1
|
van Santen VJB, Jin J, Hogervorst JMA, Bakker AD. Shear loaded osteocyte-like-cells affect epithelial and mesenchymal gene expression in DU145 prostate cancer cells, while decreasing their invasion in vitro. Biochem Biophys Res Commun 2023; 646:70-77. [PMID: 36706708 DOI: 10.1016/j.bbrc.2023.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Once prostate cancer (PC) metastasizes towards bone the 5-year survival rates drop with 70%, but it is largely unknown why. Bone is continuously mechanically loaded, which likely modulates the paracrine signaling from osteocytes towards PC cells to affect tumor behavior. We hypothesize that shear loaded osteocytes affect PC cell proliferation, invasion and epithelial and mesenchymal-related gene and protein expression. We cultured human DU145 cells, a commonly used cell line for prostate cancer metastases, in the conditioned medium (CM) from shear loaded or unloaded human osteocyte-like-cells (OCYLCs) for 1 and 3 days and assessed their number by staining nuclei with DAPI, their invasion by performing an invasion assay, and epithelial-to-mesenchymal (EMT)-related gene and protein expression by qPCR and immunocytochemistry. CM of shear loaded OCYLCs did not affect DU145 cell number compared to CM of static cultured OCYLCs, but decreased their invasion 1.34-fold. CM of shear loaded OCYLCs enhanced expression of epithelial genes: SYND1 and CDH1 after day 1, while it also enhanced CDH1 after day 3. CM of shear loaded osteocytes enhanced mesenchymal genes: VMN, Snail and MIP2 after day 1, while it decreased expression of mesenchymal CYR61 after day 3. We conclude that CM of shear loaded OCYLCs does not affect DU145 cell proliferation, but decreases their invasion, and differentially affects their EMT-related gene expression. Identifying paracrine signals from shear loaded osteocytes that decrease PC cell invasion may provide novel leads in developing treatments for bone metastases from PC.
Collapse
Affiliation(s)
- Victor J B van Santen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Oguchi S, Sakamoto T, Hoshi K, Hikita A. Quantitative analyses of matrices, osteoblasts, and osteoclasts during bone remodeling using an in vitro system. J Bone Miner Metab 2023; 41:3-16. [PMID: 36344637 DOI: 10.1007/s00774-022-01381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Bone remodeling plays a central role in the maintenance of bone homeostasis. Our group has established an in vitro system by which the cellular events during bone remodeling can be observed longitudinally. This study used this system to quantitatively analyze osteoblasts, osteoclasts, and matrices to elucidate their temporal changes and correlations. MATERIALS AND METHODS Osteoblasts from EGFP mice were cultured to form calcified nodules, followed by co-culture with bone marrow macrophages from Tnfrsf11aCre/+ x Ai14 mice for 3 weeks (resorption phase). Then cells were cultured with osteoblast differentiation medium for 3 weeks (formation phase). The same sites were observed weekly using 2-photon microscopy. Matrices were detected using second harmonic generation. Parameters related to matrices, osteoblasts, and osteoclasts were quantified and statistically analyzed. RESULTS Resorption and replenishment of the matrix were observed at the same sites by 2 photon microscopy. Gross quantification revealed that matrix and osteoblast parameters decreased in the resorption phase and increased in the formation phase, while osteoclast parameters showed the opposite pattern. When one field of view was divided into 16 regions of interest (ROIs) and correlations between parameters were analyzed in each ROI, decreased and increased matrix volumes were moderately correlated. Parameters of matrices and osteoblasts, and those of matrices and osteoclasts exhibited moderate correlations, while those of osteoblasts and osteoclasts were only weakly correlated. CONCLUSION Several correlations between cells and matrix during remodeling were demonstrated quantitatively. This system may be a powerful tool for the research of bone remodeling.
