1
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
2
|
Qiu Z, Wang Y, Zhang Z, Qin R, Peng Y, Tang W, Xi Y, Tian G, Zhang Y. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol 2022; 12:1052672. [PMID: 36505809 PMCID: PMC9728583 DOI: 10.3389/fonc.2022.1052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major global health problem and one of the major causes of cancer-related death worldwide. It is very important to understand the pathogenesis of CRC for early diagnosis, prevention strategies and identification of new therapeutic targets. Intercellular adhesion molecule-1 (ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and immune process. It is also expressed by tumor cells and modulates their functions, including apoptosis, cell motility, invasion and angiogenesis. The interaction between ICAM-1 and its ligand may facilitate adhesion of tumor cells to the vascular endothelium and subsequently in the promotion of metastasis. ICAM-1 expression determines malignant potential of cancer. In this review, we will discuss the expression, function, prognosis, tumorigenesis, polymorphisms and therapeutic implications of ICAM-1 in CRC.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao Zhang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qin
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Peng
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yan Xi
- Department of Geriatrics, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Agapov MA, Krivonosova DA, Semina E, Kakotkin VV, Garmanova TN, Markaryan DR. THE ROLE OF THE UROKINASE SYSTEM IN LYMPHOGENOUS METASTASIS OF COLORECTAL CANCER. SURGICAL PRACTICE 2021. [DOI: 10.38181/2223-2427-2021-4-68-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to study the role and relationship of the levels of the components of the urokinase system with lymphogenous metastasis in patients with colorectal cancer.Materials and methods: the study was carried out on the basis of the Medical Scientific and Educational Center of the Moscow State University named after M.V. Lomonosov from 2019 to 2021. The study included healthy donors (control group) and patients with a verified diagnosis of stage I-III colorectal cancer in accordance with the inclusion criteria; all patients underwent surgical resection of the primary tumor with lymphadenectomy of the appropriate level. All patients underwent determination of the level of uPA and uPAR in blood serum before surgery. We also analyzed the clinical and demographic data of the patients, as well as the pathomorphological characteristics of the tumor.Results. The study included 7 healthy donors and 49 patients with stage I-III colorectal cancer. The average level of serum urokinase in the control group was 2.7±1.04 ng / ml, in the study group – 4, 15±1.9 ng / ml (p = 0.071), the level of the urokinase receptor in the control and study groups was 1.36 ±0.8 ng / ml vs 3.22±2.06 ng / ml (p = 0.05). The average level of serum urokinase in patients without and with lesions of lymph nodes was 3.4±1.4 ng / ml and 4.4±2.3 ng / ml (p = 0.068).Conclusion. There is a tendency to an increase in the level of components of the urokinase system in the peripheral blood in patients with colon neoplasms in the preoperative period, depending on the presence of metastatic lesions of regional lymph nodes, which indicates the need for further research in this area.
Collapse
Affiliation(s)
- M. A. Agapov
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| | - D. A. Krivonosova
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| | - E. Semina
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| | - V. V. Kakotkin
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| | - T. N. Garmanova
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| | - D. R. Markaryan
- Moscow State University named after M.V. Lomonosov, Faculty of Fundamental Medicine (Lomonosov Moscow State University)
| |
Collapse
|
4
|
Identification of Two Novel CIL-102 Upregulations of ERP29 and FUMH to Inhibit the Migration and Invasiveness of Colorectal Cancer Cells by Using the Proteomic Approach. Biomolecules 2021; 11:biom11091280. [PMID: 34572494 PMCID: PMC8465048 DOI: 10.3390/biom11091280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino) phenyl]ethanone) is a major active agent of Camptotheca acuminata’s alkaloid derivative, and its anti-tumorigenic activity, a valuable biological property of the agent, has been reported in many types of cancer. In this study, we researched the novel CIL-102-induced protein for either the induction of cell apoptosis or the inhibition of cell migration/invasiveness in colorectal cancer cells (CRC) and their molecular mechanism. Firstly, our data showed that CIL-102 treatment not only increased the cytotoxicity of cells and the production of Reactive Oxygen Species (ROS), but it also decreased cell migration and invasiveness in DLD-1 cells. In addition, many cellular death-related proteins (cleavage caspase 9, cleavage caspase 3, Bcl-2, and TNFR1 and TRAIL) and JNK MAPK/p300 pathways were increased in a time-dependent manner. Using the proteomic approach with a MALDI-TOF-TOF analysis, CIL-102-regulated differentially expressed proteins were identified, including eight downregulated and 11 upregulated proteins. Among them, upregulated Endoplasmic Reticulum resident Protein 29 (ERP29) and Fumarate Hydratase (FUMH) by CIL-102 were blocked by the inhibition of ROS production, JNK activity, and p300/CBP (CREB binding protein) signaling pathways. Importantly, the knockdown of ERP29 and FUMH expression by shRNA abolished the inhibition of cell migration and invasion by CIL-102 in DLD-1 cells. Together, our findings demonstrate that ERP29 and FUMH were upregulated by CIL102 via ROS production, JNK activity, and p300/CBP pathways, and that they were involved in the inhibition of the aggressive status of colorectal cancer cells.
