestinal recovery after radiation treatment while preserving the therapeutic effect against the tumor. GH significantly increased proliferation in the irradiated intestine but not in the irradiated tumors, as assessed by Positron Emission Tomography and the proliferative markers Ki67, cyclin D3, and Proliferating Cell Nuclear Antigen. This proliferative effect was consistent with a significant increase in irradiated intestinal villi and crypt length. Furthermore, GH significantly decreased caspase-3 activity in the intestine, whereas GH did not produce this effect in the irradiated tumors. In conclusion, short-term GH treatment protects the bowel, inducing proliferation while reducing apoptosis in healthy intestinal tissue and preserving radiotherapy efficacy on tumors.
Collapse
|
16
|
Chen PJ, Cai SP, Huang C, Meng XM, Li J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology 2015; 337:10-20. [PMID: 26299811 DOI: 10.1016/j.tox.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 12/11/2022]
Abstract
Phosphorylation of tyrosine residues within proteins, which is controlled by the reciprocal action of protein tyrosine kinases and protein tyrosine phosphatases, plays a key role in regulating almost all physiological responses. Therefore, it comes as no surprise that once the balance of tyrosine phosphorylation is disturbed, drastic effects can occur. Protein tyrosine phosphatase 1B (PTP1B), a classical non-transmembrane tyrosine phosphatase, is a pivotal regulator and promising drug target in type 2 diabetes and obesity. Recently it has received renewed attention in liver diseases and represents an intriguing opportunity as a drug target by modulating hepatocyte death and survival, hepatic lipogenesis and so on. Here, the multiple roles of PTP1B in liver diseases will be presented, with respect to liver regeneration, drug-induced liver disease, non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pei-Jie Chen
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Shuang-Peng Cai
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, Wang B, Wang C, Shi D. Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition. Mar Drugs 2015; 13:4452-4469. [PMID: 26193288 PMCID: PMC4515627 DOI: 10.3390/md13074452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 01/03/2023] Open
Abstract
3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol (HPN) is a bromophenol derivative from the marine red alga Rhodomela confervoides. We have previously found that HPN exerted an anti-hyperglycemic property in db/db mouse model. In the present study, we found that HPN could protect HepG2 cells against palmitate (PA)-induced cell death. Data also showed that HPN inhibited cell death mainly by blocking the cell apoptosis. Further studies demonstrated that HPN (especially at 1.0 μM) significantly restored insulin-stimulated tyrosine phosphorylation of IR and IRS1/2, and inhibited the PTP1B expression level in HepG2 cells. Furthermore, the expression of Akt was activated by HPN, and glucose uptake was significantly increased in PA-treated HepG2 cells. Our results suggest that HPN could protect hepatocytes from lipid-induced cell damage and insulin resistance via PTP1B inhibition. Thus, HPN can be considered to have potential for the development of anti-diabetic agent that could protect both hepatic cell mass and function.
Collapse
Affiliation(s)
- Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- The University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shuaiyu Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiangqian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Baocheng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- The University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changhui Wang
- Qingdao Medical University Affiliated Hospital, Qingdao 266070, China.
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
18
|
Gorgani-Firuzjaee S, Adeli K, Meshkani R. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells. Biochem Biophys Res Commun 2015; 464:441-6. [PMID: 26123392 DOI: 10.1016/j.bbrc.2015.06.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
The serine-threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients.
Collapse
Affiliation(s)
- Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Khosrow Adeli
- Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
19
|
Li M, Pang Z, Xiao W, Liu X, Zhang Y, Yu D, Yang M, Yang Y, Hu J, Luo K. A transcriptome analysis suggests apoptosis-related signaling pathways in hemocytes of Spodoptera litura after parasitization by Microplitis bicoloratus. PLoS One 2014; 9:e110967. [PMID: 25350281 PMCID: PMC4211697 DOI: 10.1371/journal.pone.0110967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/19/2014] [Indexed: 01/01/2023] Open
Abstract
Microplitis bicoloratus parasitism induction of apoptotic DNA fragmentation of host Spodoptera litura hemocytes has been reported. However, how M. bicoloratus parasitism regulates the host signaling pathways to induce DNA fragmentation during apoptosis remains unclear. To address this question, we performed a new RNAseq-based comparative analysis of the hemocytes transcriptomes of non-parasitized and parasitized S. litura. We were able to assemble a total of more than 11.63 Gbp sequence, to yield 20,571 unigenes. At least six main protein families encoded by M. bicoloratus bracovirus are expressed in the parasitized host hemocytes: Ankyrin-repeat, Ben domain, C-type lectin, Egf-like and Mucin-like, protein tyrosine phosphatase. The analysis indicated that during DNA fragmentation and cell death, 299 genes were up-regulated and 2,441 genes were down-regulated. Data on five signaling pathways related with cell death, the gap junctions, Ca2+, PI3K/Akt, NF-κB, ATM/p53 revealed that CypD, which is involved in forming a Permeability Transition Pore Complex (PTPC) to alter mitochondrial membrane permeabilization (MMP), was dramatically up-regulated. The qRT-PCR also provided that the key genes for cell survival were down-regulated under M. bicoloratus parasitism, including those encoding Inx1, Inx2 and Inx3 of the gap junction signaling pathway, p110 subunit of the PI3K/Akt signaling pathway, and the p50 and p65 subunit of the NF-κB signaling pathway. These findings suggest that M. bicoloratus parasitism may regulate host mitochondria to trigger internucleosomal DNA fragmentation. This study will facilitate the identification of immunosuppression-related genes and also improves our understanding of molecular mechanisms underlying polydnavirus-parasitoid-host interaction.