Collapse
Affiliation(s)
- Shuya Oguchi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
- Department of Oral‑Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan.
| |
Collapse
|
3
|
Remmers SJA, de Wildt BWM, Vis MAM, Spaander ESR, de Vries RBM, Ito K, Hofmann S. Osteoblast-osteoclast co-cultures: A systematic review and map of available literature. PLoS One 2021; 16:e0257724. [PMID: 34735456 PMCID: PMC8568160 DOI: 10.1371/journal.pone.0257724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023] Open
Abstract
Drug research with animal models is expensive, time-consuming and translation to clinical trials is often poor, resulting in a desire to replace, reduce, and refine the use of animal models. One approach to replace and reduce the use of animal models is to use in vitro cell-culture models. To study bone physiology, bone diseases and drugs, many studies have been published using osteoblast-osteoclast co-cultures. The use of osteoblast-osteoclast co-cultures is usually not clearly mentioned in the title and abstract, making it difficult to identify these studies without a systematic search and thorough review. As a result, researchers are all developing their own methods, leading to conceptually similar studies with many methodological differences and, as a consequence, incomparable results. The aim of this study was to systematically review existing osteoblast-osteoclast co-culture studies published up to 6 January 2020, and to give an overview of their methods, predetermined outcome measures (formation and resorption, and ALP and TRAP quantification as surrogate markers for formation and resorption, respectively), and other useful parameters for analysis. Information regarding these outcome measures was extracted and collected in a database, and each study was further evaluated on whether both the osteoblasts and osteoclasts were analyzed using relevant outcome measures. From these studies, additional details on methods, cells and culture conditions were extracted into a second database to allow searching on more characteristics. The two databases presented in this publication provide an unprecedented amount of information on cells, culture conditions and analytical techniques for using and studying osteoblast-osteoclast co-cultures. They allow researchers to identify publications relevant to their specific needs and allow easy validation and comparison with existing literature. Finally, we provide the information and tools necessary for others to use, manipulate and expand the databases for their needs.
Collapse
Affiliation(s)
- Stefan J. A. Remmers
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bregje W. M. de Wildt
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michelle A. M. Vis
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eva S. R. Spaander
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob B. M. de Vries
- Department for Health Evidence, SYRCLE, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Keita Ito
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Hofmann
- Department of Biomedical Engineering and the Institute of Complex Molecular Systems, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
5
|
Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, Candiani G, Lombardi G, Moretti M. Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication 2021; 13. [PMID: 33735854 DOI: 10.1088/1758-5090/abefea] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment.
Collapse
Affiliation(s)
- Maria Vittoria Colombo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Mara Gilardi
- Institute of Pathology, University Hospital of Basel, Basel 4056, Switzerland
| | - Veronica Sansoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopedic Biotechnology Lab, 20161 Milano, Italy
| | - Gabriele Candiani
- Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań 61-871, Poland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milano, Italy.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
6
|
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers (Basel) 2021; 13:507. [PMID: 33572757 PMCID: PMC7865550 DOI: 10.3390/cancers13030507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles.
Collapse
Affiliation(s)
- Anne M. Hughes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Alexus D. Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Alison B. Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Kristy M. Shine
- Health Design Lab, Jefferson Bioprinting Lab, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M. Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| |
Collapse
|
7
|
Bock N. Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research. Methods Mol Biol 2020; 2054:23-57. [PMID: 31482446 DOI: 10.1007/978-1-4939-9769-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One of the major limitations of studying cancer in distant sites is the lack of representative laboratory models that mimic the biological processes occurring in vivo. In this protocol, we demonstrate the application of melt electrowriting technology (MEW) to provide 3D microfiber scaffolds suitable for this purpose. Using primary human cells, MEW scaffolds support the reproducible formation of human bone-like 3D microenvironments. Co-culture with human cancer cells provides an in vitro bioengineered model of metastases in bone, suitable for investigating cell-cell and cell-matrix interactions between bone and cancer cells. By proposing variations to standard tissue histology, immunohistochemistry, immunofluorescence, and 3D imaging techniques, we show how to characterize cell morphology and protein expression in a reproducibly engineered bone metastatic microtissue.