Collapse
|
5
|
Azar MRMH, Aghazadeh H, Mohammed HN, Sara MRS, Hosseini A, Shomali N, Tamjidifar R, Tarzi S, Mansouri M, Sarand SP, Marofi F, Akbari M, Xu H, Shotorbani SS. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int Immunopharmacol 2021; 92:107355. [PMID: 33429333 DOI: 10.1016/j.intimp.2020.107355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. The role of microRNAs (miRNAs/miRs) as small (19-25 nucleotides in length) non-coding RNA molecules that modify gene expression has been shown in several types of cancer. 5-Fluorouracil (5-FU) and oxaliplatin (Ox) are two common chemotherapeutic agents used to treat cancer. The present study aimed to evaluate the expression levels of miR-193a-5p in CRC, and its effect on the C-X-C Motif Chemokine Receptor 4 (CXCR4) target gene alone and in combination with chemotherapeutic drugs, to determine its possible role in chemoresistance. CRC tissues and adjacent non-cancerous tissue were obtained from 67 patients who had undergone surgery to determine the expression levels of miR-193a-5p and CXCR4. Subsequently, qPCR and Western blotting were performed to determine the effect of miR-193a-5p and chemotherapy drugs on CXCR4. َAlso, MTT assay, and flow cytometry was performed to determine their role in cell viability and apoptosis. Besides, the relationship between miR-193a-5p and CXCR4 with patients' clinical features was investigated. The results of the present study showed that miR-193a-5p was significantly downregulated, whereas CXCR4 was significantly upregulated in tumor tissues obtained from patients with CRC compared with the adjacent non-tumor healthy controls. In addition, the upregulation of miR-193-5p reduced the expression levels of CXCR4, particularly in combination with 5-FU and OX. Besides, using rescue experiments, the present study showed that miR-193a-5p replacement was able to suppress CXCR4-induced CRC cell proliferation by directly targeting CXCR4. Furthermore, there was a significant association between miR-193a-5p and CXCR4 with certain clinicopathological characteristics, particularly with metastasis-related features. These results suggest that miR-193a-5p serves a tumor-suppressive function in CRC and can directly target CXCR4 and decrease its mRNA and protein expression levels. Additionally, miR-193a-5p in combination with 5-FU and Ox potentiated reducing CXR4 expression, which may reveal its contribution to tumor chemoresistance. In conclusion, miR-193-5p may be applicable as a prognostic and diagnostic marker, and also serve as a therapeutic factor by reducing CXCR4 in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
| | - Hamed Aghazadeh
- Pharmaceutical Engineering Department, Faculty of Chemical Engineering, University of Tehran, Tehran 1417414418, Iran
| | | | - Mehdi Rezai Seghin Sara
- Department of Biochemistry, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Saeed Tarzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Mahmoud Mansouri
- University of Tehran, Master of Sciences in Applied Chemistry, Tehran 1417414418, Iran
| | - Sahar Pashaei Sarand
- Amirkabir University of Technology (Polytechnic of Tehran), Master of Sciences in Applied Chemistry, Tehran 441315875, Iran
| | - Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
6
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
7
|
Lee KC, Lee KF, Tung SY, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC, Kuo HC. Induction Apoptosis of Erinacine A in Human Colorectal Cancer Cells Involving the Expression of TNFR, Fas, and Fas Ligand via the JNK/p300/p50 Signaling Pathway With Histone Acetylation. Front Pharmacol 2019; 10:1174. [PMID: 31680958 PMCID: PMC6804634 DOI: 10.3389/fphar.2019.01174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Erinacine A, which is one of the major bioactive diterpenoid compounds extracted from cultured mycelia of H. erinaceus, displays great antitumorigenic activity. However, the molecular mechanisms underlying erinacine A inducing cancer cell apoptosis in colorectal cancer (CRC) remain unclear. This study found that treatment with erinacine A not only triggers the activation of extrinsic apoptosis pathways (TNFR, Fas, FasL, and caspases) but also suppresses the expression of antiapoptotic molecules Bcl-2 and Bcl-XL via a time-dependent manner in DLD-1 cells. Furthermore, phosphorylation of Jun N-terminus kinase (JNK1/2), NFκB p50, and p300 is involved in erinacine A–induced cancer cell apoptosis. Inhibition of these signaling pathways by kinase inhibitors blocks erinacine A–induced transcriptional activation implicates histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFR, Fas, and FasL as promoters. Moreover, histochemical and immunohistochemical analyses revealed that erinacine A treatment significantly induced the TNFR, Fas, and FasL levels in the in vivo xenograft mouse model. Together, these results demonstrated an increase in the cellular transcriptional levels of TNFR, Fas, and FasL by erinacine A induction to cell apoptosis via the activation of the JNK, p300, and NFκB p50 signaling modules, thereby providing a new mechanism for erinacine A treatment in vitro and in vivo.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Information Management & College of Liberal Education, Shu-Te University, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Shih Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
8
|
Pan B, Guo J, Liao Q, Zhao Y. β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncol Lett 2018; 15:5412-5416. [PMID: 29556293 DOI: 10.3892/ol.2018.8076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/23/2017] [Indexed: 01/22/2023] Open
Abstract
Integrins are transmembrane glycoproteins that consist of an α and a β subunit. Specific integrin heterodimers preferentially bind to distinct extracellular matrix (ECM) proteins to affect the characteristics of cells or the components of the ECM. Among the different integrins, β1 and β3 integrins serve essential roles in the progression of different cancer-associated processes, including the initiation, proliferation, survival, migration and invasion. Furthermore, previous studies have revealed a ratio between these two integrins in cancer cells, which also demonstrated that the functions of these two integrins are paradoxical. This indicated that the proliferation and metastasis of cancer cells are not always parallel and may be considered independently maintained. Additionally, the present review may assist in understanding certain aspects of cancer, and in making clinical decisions in a novel and more comprehensive manner.