Collapse
Affiliation(s)
- Ming Li
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Zunyu Pang
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Xinyi Liu
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Yan Zhang
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Dongshuai Yu
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Minjun Yang
- Shanghai–Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, P. R. China
| | - Yang Yang
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Jiansheng Hu
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
| | - Kaijun Luo
- School of Life Sciences, Yunnan University, Kunming, P. R. China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Mobasher MA, Valverde ÁM. Signalling pathways involved in paracetamol-induced hepatotoxicity: new insights on the role of protein tyrosine phosphatase 1B. Arch Physiol Biochem 2014; 120:51-63. [PMID: 24738658 DOI: 10.3109/13813455.2014.893365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute hepatic failure secondary to paracetamol poisoning is associated with high mortality. Paracetamol-induced hepatotoxicity causes oxidative stress that triggers signalling pathways and ultimately leads to lethal hepatocyte injury. We will review the signalling pathways activated by paracetamol in the liver emphasizing the role of protein tyrosine phosphatase 1B (PTP1B) in the balance between cell death and survival in hepatocytes. PTP1B has emerged as a key modulator of the antioxidant system mediated by the nuclear factor erythroid-2-related factor 2 (Nrf2) in hepatic cells in response to paracetamol overdose. Also, this phosphatase modulates the classical survival pathways triggered by the activation of the insulin-like growth factor-I (IGF-I) signalling cascade. Therefore, PTP1B is a novel therapeutic target against paracetamol-induced liver failure.
Collapse
Affiliation(s)
- Maysa Ahmed Mobasher
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , ISCIII , Spain
| | | |
Collapse
|
21
|
Besnier M, Galaup A, Nicol L, Henry JP, Coquerel D, Gueret A, Mulder P, Brakenhielm E, Thuillez C, Germain S, Richard V, Ouvrard-Pascaud A. Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice. FASEB J 2014; 28:3351-61. [PMID: 24760754 DOI: 10.1096/fj.13-245753] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protein tyrosine phosphatase 1B (PTP1B) modulates tyrosine kinase receptors, among which is the vascular endothelial growth factor receptor type 2 (VEGFR2), a key component of angiogenesis. Because PTP1B deficiency in mice improves left ventricular (LV) function 2 mo after myocardial infarction (MI), we hypothesized that enhanced angiogenesis early after MI via activated VEGFR2 contributes to this improvement. At 3 d after MI, capillary density was increased at the infarct border of PTP1B(-/-) mice [+7±2% vs. wild-type (WT), P = 0.05]. This was associated with increased extracellular signal-regulated kinase 2 phosphorylation and VEGFR2 activation (i.e., phosphorylated-Src/Src/VEGFR2 and dissociation of endothelial VEGFR2/VE-cadherin), together with higher infiltration of proangiogenic M2 macrophages within unchanged overall infiltration. In vitro, we showed that PTP1B inhibition or silencing using RNA interference increased VEGF-induced migration and proliferation of mouse heart microvascular endothelial cells as well as fibroblast growth factor (FGF)-induced proliferation of rat aortic smooth muscle cells. At 8 d after MI in PTP1B(-/-) mice, increased LV capillary density (+21±3% vs. WT; P<0.05) and an increased number of small diameter arteries (15-50 μm) were likely to participate in increased LV perfusion assessed by magnetic resonance imaging and improved LV compliance, indicating reduced diastolic dysfunction. In conclusion, PTP1B deficiency reduces MI-induced heart failure promptly after ischemia by enhancing angiogenesis, myocardial perfusion, and diastolic function.
Collapse
Affiliation(s)
- Marie Besnier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Ariane Galaup
- INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Lionel Nicol
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Jean-Paul Henry
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - David Coquerel
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Alexandre Gueret
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Paul Mulder
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Ebba Brakenhielm
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Christian Thuillez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Stéphane Germain
- INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Vincent Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| | - Antoine Ouvrard-Pascaud
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and
| |
Collapse
|
22
|
Li L, Huang K, You Y, Fu X, Hu L, Song L, Meng Y. Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol 2014; 44:2111-20. [PMID: 24715221 DOI: 10.3892/ijo.2014.2368] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/11/2014] [Indexed: 11/06/2022] Open
Abstract
miR-210 is upregulated in a HIF-1α-dependent way in several types of cancers. In addition, upregulated miR-210 promotes cancer proliferation, via its anti-apoptotic effects. It is blind to the regulation of miR-210 under hypoxia conditions for ovarian cancer cells and to the effect of miR-210 on ovarian cancer growth. In the present study, we determined the expression of miR-210 in epithelial ovarian cancer specimens, and in ovarian cancer cell lines under hypoxia conditions, and determined in detail the effect of miR-210 overexpression on tumor cell proliferation, and the possible mechanisms of tumor growth by miR-210 regulation. It was shown that miR-210 expression is upregulated, in response to hypoxia conditions in epithelial ovarian cancer specimens as well as epithelial ovarian cancer cell lines, with an association to HIF-1α overexpression. Furthermore, upregulated miR-210 promoted tumor growth in vitro via targeting PTPN1 and inhibiting apoptosis. Therefore, our findings shed light on the mechanism of ovarian cancer adaptation to hypoxia.