Collapse
Affiliation(s)
- Nathalie Bock
- Faculty of Health, School of Biomedical Sciences, Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia. .,Translational Research Institute (TRI), Queensland University of Technology (QUT), Woolloongabba, QLD, Australia. .,Centre in Regenerative Medicine, IHBI, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.
| |
Collapse
|
8
|
Rao SR, Edwards CM, Edwards JR. Modeling the Human Bone-Tumor Niche: Reducing and Replacing the Need for Animal Data. JBMR Plus 2020; 4:e10356. [PMID: 32258970 PMCID: PMC7117847 DOI: 10.1002/jbm4.10356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Bone is the most common site for cancer metastasis. Understanding the interactions within the complex, heterogeneous bone-tumor microenvironment is essential for the development of new therapeutics. Various animal models of tumor-induced bone disease are routinely used to provide valuable information on the relationship between cancer cells and the skeleton. However, new model systems exist that offer an alternative approach to the use of animals and might more accurately reveal the cellular interactions occurring within the human bone-tumor niche. This review highlights replacement models that mimic the bone microenvironment and where cancer metastases and tumor growth might be assessed alongside bone turnover. Such culture models include the use of calcified regions of animal tissue and scaffolds made from bone mineral hydroxyapatite, synthetic polymers that can be manipulated during manufacture to create structures resembling trabecular bone surfaces, gel composites that can be modified for stiffness and porosity to resemble conditions in the tumor-bone microenvironment. Possibly the most accurate model system involves the use of fresh human bone samples, which can be cultured ex vivo in the presence of human tumor cells and demonstrate similar cancer cell-bone cell interactions as described in vivo. In addition, the use of mathematical modeling and computational biology approaches provide an alternative to preliminary animal testing. The use of such models offers the capacity to mimic significant elements of the human bone-tumor environment, and complement, refine, or replace the use of preclinical models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Claire M Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
9
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
10
|
Novel Techniques to Study the Bone-Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:1-18. [PMID: 32030644 DOI: 10.1007/978-3-030-35727-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cancers commonly metastasize to bone. After entering the bone, cancer cells can interact with surrounding stromal cells, which ultimately influences metastasis progression. Extracellular vesicles, direct cell contact and gap junctions, and cytokines are all mechanisms of intercellular communication that have been observed to occur in the bone microenvironment. These methods of cellular crosstalk can occur between cancer cells and a variety of stromal cells, with each interaction having a different impact on cancer progression. Communication between cancer cells and bone-resident cells has previously been implicated in processes such as cancer cell trafficking and arrest in bone, cancer cell dormancy, cancer cell reactivation, and proliferation. In this chapter we review innovative techniques and model systems that can be used to study bidirectional crosstalk between cancer cells and stromal cells in the bone, with an emphasis specifically on bone-metastatic breast cancer. Investigating how metastatic cancer cells interact with, and are influenced by, the bone microenvironment is crucial to better understanding of the progression of bone metastasis.
Collapse
|
11
|
Salamanna F, Borsari V, Contartese D, Costa V, Giavaresi G, Fini M. What Is the Role of Interleukins in Breast Cancer Bone Metastases? A Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2019; 11:cancers11122018. [PMID: 31847214 PMCID: PMC6966526 DOI: 10.3390/cancers11122018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer cells produce stimulators of bone resorption known as interleukins (ILs). However, data on the functional roles of ILs in the homing of metastatic breast cancer to bone are still fragmented. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science Core Collection) to identify preclinical reports, and in three clinical registers (ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, European Union (EU) Clinical Trials Register) to identify clinical trials, from 2008 to 2019. Sixty-seven preclinical studies and 11 clinical trials were recognized as eligible. Although preclinical studies identified specific key ILs which promote breast cancer bone metastases, which have pro-metastatic effects (e.g., IL-6, IL-8, IL-1β, IL-11), and whose inhibition also shows potential preclinical therapeutic effects, the clinical trials focused principally on ILs (IL-2 and IL-12), which have an anti-metastatic effect and a potential to generate a localized and systemic antitumor response. However, these clinical trials are yet to post any results or conclusions. This inconsistency indicates that further studies are necessary to further develop the understanding of cellular and molecular relations, as well as signaling pathways, both up- and downstream of ILs, which could represent a novel strategy to treat tumors that are resistant to standard care therapies for patients affected by breast cancer bone disease.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Veronica Borsari
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
- Correspondence: ; Tel.: +39-051-6366-6558
| | - Deyanira Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Viviana Costa
- Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, IRCCS Istituto Ortopedico Rizzoli, 90133 Palermo, Italy;
| | - Gianluca Giavaresi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| | - Milena Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.S.); (D.C.); (G.G.); (M.F.)