Collapse
Affiliation(s)
- Boju Pan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
9
|
Lee KC, Lin CT, Chang SF, Chen CN, Liu JL, Huang WS. Effect of AICAR and 5-Fluorouracil on X-ray Repair, Cross-Complementing Group 1 Expression, and Consequent Cytotoxicity Regulation in Human HCT-116 Colorectal Cancer Cells. Int J Mol Sci 2017; 18:ijms18112363. [PMID: 29117108 PMCID: PMC5713332 DOI: 10.3390/ijms18112363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality and 5-Fluorouracil (5-FU) is the most common chemotherapy agent of CRC. A high level of X-ray repair cross complementing group 1 (XRCC1) in cancer cells has been associated with the drug resistance occurrence. Moreover, the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) has been indicated to regulate the cancer cell survival. Thus, this study was aimed to examine whether XRCC1 plays a role in the 5-FU/AMPK agonist (AICAR)-induced cytotoxic effect on CRC and the underlying mechanisms. Human HCT-116 colorectal cells were used in this study. It was shown that 5-FU increases the XRCC1 expression in HCT-116 cells and then affects the cell survival through CXCR4/Akt signaling. Moreover, 5-FU combined with AICAR further result in more survival inhibition in HCT-116 cells, accompanied with reduced CXCR4/Akt signaling activity and XRCC1 expression. These results elucidate the role and mechanism of XRCC1 in the drug resistance of HCT-116 cells to 5-FU. We also demonstrate the synergistic inhibitory effect of AMPK on 5-FU-inhibited HCT-116 cell survival under the 5-FU and AICAR co-treatment. Thus, our findings may provide a new notion for the future drug regimen incorporating 5-FU and AMPK agonists for the CRC treatment.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Department of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung 833, Taiwan.
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin 632, Taiwan.
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan.
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 613, Taiwan.
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan.
| | - Jing-Lan Liu
- Department of Pathology, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 600, Taiwan.
| | - Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| |
Collapse
|
10
|
Huang WS, Kuo YH, Kuo HC, Hsieh MC, Huang CY, Lee KC, Lee KF, Shen CH, Tung SY, Teng CC. CIL-102-Induced Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells via Upregulation of p21 and GADD45. PLoS One 2017; 12:e0168989. [PMID: 28068431 PMCID: PMC5221879 DOI: 10.1371/journal.pone.0168989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is a well-known, major active agent of the alkaloid derivative of Camptotheca acuminata with valuable biological properties, including anti-tumorigenic activity. In this study, we investigated the molecular mechanisms by which CIL-102 mediated the induction of cell death, and we performed cell cycle G2/M arrest to clarify molecular changes in colorectal cancer cells (CRC). Treatment of DLD-1 cells with CIL-102 resulted in triggering the extrinsic apoptosis pathway through the activation of Fas-L, caspase-8 and the induction of Bid cleavage and cytochrome c release in a time-dependent manner. In addition, CIL-102 mediated apoptosis and G2/M arrest by phosphorylation of the Jun N-terminus kinase (JNK1/2) signaling pathway. This resulted in the expression of NFκB p50, p300 and CREB-binding protein (CBP) levels, and in the induction of p21 and GADD45 as well as the decreased association of cdc2/cyclin B. Furthermore, treatment with the JNK1/2 (SP600125), NFκB (PDTI) or the p300/CBP (C646) inhibitors abolished CIL-102-induced cell cycle G2/M arrest and reversed the association of cdc2 with cyclin B. Therefore, we demonstrated that there was an increase in the cellular levels of p21 and GADD45 by CIL-102 reduction in cell viability and cell cycle arrest via the activation of the JNK1/2, NFκB p50, p300 and CBP signaling modules. Collectively, our results demonstrated that CIL-102 induced cell cycle arrest and apoptosis of colon cancer cells by upregulating p21 and GADD45 expression and by activating JNK1/2, NFκB p50 and p300 to provide a new mechanism for CIL-102 treatment.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Chien-Heng Shen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| |
Collapse
|
11
|
The Association of CXC Receptor 4 Mediated Signaling Pathway with Oxaliplatin-Resistant Human Colorectal Cancer Cells. PLoS One 2016; 11:e0159927. [PMID: 27668882 PMCID: PMC5036794 DOI: 10.1371/journal.pone.0159927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