Collapse
Affiliation(s)
- Li'an Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ke Huang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yanqin You
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoyu Fu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lingyun Hu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lei Song
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
23
|
Través PG, Pardo V, Pimentel-Santillana M, González-Rodríguez Á, Mojena M, Rico D, Montenegro Y, Calés C, Martín-Sanz P, Valverde AM, Boscá L. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis 2014; 5:e1125. [PMID: 24625984 PMCID: PMC3973223 DOI: 10.1038/cddis.2014.90] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Galactosamine
- Gene Expression Profiling/methods
- Humans
- Immunity, Innate
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Lipopolysaccharides
- Macrophage Activation
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA Interference
- Signal Transduction
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- P G Través
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - V Pardo
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Á González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - D Rico
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Center (CNIO), ISCIII, Madrid, Spain
| | - Y Montenegro
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - C Calés
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - P Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
| | - A M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - L Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
| |
Collapse
|
24
|
Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R. Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS One 2014; 9:e90344. [PMID: 24587334 PMCID: PMC3938680 DOI: 10.1371/journal.pone.0090344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/02/2014] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway. It has been demonstrated that PTP1B deletion protects against the development of obesity and Type 2 Diabetes, mainly through its action on peripheral tissues. However, little attention has been paid to the role of PTP1B in β-cells. Therefore, our aim was to study the role of PTP1B in pancreatic β-cells. Silencing of PTP1B expression in a pancreatic β-cell line (MIN6 cells) reveals the significance of this endoplasmic reticulum bound phosphatase in the regulation of cell proliferation and apoptosis. Furthermore, the ablation of PTP1B is able to regulate key proteins involved in the proliferation and/or apoptosis pathways, such as STAT3, AKT, ERK1/2 and p53 in isolated islets from PTP1B knockout (PTP1B −/−) mice. Morphometric analysis of pancreatic islets from PTP1B −/− mice showed a higher β-cell area, concomitantly with higher β-cell proliferation and a lower β-cell apoptosis when compared to islets from their respective wild type (WT) littermates. At a functional level, isolated islets from 8 weeks old PTP1B −/− mice exhibit enhanced glucose-stimulated insulin secretion. Moreover, PTP1B −/− mice were able to partially reverse streptozotocin-induced β-cell loss. Together, our data highlight for the first time the involvement of PTP1B in β-cell physiology, reinforcing the potential of this phosphatase as a therapeutical target for the treatment of β-cell failure, a central aspect in the pathogenesis of Type 2 Diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Count
- Cell Line
- Cell Proliferation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/enzymology
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Streptozocin
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Elaine Vieira
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Clinic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
25
|
Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R. Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med 2013; 65:1435-1446. [PMID: 24120971 DOI: 10.1016/j.freeradbiomed.2013.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signaling pathway and is considered a promising therapeutic target in the treatment of diabetes. However, the role of PTP1B in palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells has not been studied. Here we investigate the effects of PTP1B modulation on mitochondrial function and apoptosis and elucidate the underlying mechanisms in skeletal muscle cells. PTP1B inhibition significantly reduced palmitate-induced mitochondrial dysfunction and apoptosis in C2C12 cells, as these cells had increased expression levels of PGC-1α, Tfam, and NRF-1; enhanced ATP level and cellular viability; decreased TUNEL-positive cells; and decreased caspase-3 and -9 activity. Alternatively, overexpression of PTP1B resulted in mitochondrial dysfunction and apoptosis in these cells. PTP1B silencing improved mitochondrial dysfunction by an increase in the expression of SIRT1 and a reduction in the phosphorylation of p65 NF-κB. The protection from palmitate-induced apoptosis by PTP1B inhibition was also accompanied by a decrease in protein level of serine palmitoyl transferase, thus resulting in lower ceramide content in muscle cells. Exogenous addition of C2-ceramide to PTP1B-knockdown cells led to a reduced generation of reactive oxygen species (ROS), whereas PTP1B overexpression demonstrated an elevated ROS production in myotubes. In addition, PTP1B inhibition was accompanied by decreased JNK phosphorylation and increased insulin-stimulated Akt (Ser473) phosphorylation, whereas overexpression of PTP1B had the opposite effect. The overexpression of PTP1B also induced the nuclear localization of FOXO-1, but in contrast, suppression of PTP1B reduced palmitate-induced nuclear localization of FOXO-1. In summary, our results indicate that PTP1B modulation results in (1) alterations in mitochondrial function by changes in the activity of SIRT1/NF-κB/PGC-1α pathways and (2) changes in apoptosis that result from either a direct effect of PTP1B on the insulin signaling pathway or an indirect influence on ceramide content, ROS generation, JNK activation, and FOXO-1 nuclear translocation.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Pasalar
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| |
Collapse
|
26
|
Overexpression of PTP1B in human colorectal cancer and its association with tumor progression and prognosis. J Mol Histol 2013; 45:153-9. [PMID: 23990346 DOI: 10.1007/s10735-013-9536-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-transmembrane protein tyrosine phosphatase that has been implicated in cancer pathogenesis. However, the expression level and the role of PTP1B in the development and prognosis of colorectal cancer (CRC) remain unclear. In this study, the expression of PTP1B in CRC tissues and matched noncancerous tissues were detected by using immunohistochemistry, real-time PCR and Western blotting. The correlations between PTP1B expression level and clinicopathologic characteristics and patient survival were analyzed. We found that PTP1B expression was significantly higher in CRC tissues compared with matched non-tumour tissues. Statistical analysis showed that the PTP1B expression was correlated with tumor differentiation, tumor invasion, lymph node metastasis, and TNM stage. Patients with higher expressions of PTP1B had the lower survival (P = 0.012). Taken together, our results suggest that PTP1B expression might play a critical role in the progression of CRC and may serve as a valuable prognostic biomarker for CRC.