| |
Collapse
|
12
|
6-Shogaol Suppresses 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b] Pyridine (PhIP)-Induced Human 786-O Renal Cell Carcinoma Osteoclastogenic Activity and Metastatic Potential. Nutrients 2019; 11:nu11102306. [PMID: 31569368 PMCID: PMC6835604 DOI: 10.3390/nu11102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) which can be detected in processed meats and red meats, is a potential carcinogen for renal cell carcinoma (RCC). Approximately 30% of patients with metastatic RCC have bone metastases, and the prognosis of RCC with bone metastases is poor. Thus, the aim of the present study was to investigate whether PhIP induced bone metastases and to develop novel therapeutic agents. Our data revealed that PhIP pre-treatment increased the production of parathyroid hormone-related protein (PTHrP) in human 786-O renal cell carcinoma cells. Subsequently, the cultures of human osteoblasts with PhIP-stimulated condition medium of 786-O increased the expression of the macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), and decreased the expression of osteoprotegerin (OPG). In addition, PhIP-mediated PTHrP up-regulated as well as increased IL-8 secretion in 786-O cells, and then contributed to 786-O-mediated bone resorption. Furthermore, 6-shogaol, which is an active ingredient in ginger, showed suppressive effects on PhIP-mediated bone resorption. In summary, this is the first study to demonstrate that PhIP pre-treatment increases the stimulatory effect of human renal cell carcinoma 786-O on osteoclastogenesis activity directly by PTHrP. In addition, 6-shogaol treatment reverses PhIP-mediated bone resorption. It suggests that 6-shogaol treatment results in bone resorption activity in the RCC model in vitro.
Collapse
|
13
|
Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019; 11:cancers11071020. [PMID: 31330786 PMCID: PMC6678871 DOI: 10.3390/cancers11071020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Bone is a preferential site for cancer metastases, including multiple myeloma, prostate, and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it an attractive site for cancer cell colonization and survival. The bone ECM is composed of living cells embedded within a matrix composed of both organic and inorganic components. Among the organic components, type I collagen provides the tensile strength of bone. Inorganic components, including hydroxyapatite crystals, are an integral component of bone and provide bone with its rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and response to biophysical signals from the ECM. However, under pathological conditions, including osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell proliferation and lesion outgrowth. Models to study the complex interactions between the bone matrix and metastatic cancer cells are limited. Advances in understanding the interactions between the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent metastatic cancer cell growth in bone.
Collapse
Affiliation(s)
- Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
14
|
Raic A, Naolou T, Mohra A, Chatterjee C, Lee-Thedieck C. 3D models of the bone marrow in health and disease: yesterday, today and tomorrow. MRS COMMUNICATIONS 2019; 9:37-52. [PMID: 30931174 PMCID: PMC6436722 DOI: 10.1557/mrc.2018.203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 05/12/2023]
Abstract
The complex interaction between hematopoietic stem cells (HSCs) and their microenvironment in the human bone marrow ensures a life-long blood production by balancing stem cell maintenance and differentiation. This so-called HSC niche can be disturbed by malignant diseases. Investigating their consequences on hematopoiesis requires deep understanding of how the niches function in health and disease. To facilitate this, biomimetic models of the bone marrow are needed to analyse HSC maintenance and hematopoiesis under steady-state and diseased conditions. Here, 3D bone marrow models, their fabrication methods (including 3D bioprinting) and implementations recapturing bone marrow functions in health and diseases, are presented.