The stromal cell-derived factor-1 (SDF-1)/CXC receptor 4 (CXCR4) axis plays an important role in tumor angiogenesis and invasiveness in colorectal cancer (CRC) progression. In addition, metastatic CRC remains one of the most difficult human malignancies to treat because of its chemoresistant behavior. However, the mechanism by which correlation occurs between CXCR4 and the clinical response of CRC to chemotherapy remains unknown. We generated chemoresistant cells with increasing doses of oxaliplatin (OXA) and 5-Fluorouracil (5FU) to develop resistance at a clinical dose. We found that the putative markers did not change in the parental cells, but HCT-116/OxR and HCT-116/5-FUR were more aggressive and had higher tumor growth (demonstrated by wound healing, chemotaxis assay, and a nude mice xenograft model) with the use of oxaliplatin. Apoptosis induced by oxaliplatin treatment was significantly decreased in HCT-116/OxR compared to the parental cells. Moreover, HCT-116/OxR cells displayed increased levels of p-gp, p-Akt p-ERK, p-IKBβ, CXCR4, and Bcl-2, but they also significantly inhibited the apoptotic pathways when compared to the parental strain. We evaluated the molecular mechanism governing the signaling pathway associated with anti-apoptosis activity and the aggressive status of chemoresistant cells. Experiments involving specific inhibitors demonstrated that the activation of the pathways associated with CXCR4, ERK1/2 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/Akt is critical to the functioning of the HCT-116/OxR and HCT-116/5-FUR characteristics of chemosensitivity. These findings elucidate the mechanism of CXCR4/PI3K/Akt downstream signaling and provide strategies to inhibit CXCR4 mediated signaling pathway in order to overcome CRC's resistance to chemotherapy.
Collapse
|
12
|
Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Hsieh MJ, Yeh CB, Chiou HL, Hsieh MC, Yang SF. Dioscorea nipponica Attenuates Migration and Invasion by Inhibition of Urokinase-Type Plasminogen Activator through Involving PI3K/Akt and Transcriptional Inhibition of NF-κB and SP-1 in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:177-95. [DOI: 10.1142/s0192415x16500129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. In our previous studies, we have reported that Dioscorea nipponica Makino extract (DNE) has anti-metastasis effects on human oral cancer cells. However, the effect of DNE on hepatoma metastasis have not been thoroughly investigated and remains poorly understood. To determine the effects of DNE on the migration and invasion in HCC cells we used a wound healing model, Boyden chamber assays, gelatin/casein zymography and Western blotting. Transcriptional levels of matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) were detected by real-time PCR and promoter assays. In this study, DNE treatment significantly inhibited the migration/invasion capacities of Huh7 cell lines. The results of gelatin/casein zymography and Western blotting revealed that the activities and protein levels of the MMP-9 and u-PA were inhibited by DNE. Tests of the mRNA levels, real-time PCR, and promoter assays evaluated the inhibitory effects of DNE on u-PA expression in human hepatoma cells. A chromatin immunoprecipitation (ChIP) assay showed not only that DNE inhibits u-PA expression, but also the inhibitory effects were associated with the down-regulation of the transcription factors of NF-[Formula: see text]B and SP-1 signaling pathways. Western blot analysis also showed that DNE inhibits PI3K and phosphorylation of Akt. In conclusion, these results show that u-PA expression may be a potent therapeutic target in the DNE-mediated suppression of HCC invasion/migration. DNE may have potential use as a chemo-preventive agent against liver cancer metastasis.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
- School of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
14
|
Dickerson EB, Bryan BA. Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma. Vet Sci 2015; 2:270-292. [PMID: 29061946 PMCID: PMC5644640 DOI: 10.3390/vetsci2030270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
Human angiosarcomas and canine hemangiosarcomas are highly aggressive cancers thought to arise from cells of vascular origin. The pathological features, morphological organization, and clinical behavior of canine hemangiosarcomas are virtually indistinct from those of human angiosarcomas. Overall survival with current standard-of-care approaches remains dismal for both humans and dogs, and each is likely to succumb to their disease within a short duration. While angiosarcomas in humans are extremely rare, limiting their study and treatment options, canine hemangiosarcomas occur frequently. Therefore, studies of these sarcomas in dogs can be used to advance treatment approaches for both patient groups. Emerging data suggest that angiosarcomas and hemangiosarcomas utilize beta adrenergic signaling to drive their progression by regulating the tumor cell niche and fine-tuning cellular responses within the tumor microenvironment. These discoveries indicate that inhibition of beta adrenergic signaling could serve as an Achilles heel for these tumors and emphasize the need to design therapeutic strategies that target tumor cell and stromal cell constituents. In this review, we summarize recent discoveries and present new hypotheses regarding the roles of beta adrenergic signaling in angiosarcomas and hemangiosarcomas. Because the use of beta adrenergic receptor antagonists is well established in human and veterinary medicine, beta blockade could provide an immediate adjunct therapy for treatment along with a tangible opportunity to improve upon the outcomes of both humans and dogs with these diseases.