Collapse
|
27
|
Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis 2013; 4:e626. [PMID: 23661004 PMCID: PMC3674359 DOI: 10.1038/cddis.2013.150] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute hepatic failure secondary to acetaminophen (APAP) poisoning is associated with high mortality. Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of tyrosine kinase growth factor signaling. In the liver, this pathway confers protection against injury. However, the involvement of PTP1B in the intracellular networks activated by APAP is unknown. We have assessed PTP1B expression in APAP-induced liver failure in humans and its role in the molecular mechanisms that regulate the balance between cell death and survival in human and mouse hepatocytes, as well as in a mouse model of APAP-induced hepatotoxicity. PTP1B expression was increased in human liver tissue removed during liver transplant from patients for APAP overdose. PTP1B was upregulated by APAP in primary human and mouse hepatocytes together with the activation of c-jun (NH2) terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), resulting in cell death. Conversely, Akt phosphorylation and the antiapoptotic Bcl2 family members BclxL and Mcl1 were decreased. PTP1B deficiency in mouse protects hepatocytes against APAP-induced cell death, preventing glutathione depletion, reactive oxygen species (ROS) generation and activation of JNK and p38 MAPK. APAP-treated PTP1B−/− hepatocytes showed enhanced antioxidant defense through the glycogen synthase kinase 3 (GSK3)β/Src kinase family (SKF) axis, delaying tyrosine phosphorylation of the transcription factor nuclear factor-erythroid 2-related factor (Nrf2) and its nuclear exclusion, ubiquitination and degradation. Insulin-like growth factor-I receptor-mediated signaling decreased in APAP-treated wild-type hepatocytes, but was maintained in PTP1B−/− cells or in wild-type hepatocytes with reduced PTP1B levels by RNA interference. Likewise, both signaling cascades were modulated in mice, resulting in less severe APAP hepatotoxicity in PTP1B−/− mice. Our results demonstrated that PTP1B is a central player of the mechanisms triggered by APAP in hepatotoxicity, suggesting a novel therapeutic target against APAP-induced liver failure.
Collapse
|
28
|
Sanz-Garcia C, Ferrer-Mayorga G, González-Rodríguez Á, Valverde AM, Martín-Duce A, Velasco-Martín JP, Regadera J, Fernández M, Alemany S. Sterile inflammation in acetaminophen-induced liver injury is mediated by Cot/tpl2. J Biol Chem 2013; 288:15342-51. [PMID: 23572518 DOI: 10.1074/jbc.m112.439547] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Carlos Sanz-Garcia
- Instituto Investigaciones Biomédicas Alberto Sols, CISC-UAM, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
O'Donovan DS, MacFhearraigh S, Whitfield J, Swigart LB, Evan GI, Mc Gee MM. Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 2013; 4:e468. [PMID: 23348582 PMCID: PMC3563996 DOI: 10.1038/cddis.2012.208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023]
Abstract
Mitotic cell death following prolonged arrest is an important death mechanism that is not completely understood. This study shows that Protein Tyrosine Phosphatase 1B (PTP1B) undergoes phosphorylation during mitotic arrest induced by microtubule-targeting agents (MTAs) in chronic myeloid leukaemia cells. Inhibition of cyclin-dependent kinase 1 (Cdk1) or polo-like kinase 1 (Plk1) during mitosis prevents PTP1B phosphorylation, implicating these kinases in PTP1B phosphorylation. In support of this, Cdk1 and Plk1 co-immunoprecipitate with endogenous PTP1B from mitotic cells. In addition, active recombinant Cdk1-cyclin B1 directly phosphorylates PTP1B at serine 386 in a kinase assay. Recombinant Plk1 phosphorylates PTP1B on serine 286 and 393 in vitro, however, it requires a priming phosphorylation by Cdk1 at serine 386 highlighting a novel co-operation between Cdk1 and Plk1 in the regulation of PTP1B. Furthermore, overexpression of wild-type PTP1B induced mitotic cell death, which is potentiated by MTAs. Moreover, mutation of serine 286 abrogates the cell death induced by PTP1B, whereas mutation of serine 393 does not, highlighting the importance of serine 286 phosphorylation in the execution of mitotic cell death. Finally, phosphorylation on serine 286 enhanced PTP1B phosphatase activity. Collectively, these data reveal that PTP1B activity promotes mitotic cell death and is regulated by the co-operative action of Cdk1 and Plk1 during mitotic arrest.
Collapse
Affiliation(s)
- D S O'Donovan
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S MacFhearraigh
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - J Whitfield
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - L B Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - G I Evan
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - M M Mc Gee
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Soysal S, Obermann EC, Gao F, Oertli D, Gillanders WE, Viehl CT, Muenst S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat 2012; 137:637-44. [PMID: 23242616 DOI: 10.1007/s10549-012-2373-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-transmembrane protein tyrosine phosphatase that has come into focus as a critical regulator of multiple signaling pathways. The role of PTP1B in breast cancer remains unclear with evidence suggesting that PTP1B can exert both tumor-suppressing and tumor-promoting effects. To better define the role of PTP1B in human breast cancer, and its relationship with HER2, we performed immunohistochemical studies on a large cohort of functionally annotated primary breast cancer specimens. 683 of 1,402 (49 %) evaluable primary breast cancers are positive for PTP1B. There is no statistically significant association between PTP1B expression and age, tumor size, T stage, histologic grade, lymph node status, or histological subtype. Of note, there is no significant association between PTP1B expression and HER2 expression (PTP1B expression 53.1 % in HER2(+) cancers vs. 47.5 % in HER2(-) cancers, p = 0.0985). However, PTP1B expression is significantly associated with estrogen receptor expression (PTP1B expression 50.7 % in ER(+) cancers vs. 43.1 % in ER(-) cancers, p = 0.0137) and intrinsic molecular subtype (PTP1B expression 53.9 % in the luminal B HER2(+) subtype and 37.9 % in the basal-like subtype). Of note, multivariate analyses demonstrate that PTP1B is an independent predictor of improved survival in breast cancer (HR 0.779, p = 0.006). Taken together, we demonstrate in the largest study to date that (1) PTP1B is commonly expressed in breast cancer, (2) there is no association or functional impact of PTP1B expression in HER2(+) breast cancer, and (3) PTP1B expression in breast cancer is associated with significantly improved clinical outcome. Until additional studies are performed, caution should be exercised in using PTP1B inhibitors in human breast cancer.
Collapse
Affiliation(s)
- S Soysal
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Ardiles AE, González-Rodríguez A, Núñez MJ, Perestelo NR, Pardo V, Jiménez IA, Valverde AM, Bazzocchi IL. Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus. PHYTOCHEMISTRY 2012; 84:116-24. [PMID: 22925829 DOI: 10.1016/j.phytochem.2012.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 05/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly expanding public epidemic and frequently results in severe vascular complications. In an attempt to find anti-diabetic agents, we report herein on the isolation, structural elucidation and bioactivity of nine friedelane-type triterpenes (1-9) and twenty two known ones (10-31) from the root barks of Celastrus vulcanicola and Maytenus jelskii. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. Two compounds from this series (1 and 3) exhibited increased insulin-mediated signalling, which suggests these friedelane triterpenes have potential therapeutic use in insulin resistant states.
Collapse
Affiliation(s)
- Alejandro E Ardiles
- Instituto Universitario de Bio-Orgánica Antonio González and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Protein tyrosine phosphatase 1B (PTP1B) modulates palmitate-induced cytokine production in macrophage cells. Inflamm Res 2012; 62:239-46. [DOI: 10.1007/s00011-012-0573-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/09/2012] [Accepted: 10/28/2012] [Indexed: 12/20/2022] Open
|
33
|
Chisari AN, Echarte SM, Podaza E, Fabregat I. Lack of aminoacids in mouse hepatocytes in culture induces the selection of preneoplastic cells. BMC Proc 2012. [PMCID: PMC3395067 DOI: 10.1186/1753-6561-6-s3-p13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Miranda S, González-Rodríguez Á, García-Ramírez M, Revuelta-Cervantes J, Hernández C, Simó R, Valverde ÁM. Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J Cell Physiol 2012; 227:2352-62. [PMID: 21826649 DOI: 10.1002/jcp.22970] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we found an imbalance between stress-mediated and survival signaling and elevated apoptotic markers in retinal pigment epithelium (RPE) from diabetic patients. Since fenofibric acid (FA) treatment reduces the progression of diabetic retinopathy (DR), we investigated the effect of hyperglycemia and hypoxia, two components of the diabetic milieu, on stress, apoptosis, and survival pathways in ARPE-19 cells (immortalized human RPE cell line) and whether FA is able to prevent the deleterious effects induced by these conditions. ARPE-19 cells cultured in high-glucose (HG) medium or under hypoxia (1% oxygen)-induced phosphorylation of the stress-activated kinases JNK and p38 MAPK. This effect was increased by the combination of both conditions. Likewise, hyperglycemia and hypoxia triggered the phosphorylation of the endoplasmic reticulum (ER) stress markers PERK and eIF2α and the induction of the pro-apoptotic transcription factor CHOP. Under these experimental conditions, reactive oxygen species (ROS) were elevated and the integrity of tight junctions was disrupted. Conversely, ARPE-19 cells treated with FA were protected against these deleterious effects induced by hyperglycemia and hypoxia. FA increased insulin-like growth factor I receptor (IGF-IR)-mediated survival signaling in cells cultured under hyperglycemia and hypoxia, thereby suppressing caspase-3 activation and down-regulation of BclxL. Moreover, FA increased LC3-II, an autophagy marker. In conclusion, our results demonstrated that FA elicits a dual protective effect in RPE by down-regulation of stress-mediated signaling and induction of autophagy and survival pathways. These molecular mechanisms could be involved in the beneficial effects of fenofibrate reported in clinical trials.