Collapse
Affiliation(s)
- Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79912, USA.
| |
Collapse
|
15
|
Strong AL, Burow ME, Gimble JM, Bunnell BA. Concise review: The obesity cancer paradigm: exploration of the interactions and crosstalk with adipose stem cells. Stem Cells 2015; 33:318-26. [PMID: 25267443 DOI: 10.1002/stem.1857] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023]
Abstract
With the recognition of obesity as a global health crisis, researchers have devoted greater effort to defining and understanding the pathophysiological molecular pathways regulating the biology of adipose tissue and obesity. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, has been linked to an increased incidence and aggressiveness of colon, hematological, prostate, and postmenopausal breast cancers. The increased morbidity and mortality of obesity-associated cancers have been attributed to higher levels of hormones, adipokines, and cytokines secreted by the adipose tissue. The increased amount of adipose tissue also results in higher numbers of adipose stromal/stem cells (ASCs). These ASCs have been shown to impact cancer progression directly through several mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biologic properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. This review will discuss the links between obesity and cancer tumor progression, including obesity-associated changes in adipose tissue, inflammation, adipokines, and chemokines. Novel topics will include a discussion of the contribution of ASCs to this complex system with an emphasis on their role in the tumor stroma. The reciprocal and circular feedback loop between obesity and ASCs as well as the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine
| | | | | | | |
Collapse
|
16
|
Pan B, Liao Q, Niu Z, Zhou L, Zhao Y. Cancer-associated fibroblasts in pancreatic adenocarcinoma. Future Oncol 2015; 11:2603-10. [PMID: 26284509 DOI: 10.2217/fon.15.176] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most highly malignant tumors with a very poor prognosis. In addition to the cancer cells, the stroma of tumor can expand by 50% and influence cancer cell growth. Cancer-associated fibroblasts (CAFs) are important components of tumor stroma. Cancer cells, normal fibroblasts, normal epithelial cells as well as bone marrow-derived myofibroblasts contribute to the emergence of CAFs through various cytokines (e.g., TGF-β, SHH, PDGF) and epithelial-to-mesenchymal transition. CAFs affect cancer growth, survival, metastasis, angiogenesis and immunosurveillance through the secretion of various cytokines, such as CXCL12 and secreted protein acidic and rich in cystein. Also, CAFs correlate to the prognosis and chemoresistance of PDAC patients. As novel therapeutic targets, CAFs, and their relative factors, represent an important role in PDAC therapy.
Collapse
Affiliation(s)
- Boju Pan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100730, China
| | - Zheyu Niu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100730, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union, Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Chin CC, Chen CN, Kuo HC, Shi CS, Hsieh MC, Kuo YH, Tung SY, Lee KF, Huang WS. Interleukin-17 induces CC chemokine receptor 6 expression and cell migration in colorectal cancer cells. J Cell Physiol 2015; 230:1430-7. [PMID: 25201147 DOI: 10.1002/jcp.24796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
The CC chemokine receptor 6 (CCR6) and its ligand CCL20 are involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. In addition, interleukin-17 (IL-17), produced by a T cell subset named "Th17," has been identified as an important player in inflammatory responses, and has emerged as a mediator in inflammation-associated cancer. However, the relevance of IL-17 in the development and progression of CRC still remains to be explored. This study aimed to investigate the effect of IL-17 on the cell migration of CRC cells. Human CRC HCT-116 cells were used to study the effect of IL-17 on CCR6 expression and cell migration in CRC cells. IL-17 treatment induced migration of HCT-116 cells across the Boyden chamber membrane and increased the expression level of the CCR6. Inhibition of CCR6 by small interfering RNA (siRNA) and neutralizing antibody inhibited IL-17-induced cell migration. By using specific inhibitors and short hairpin RNA (shRNA), we demonstrated that the activation of ERK and p38 pathways are critical for IL-17-induced CCR6 expression and cell migration. Promoter activity and transcription factor ELISA assays showed that IL-17 increased NF-κB-DNA binding activity in HCT-116 cells. Inhibition of NF-κB activation by specific inhibitors and siRNA blocked the IL-17-induced CCR6 expression. Our findings support the hypothesis that CCR6 up-regulation stimulated by IL-17 may play an active role in CRC cell migration.