Collapse
Affiliation(s)
- Soledad Miranda
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Zheng LY, Zhou DX, Lu J, Zhang WJ, Zou DJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 420:680-4. [DOI: 10.1016/j.bbrc.2012.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 12/27/2022]
|
36
|
Ortiz C, Caja L, Bertran E, Gonzalez-Rodriguez Á, Valverde ÁM, Fabregat I, Sancho P. Protein-tyrosine phosphatase 1B (PTP1B) deficiency confers resistance to transforming growth factor-β (TGF-β)-induced suppressor effects in hepatocytes. J Biol Chem 2012; 287:15263-74. [PMID: 22427664 DOI: 10.1074/jbc.m111.303958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β (TGF-β) plays a dual role in hepatocytes, mediating both tumor suppressor and promoter effects. The suppressor effects of the cytokine can be negatively regulated by activation of survival signals, mostly dependent on tyrosine kinase activity. The aim of our work was to study the role of the protein-tyrosine phosphatase 1B (PTP1B) on the cellular responses to TGF-β, using for this purpose immortalized neonatal hepatocytes isolated from both PTP1B(+/+) and PTP1B(-/-) mice. We have found that PTP1B deficiency conferred resistance to TGF-β suppressor effects, such as apoptosis and growth inhibition, correlating with lower Smad2/Smad3 activation. Both responses were recovered in the presence of the general tyrosine kinase inhibitor genistein. PTP1B(-/-) cells showed elevated NF-κB activation in response to TGF-β. Knockdown of the NF-κB p65 subunit increased cell response in terms of Smads phosphorylation and apoptosis. Interestingly, these effects were accompanied by inhibition of Smad7 up-regulation. In addition, lack of PTP1B promoted an altered NADPH oxidase (NOX) expression pattern in response to TGF-β, strongly increasing the NOX1/NOX4 ratio, which was reverted by genistein and p65 knockdown. Importantly, NOX1 knockdown inhibited nuclear translocation of p65, promoted Smad phosphorylation, and decreased Smad7 levels. In summary, our results suggest that PTP1B deficiency confers resistance to TGF-β through Smad inhibition, an effect that is mediated by NOX1-dependent NF-κB activation, which in turn, increases the level of the Smad inhibitor Smad7 and participates in a positive feedback loop on NOX1 up-regulation.
Collapse
Affiliation(s)
- Conrad Ortiz
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institut (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells. Cell Signal 2012; 24:325-32. [DOI: 10.1016/j.cellsig.2011.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 11/22/2022]
|
38
|
Abstract
Type 2 Diabetes mellitus (T2D) is the most common endocrine disorder associated to metabolic syndrome (MS) and occurs when insulin secretion can no compensate peripheral insulin resistance. Among peripheral tissues, the liver controls glucose homeostasis due to its ability to consume and produce glucose. The molecular mechanism underlying hepatic insulin resistance is not completely understood; however, it involves the impairment of the insulin signalling network. Among the critical nodes of hepatic insulin signalling, insulin receptor substrate 2 (IRS2) and protein tyrosine phosphatase 1B (PTP1B) modulate the phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 pathway that controls the suppression of gluconeogenic genes. In this review, we will focus on recent findings regarding the molecular mechanism by which IRS2 and PTP1B elicit opposite effects on carbohydrate metabolism in the liver in response to insulin. Finally, we will discuss the involvement of the critical nodes of insulin signalling in non-alcoholic fatty liver disease (NAFLD) in humans.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
39
|
Mirasierra M, Fernández-Pérez A, Díaz-Prieto N, Vallejo M. Alx3-deficient mice exhibit decreased insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia 2011; 54:403-14. [PMID: 21104068 DOI: 10.1007/s00125-010-1975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Homeodomain transcription factors play an important role in the regulation of pancreatic islet function. In previous studies we determined that aristaless-like homeobox 3 (ALX3) is produced in islet cells, binds to the promoter of the insulin gene and regulates its expression. The purpose of the present study was to investigate the functional role of ALX3 in pancreatic islets and its possible involvement in the regulation of glucose homeostasis in vivo. METHODS Alx3-knockout mice were used. Glucose and insulin tolerance tests were carried out, and serum insulin concentrations were determined. Isolated islets were used to test insulin secretion and gene expression. The pancreatic islets were also studied using both confocal and conventional microscopy. RESULTS ALX3 deficiency resulted in increased blood glucose levels and impaired glucose tolerance in the presence of normal serum insulin concentrations. Insulin, glucagon and glucokinase expression were reduced in Alx3-null pancreatic islets. Reduced insulin content was reflected by decreased insulin secretion from isolated islets. Alx3-deficient islets also showed increased apoptosis, and morphometric analyses indicated that they were, on average, of smaller size than islets from control mice. ALX3 deficiency resulted in reduced beta cell mass. Finally, mature Alx3-null mice developed age-dependent insulin resistance due to impaired peripheral insulin receptor signalling. CONCLUSIONS/INTERPRETATION ALX3 participates in the regulation of the expression of essential genes for the function of pancreatic islets, and its deficiency alters the regulation of glucose homeostasis in vivo. We suggest that ALX3 constitutes a potential candidate to consider in the aetiopathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- M Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
González-Rodríguez Á, Gutierrez JAM, Sanz-González S, Ros M, Burks DJ, Valverde ÁM. Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 2010; 59:588-99. [PMID: 20028942 PMCID: PMC2828646 DOI: 10.2337/db09-0796] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2(-/-) mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice. Additionally, hepatic insulin signaling was assessed in control and IRS2(-/-) mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2(-/-) mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2(-/-) mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action.
Collapse
Affiliation(s)
- Águeda González-Rodríguez
- Institute of Biomedicine Alberto Sols, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | | | - Silvia Sanz-González
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Research Center Príncipe Felipe, Valencia, Spain
| | - Manuel Ros
- Faculty of Health Sciences, University Rey Juan Carlos, Madrid, Spain
| | - Deborah J. Burks
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Research Center Príncipe Felipe, Valencia, Spain
| | - Ángela M. Valverde
- Institute of Biomedicine Alberto Sols, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Corresponding author: Ángela M. Valverde,
| |
Collapse
|
41
|
Miranda S, González-Rodríguez A, Revuelta-Cervantes J, Rondinone CM, Valverde AM. Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal 2009; 22:645-59. [PMID: 20026400 DOI: 10.1016/j.cellsig.2009.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
Abstract
Insulin is an inducer of brown fat adipogenesis through the activation of a signalling network that involves positive/negative modulators. Given the importance of brown adipose tissue (BAT) for basal thermogenic energy expenditure, we investigated the role of PTP1B in the acquisition of terminal differentiated phenotype and in the apoptotic responses of brown adipocytes. Immortalized brown preadipocytes lacking (PTP1B(-/-)) or expressing (PTP1B(+/+)) PTP1B have been generated. PTP1B deficiency accelerated a full program of brown adipogenesis including induction of transcription factors, coactivators, adipogenic markers and signalling molecules. Fully differentiated PTP1B(-/-) brown adipocytes were resistant to tumor necrosis factor (TNFalpha)-induced apoptosis as these cells were protected against caspase-8 activation, FLIP degradation, Bid cleavage and caspase-3 activation compared to wild-type controls. These events were recovered by PTP1B rescue. Survival signalling including phosphorylation of IRS-1 and Akt/PKB and BclxL expression were decreased in TNFalpha-treated PTP1B(-/-) cells but not in the wild-type. Similarly, PTP1B(-/-) brown adipocytes were protected against resveratrol-induced apoptosis. Phosphorylation of Akt/PKB and Foxo1 phosphorylation/acetylation decreased exclusively in resveratrol-treated wild-type cells, leading to nuclear localization of Foxo1 and up-regulation of Bim. Thus, PTP1B inhibition could be of benefit against obesity by counteracting TNFalpha-induced brown fat atrophy, and combined with resveratrol might improve low-grade inflammation.
Collapse
Affiliation(s)
- Soledad Miranda
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC/UAM), C/ Arturo Pérez Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|
43
|
González-Rodriguez Á, Alba J, Zimmerman V, Kozma SC, Valverde ÁM. S6K1 deficiency protects against apoptosis in hepatocytes. Hepatology 2009; 50:216-29. [PMID: 19437488 PMCID: PMC2752632 DOI: 10.1002/hep.22915] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED The mammalian target of rapamycin (mTOR)/S6K1 signaling pathway controls cell growth and proliferation. To assess the importance of S6K1 in the balance between death and survival in the liver, we have generated immortalized hepatocyte cell lines from wild-type and S6K1-deficient (S6K1(-/-)) mice. In S6K1(-/-) hepatocytes, caspase-8 and the pro-apoptotic protein Bid were constitutively down-regulated as compared with wild-type. Moreover, S6K1(-/-) hepatocytes failed to respond to the apoptotic trigger of death receptor activation. Neither caspase-8 activation nor FLIP(L) degradation in response to tumor necrosis factor alpha (TNF-alpha) or anti-Fas antibody (Jo2) was observed in cells lacking S6K1. Downstream events such as Bid cleavage, cytochrome C release, caspase-3 activation, DNA laddering, as well as the percentage of apoptotic cells were attenuated as compared with wild-type. In addition, the anti-apoptotic protein Bclx(L) was down-regulated in TNF-alpha-treated or Jo2-treated wild-type hepatocytes, but this response was abolished in S6K1(-/-)cells. In vivo, S6K1-deficient mice were protected against concanavalin A-induced apoptosis. The withdrawal of growth factors strongly induced apoptosis in wild-type, but not in S6K1(-/-) hepatocytes. S6K1 deficiency did not decrease Bclx(L)/Bim ratio on serum withdrawal, thereby protecting cells from cytochrome C release and DNA fragmentation. At the molecular level, the lack of S6K1-mediated negative feedback decreased insulin receptor substrate-1 (IRS-1) serine phosphorylation, resulting in activation of survival pathways mediated by phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase (ERK). However, S6K1(-/-) hepatocytes underwent apoptosis on serum withdrawal in combination with phosphatidylinositol 3-kinase (PI3K) or ERK inhibitors. CONCLUSION This finding might explain the mechanism of resistance to mTOR inhibitors in cancer treatments and strongly suggests that the inhibition of S6K1 could protect against acute liver failure and, in combination with inhibitors that abrogate the sustained activation of Akt and ERK, could improve the efficacy of hepatocarcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Águeda González-Rodriguez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Javier Alba
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain
| | - Valeri Zimmerman
- Genome Research Institute. University of Cincinnati, 2108E Galbraith Road, Cincinnati, Ohio, USA
| | - Sara C Kozma