Collapse
Affiliation(s)
- Chih-Chien Chin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kuo HC, Chang JC, Kuo HC, Yu HR, Wang CL, Lee CP, Huang LT, Yang KD. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array. Arthritis Rheumatol 2015; 67:828-36. [PMID: 25470559 DOI: 10.1002/art.38976] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/25/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Kawasaki disease (KD) is characterized by systemic vasculitis, and it is the most common acquired heart disease in children. However, the etiology and immunopathogenesis of KD are still unclear. A genome-wide association study (GWAS) identified polymorphisms in CD40, BLK, and FCGR2A as the susceptibility genes for KD. No epigenetic array studies of KD have previously been published. This study was undertaken to investigate differences in DNA methylation in patients with KD as compared to controls. METHODS The HumanMethylation27 BeadChip (Illumina) was used to survey the differences in DNA methylation between KD patients and controls. DNA methylation array validation was performed in a separate cohort by pyrosequencing assay and reporter gene assays. Messenger RNA (mRNA) expression was determined, and the association of methylation with response to intravenous immunoglobulin (IVIG) treatment was analyzed. RESULTS HumanMethylation27 BeadChip assay showed a 15% difference in methylation of 10 genes between KD patients and controls. The FCGR2A cg24422489 group, which was recently reported to be associated with KD susceptibility in a GWAS, had significant hypomethylation of 15.54% less in the KD group than in the control group. Validation of FCGR2A methylation in another cohort also showed significant hypomethylation in the KD group (5 of 5 CpG sites [P < 0.01]; n = 43 in the KD group and n = 55 in the control group). KD patients with IVIG resistance showed hypomethylation of 5 CpG sites (P < 0.05). FCGR2A mRNA expression was significantly increased in patients in the acute stage of KD compared to controls. Reporter gene assays indicated that the CpG sites of the FCGR2A promoter region were sufficient to modulate gene expression. CONCLUSION This is the first study to examine the DNA methylation array in KD and identify a role of hypomethylation of FCGR2A in susceptibility to KD and IVIG resistance.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu CC, Kuo HC, Wang FS, Jou MH, Lee KC, Chuang JH. Upregulation of TLRs and IL-6 as a marker in human colorectal cancer. Int J Mol Sci 2014; 16:159-77. [PMID: 25547486 PMCID: PMC4307241 DOI: 10.3390/ijms16010159] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) not only form an important part of the innate immune system but also serve to activate the adaptive immune system in response to cancer. Real-time PCR; immunohistochemical stain and Western blotting analyses were performed to clarify molecular alterations in colorectal cancer (CRC) patients. We identified Toll-like receptor 1 (TLR1), TLR2, TLR4 and TLR8 gene expression levels and downstream gene, i.e., interleukin-6 (IL-6), IL-8, interferon-α (IFN-α) and myeloid differentiation primary-response protein-88 (MyD88), expression levels in CRC patients and in cancer cell lines. CRC tissues have higher TLR1, TLR2, TLR4, TLR8, IL-6 and IL-8 gene expression levels than do the normal colon mucosa (p < 0.05). TLR2 expression varied in different cell types (mucosa and lymphocytes). There was no difference in the MyD88 and IFN-α gene expression levels between cancerous and normal colon mucosa. CRC patients had higher levels of IL-6 (p = 0.002) and IL-8 (p = 0.038) expression than healthy volunteers did; and higher IL-6 and IL-8 expression was also found to signify a higher risk of recurrence. CL075 (3M002) treatments can reduce the production of IL-8 in different cancer cell lines. The signaling pathway of TLRs in cancer tissue is different from that in normal cells; and is MyD88-independent. Higher expression levels of TLR1, TLR2, TLR 4 and TLR 8 mRNA were related to upregulation inflammatory cytokines IL-6 and IL-8 gene expression in tissue and to the upregulation of IL-6 in blood. The concentration of IL-6 in serum can be used as an indicator of the possibility of CRC recurrence. Treatment with 3M002 can reduce IL-6 production in vitro and may prevent CRC recurrence. Our findings provide evidence that TLR1, TLR2, TLR4 and TLR8 gene expression induce downstream IL-6 and IL-8 gene expression; detection of these expression levels can serve as a CRC marker.
Collapse
Affiliation(s)
- Chien-Chang Lu
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan.
| | - Feng-Sheng Wang
- Department of Medical Research, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Ming-Huey Jou
- Department of Medical Research, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiin-Haur Chuang
- Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
20
|
|
21
|
Hsieh YY, Shen CH, Huang WS, Chin CC, Kuo YH, Hsieh MC, Yu HR, Chang TS, Lin TH, Chiu YW, Chen CN, Kuo HC, Tung SY. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells. J Biomed Sci 2014; 21:59. [PMID: 24929539 PMCID: PMC4089564 DOI: 10.1186/1423-0127-21-59] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. RESULTS Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. CONCLUSIONS Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hsing-Chun Kuo
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | | |
Collapse
|
22
|
Yeh CB, Yu YL, Lin CW, Chiou HL, Hsieh MJ, Yang SF. Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma. Altern Ther Health Med 2014; 14:141. [PMID: 24886639 PMCID: PMC4012530 DOI: 10.1186/1472-6882-14-141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Background The survival rate of malignant tumors, and especially hepatocellular carcinoma (HCC), has not improved primarily because of uncontrolled metastasis. In our previous studies, we have reported that Terminalia catappa leaf extract (TCE) exerts antimetastasis effects on HCC cells. However, the molecular mechanisms of urokinase-type plasminogen activator (u-PA) in HCC metastasis have not been thoroughly investigated, and remain poorly understood. Methods The activities and protein levels of u-PA were determined by casein zymography and western blotting. Transcriptional levels of u-PA were detected by real-time PCR and promoter assays. Results We found that treatment of Huh7 cells with TCE significantly reduced the activities, protein levels and mRNA levels of u-PA. A chromatin immunoprecipitation (ChIP) assay showed that TCE inhibited the transcription protein of nuclear factors SP-1 and NF-κB. TCE also did inhibit the effects of u-PA by reducing the phosphorylation of ERK1/2 pathway. Conclusions These results show that u-PA expression may be a potent therapeutic target in the TCE-mediated suppression of HCC metastasis.
Collapse
|
23
|
Teng CC, Kuo HC, Sze CI. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells. Toxicol Appl Pharmacol 2013; 272:579-90. [DOI: 10.1016/j.taap.2013.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023]
|
24
|
Wang B, Wang W, Niu W, Liu E, Liu X, Wang J, Peng C, Liu S, Xu L, Wang L, Niu J. SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin αvβ6. Carcinogenesis 2013; 35:282-91. [PMID: 24085800 DOI: 10.1093/carcin/bgt331] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) displays a predilection for metastasis to liver. Although stromal cell-derived factor-1 (SDF-1)/CXCR4 plays an important role in the liver metastasis, the molecular mechanism still remains obscure. We previously reported that integrin αvβ6 was implicated in the progression of CRC. However, no data are currently available on the cross talk between CXCR4 and αvβ6. In the present study, we first demonstrated the cross talk between CXCR4 and αvβ6 and their role in liver metastasis of CRC. We analyzed 159 human CRC samples and found that expression of CXCR4 and αvβ6 was significantly associated with liver metastasis, and interestingly expression of αvβ6 significantly correlated with expression of CXCR4. Both CXCR4 and αvβ6 were highly expressed in metastatic CRC cell lines HT-29 and WiDr, whereas both of them were exiguous in non-metastatic cell line Caco-2. Furthermore, inhibition of αvβ6 significantly decreased SDF-1α-induced cell migration in vitro. SDF-1/CXCR4 could upregulate αvβ6 expression through phosphorylation of ERK and activation of Ets-1 transcription factor. In conclusion, we demonstrate that SDF-1/CXCR4 induces directional migration and liver metastasis of CRC cells by upregulating αvβ6 through ERK/Ets-1 pathway. These data support combined inhibition of CXCR4 and αvβ6 to prevent development of liver metastasis of CRC.
Collapse
Affiliation(s)
- Ben Wang
- Department of Hepatobiliary Surgery
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li PG, Mu TH, Deng L. Anticancer effects of sweet potato protein on human colorectal cancer cells. World J Gastroenterol 2013; 19:3300-3308. [PMID: 23745032 PMCID: PMC3671082 DOI: 10.3748/wjg.v19.i21.3300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/25/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of proteins purified from sweet potato storage roots on human colorectal cancer cell lines.
METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 nuclear staining and Boyden transwell chamber methods were used to determine whether purified sweet potato protein (SPP) from fresh sweet potato roots affected proliferation, migration and invasion, respectively, of human colorectal cancer SW480 cells in vitro. The inhibitory effects of SPP on growth of human colorectal cancer HCT-8 cells intraperitoneally xenografted in nude mice and spontaneous lung metastasis of murine Lewis lung carcinoma 3LL cells subcutaneously transplanted in C57 BL/6 mice were also investigated in vivo.
RESULTS: SPP inhibited the proliferation of SW480 cells in a dose-dependent manner, with an IC50 value of 38.732 μmol/L (r2 = 0.980, P = 0.003) in the MTT assay. Hoechst 33258 nuclear staining further revealed inhibition of cell viability and induction of apoptosis by SPP. The transwell assay disclosed significant reduction in migrated cells/field by 8 μmol/L SPP (8.4 ± 2.6 vs 23.3 ± 5.4, P = 0.031) and invaded cells/field through the ECMatrix by 0.8 μmol/L SPP, compared with the control (25.2 ± 5.2 vs 34.8 ± 6.1, P = 0.038). Both intraperitoneal (ip) and intragastric (ig) administration of SPP led to significant suppression of growth of intraperitoneally inoculated HCT-8 cells in nude mice to 58.0% ± 5.9% (P = 0.037) and 43.5% ± 7.1% (P = 0.004) of the controls, respectively, after 9 d treatment. Bloody ascites additionally disappeared after ip injection of trypsin inhibitor. Notably, ig and ip administration of SPP induced a significant decrease in spontaneous pulmonary metastatic nodule formation in C57 BL/6 mice (21.0 ± 12.3 and 27.3 ± 12.7 nodules/lung vs 42.5 ± 4.5 nodules/lung in controls, respectively, P < 0.05) after 25 d treatment. Moreover, the average weight of primary tumor nodules in the hind leg of mice decreased from 8.2 ± 1.3 g/mice in the control to 6.1 ± 1.4 g/mice in the ip group (P = 0.035).
CONCLUSION: SPP exerts significant antiproliferative and antimetastatic effects on human colorectal cancer cell lines, both in vitro and in vivo.