- Genome Research Institute. University of Cincinnati, 2108E Galbraith Road, Cincinnati, Ohio, USA
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.,Corresponding author (to whom reprint request should be addressed): Angela M. Valverde: Instituto de Investigaciones Biomédicas Alberto Sols (Centro mixto CSIC/UAM). C/Arturo Duperier 4. 28029-Madrid. Spain. ()
| |
Collapse
|
44
|
Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:183-246. [PMID: 19491056 DOI: 10.1016/s1937-6448(09)75006-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter examines the current state of knowledge about the expression profile, as well as biochemical properties and biological functions of the evolutionarily conserved protein PTPIP51. PTPIP51 is apparently expressed in splice variants and shows a particularly high expression in epithelia, skeletal muscle, placenta, and germ cells, as well as during mammalian development and in cancer. PTPIP51 is an in vitro substrate of Src- and protein kinase A, the PTP1B/TCPTP protein tyrosine phosphatases and interacts with 14-3-3 proteins, the Nuf2 kinetochore protein, the ninein-interacting CGI-99 protein, diacylglycerol kinase alpha, and also with itself forming dimers and trimers. Although the precise cellular function remains to be elucidated, the current data implicate PTPIP51 in signaling cascades mediating proliferation, differentiation, apoptosis, and motility.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
45
|
Stenzinger A, Märker D, Koch P, Hoffmann J, Baal N, Steger K, Wimmer M. Protein tyrosine phosphatase interacting protein 51 (PTPIP51) mRNA expression and localization and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) in human placenta of the first, second, and third trimester. J Histochem Cytochem 2008; 57:143-53. [PMID: 18854601 DOI: 10.1369/jhc.2008.951533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular localization of protein tyrosine phosphatase 51 (PTPIP51) and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) was studied in human placentae of different gestational stages. The expression of PTPIP51 protein and mRNA was observed in the syncytiotrophoblast and cytotrophoblast layer of placentae from the first, second, and third trimesters. In contrast, PTP1B expression was restricted to the syncytiotrophoblast during all gestational stages. Cells of the cytotrophoblasts and parts of the syncytiotrophoblasts expressing high amounts of PTPIP51 were found to execute apoptosis as shown by TdT-mediated dUTP-biotin nick end labeling assay, cytokeratin 18f, and caspase 3 expression. PTPIP51 could also be traced in the endothelium and smooth muscle cells of placental arterial and venous vessels, identified by double immunostainings with antibodies directed against van Willebrand factor and alpha-smooth muscle actin. Some of these cells showing a high PTPIP51 reactivity were Ki67 positive, indicating proliferation. Additionally, a small population of placental CD14-positive macrophages and mesenchymal cells within the villous stroma were detected as PTPIP51 positive. Our data suggest that both proteins, PTPIP51 and PTP1B, play a role in differentiation and apoptosis of the cytotrophoblast and syncytiotrophoblast, respectively. Moreover, PTPIP51 may also serve as a cellular signaling partner in angiogenesis and vascular remodeling.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes. Apoptosis 2008; 13:383-93. [DOI: 10.1007/s10495-008-0181-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Stuible M, Doody KM, Tremblay ML. PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev 2008; 27:215-30. [DOI: 10.1007/s10555-008-9115-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Nevado C, Benito M, Valverde AM. Role of insulin receptor and balance in insulin receptor isoforms A and B in regulation of apoptosis in simian virus 40-immortalized neonatal hepatocytes. Mol Biol Cell 2008; 19:1185-98. [PMID: 18172021 DOI: 10.1091/mbc.e07-05-0473] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the unique role of the insulin receptor (IR) and the balance of its isoforms A and B in the regulation of apoptosis in simian virus 40 (SV40)-immortalized neonatal hepatocytes. Immortalized hepatocytes lacking (HIR KO) or expressing the entire IR (HIR LoxP), and cells expressing either IRA (HIR RecA) or IRB (HIR RecB) have been generated. IR deficiency in hepatocytes increases sensitivity to the withdrawal of growth factors, because these cells display an increase in reactive oxygen species, a decrease in Bcl-x(L), a rapid accumulation of nuclear Foxo1, and up-regulation of Bim. These events resulted in acceleration of caspase-3 activation, DNA laddering, and cell death. The single expression of either IRA or IRB produced a stronger apoptotic phenotype. In these cells, protein complexes containing IRA or IRB and Fas/Fas-associating protein with death domain activated caspase-8, and, ultimately, caspase-3. In hepatocytes expressing IRA, Bid cleavage and cytochrome C release were increased whereas direct activation of caspase-3 by caspase-8 and a more rapid apoptotic process occurred in hepatocytes expressing IRB. Conversely, coexpression of IRA and IRB in IR-deficient hepatocytes rescued from apoptosis. Our results suggest that balance alteration of IRA and IRB may serve as a ligand-independent apoptotic trigger in hepatocytes, which may regulate liver development.
Collapse
Affiliation(s)
- Carmen Nevado
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|