Collapse
|
26
|
Huang WS, Chen CN, Sze CI, Teng CC. Visfatin induces stromal cell-derived factor-1 expression by β1 integrin signaling in colorectal cancer cells. J Cell Physiol 2013; 228:1017-24. [PMID: 23042611 DOI: 10.1002/jcp.24248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
Obesity has been shown to be associated with the risk of colorectal cancer (CRC). Adipokines produced by the adipose tissue are linked to some malignancies, including CRC. Visfatin is an adipokine shown to be a biomarker of CRC malignant potential. In addition, the stromal cell-derived factor-1 (SDF-1) has been reported to play a role in CRC progression. Although the relationship between visfatin and CRC has been established, the underlying mechanism has not been clarified. We investigated the molecular mechanism governing the interaction between visfatin stimulation and SDF-1 expression in human CRC cell lines. We found that visfatin stimulation led to an increase in the expression and secretion of SDF-1 in CRC DLD-1 and SW48 cells. Experiments involving specific inhibitors and small interfering RNA demonstrated that the activation of ERK and p38 mitogen-activated protein kinase (MAPK) pathways are critical for visfatin-induced SDF-1 expression. Analysis of transcription factor binding using ELISA and luciferase reporter assays revealed that visfatin increased NF-κB- and AP-1-DNA-binding activities in DLD-1 cells. Inhibition of NF-κB and AP-1 activation blocked the visfatin-induced expression and activity of the SDF-1 promoter. The effect of visfatin on DLD-1 signaling and SDF-1 expression was mediated by β1 integrin. In summary, these findings provide novel insights pertaining to the pathophysiological role of visfatin in CRC.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | |
Collapse
|
27
|
Tung SY, Chang SF, Chou MH, Huang WS, Hsieh YY, Shen CH, Kuo HC, Chen CN. CXC chemokine ligand 12/stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1. J Biomed Sci 2012; 19:91. [PMID: 23098564 PMCID: PMC3488341 DOI: 10.1186/1423-0127-19-91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion molecule-1 (ICAM-1) expression and cell adhesion to endothelium. Results SDF-1 treatment induced adhesion of DLD-1 cells to the endothelium and increased the expression level of the ICAM-1. Inhibition of ICAM-1 by small interfering RNA (siRNA) and neutralizing antibody inhibited SDF-1-induced cell adhesion. By using specific inhibitors and short hairpin RNA (shRNA), we demonstrated that the activation of ERK, JNK and p38 pathways is critical for SDF-1-induced ICAM-1 expression and cell adhesion. Promoter activity and transcription factor ELISA assays showed that SDF-1 increased Sp1-, C/EBP-β- and NF-κB-DNA binding activities in DLD-1 cells. Inhibition of Sp1, C/EBP-β and NF-κB activations by specific siRNA blocked the SDF-1-induced ICAM-1 promoter activity and expression. The effect of SDF-1 on cell adhesion was mediated by the CXCR4. Conclusion Our findings support the hypothesis that ICAM-1 up-regulation stimulated by SDF-1 may play an active role in CRC cell adhesion.
Collapse
Affiliation(s)
- Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang WS, Kuo YH, Chin CC, Wang JY, Yu HR, Sheen JM, Tung SY, Shen CH, Chen TC, Sung ML, Liang HF, Kuo HC. Proteomic analysis of the effects of baicalein on colorectal cancer cells. Proteomics 2012; 12:810-9. [DOI: 10.1002/pmic.201100270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Chih-Chien Chin
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Jeng-Yi Wang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Hong-Ren Yu
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Te-Chuan Chen
- Division of Nephrology; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Mei-Lan Sung
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| | - Hwey-Fang Liang
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| |
Collapse
|
29
|
Mo JH, Choi IJ, Jeong WJ, Jeon EH, Ahn SH. HIF-1α and HSP90: target molecules selected from a tumorigenic papillary thyroid carcinoma cell line. Cancer Sci 2012; 103:464-71. [PMID: 22151618 DOI: 10.1111/j.1349-7006.2011.02181.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is important to properly identify aggressive tumors among differentiated thyroid cancers that are most often indolent. By comparison of a tumorigenic clone with an originally less tumorigenic papillary thyroid carcinoma (PTC) cell line, we looked for markers involved in the aggressive biology of thyroid cancer. Human PTC cell lines BHP10-3 and its tumorigenic subclone BHP10-3SC(mice) were compared using microarray analysis. Upregulated genes in the tumorigenic clone were selected for RT-PCR, immunoblot analysis and immunohistochemistry in human tissue. Hypoxia-inducible factor (HIF)-1α and its chaperone protein heat shock protein (HSP)90 showed significantly increased expression in BHP10-3SC(mice) and human PTC tissue. These two genes, HIF-1α and HSP90, were further validated using siRNA gene knockdown, pharmacological inhibition using 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of both HSP90 and HIF-1α and in vivo orthotopic animal model. Invasiveness of BHP10-3SC(mice) was abrogated by blockade of HIF-1αin vitro by both siRNA and 17-AAG. The same finding was demonstrated in the orthotopic animal model. These findings support that HIF-1α is important in tumorigenesis of PTC and that it may serve to be an important target for identification and treatment of aggressive tumors.
Collapse
Affiliation(s)
- Ji-Hun Mo
- Department of Otorhinolaryngology, Head and Neck Surgery, Dankook University College of Medicine, Cheonansi, Korea
| | | | | | | | | |
Collapse
|
30
|
Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol Appl Pharmacol 2011; 255:316-26. [PMID: 21803068 DOI: 10.1016/j.taap.2011.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
Abstract
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo.
Collapse
|