Collapse
Affiliation(s)
- Annamarija Raic
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Toufik Naolou
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anna Mohra
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chandralekha Chatterjee
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional
Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Abstract
One of the problems that has slowed the development and approval of new anticancer therapies is the lack of preclinical models that can be used to identify key molecular, cellular and biophysical features of human cancer progression. This is because most in vitro cancer models fail to faithfully recapitulate the local tissue and organ microenvironment in which tumours form, which substantially contributes to the complex pathophysiology of the disease. More complex in vitro cancer models have been developed, including transwell cell cultures, spheroids and organoids grown within flexible extracellular matrix gels, which better mimic normal and cancerous tissue development than cells maintained on conventional 2D substrates. But these models still lack the tissue-tissue interfaces, organ-level structures, fluid flows and mechanical cues that cells experience within living organs, and furthermore, it is difficult to collect samples from the different tissue microcompartments. In this Review, we outline how recent developments in microfluidic cell culture technology have led to the generation of human organs-on-chips (also known as organ chips) that are now being used to model cancer cell behaviour within human-relevant tissue and organ microenvironments in vitro. Organ chips enable experimentalists to vary local cellular, molecular, chemical and biophysical parameters in a controlled manner, both individually and in precise combinations, while analysing how they contribute to human cancer formation and progression and responses to therapy. We also discuss the challenges that must be overcome to ensure that organ chip models meet the needs of cancer researchers, drug developers and clinicians interested in personalized medicine.
Collapse
Affiliation(s)
- Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Graduate program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bryan A Hassell
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Nirrin Analytics, Billerica, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Vascular Biology Program and Department Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Owen R, Reilly GC. In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol 2018; 6:134. [PMID: 30364287 PMCID: PMC6193121 DOI: 10.3389/fbioe.2018.00134] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling.
Collapse
Affiliation(s)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| |
Collapse
|
17
|
Qiao H, Tang T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res 2018; 6:3. [PMID: 29507817 PMCID: PMC5826951 DOI: 10.1038/s41413-018-0008-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis to bone is a three-dimensional (3D), multistep, dynamic process that requires the sequential involvement of three microenvironments, namely, the primary tumour microenvironment, the circulation microenvironment and the bone microenvironment. Engineered 3D approaches allow for a vivid recapitulation of in vivo cancerous microenvironments in vitro, in which the biological behaviours of cancer cells can be assessed under different metastatic conditions. Therefore, modelling bone metastasis microenvironments with 3D cultures is imperative for advancing cancer research and anti-cancer treatment strategies. In this review, multicellular tumour spheroids and bioreactors, tissue engineering constructs and scaffolds, microfluidic systems and 3D bioprinting technology are discussed to explore the progression of the 3D engineering approaches used to model the three microenvironments of bone metastasis. We aim to provide new insights into cancer biology and advance the translation of new therapies for bone metastasis.
Collapse
Affiliation(s)
- Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
18
|
Abstract
There are many unanswered questions about giant cell tumor (GCT) treatment and not enough attention is paid to the biomechanics of the current treatment methods. Treatment methods have not changed much, and the best method remains controversial to some degree, due to the lack of adequate clinical and biomechanical investigations. Biomechanical tests, including in vitro mechanical experiments combined with finite element analysis, are very helpful in assessing the efficiency of the surgical methods employed and in determining the optimal method of surgery. Tests can be tailored to meet a patient’s needs, while limiting postoperative complications. One of the complications, following tumor surgery, is the frequency of postoperative fractures. In order to prevent postoperative fractures, defect reconstruction is recommended. The reconstruction usually consists of defect infilling with bone cement, and in the case of large defects cement augmentation is employed. Whether cement augmentation is essential and offers enough mechanical strength and what is the best fixation device for cement augmentation are areas of debate. In this article, the biomechanical studies comparing different methods of tumor surgery and cement augmentation, highlighting the areas needing more attention to advance GCT treatment, are critically reviewed. Based on our review, we recommend a biomechanical criterion for the essence of defect reconstruction, which must include patient specific factors, in addition to the tumor geometrical properties.
Collapse
|
19
|
Abstract
The pre-metastatic niche — the accumulation of aberrant immune cells and extracellular matrix proteins in target organs — primes the initially healthy organ microenvironment and renders it amenable for subsequent metastatic cell colonization. By attracting metastatic cancer cells, mimics of the pre-metastatic niche offer both diagnostic and therapeutic potential. However, deconstructing the complexity of the niche by identifying the interactions between cell populations and the mediatory roles of the immune system, soluble factors, extracellular matrix proteins, and stromal cells has proved challenging. Experimental models need to recapitulate niche-population biology in situ and mediate in vivo tumour-cell homing, colonization and proliferation. In this Review, we outline the biology of the pre-metastatic niche and discuss advances in engineered niche-mimicking biomaterials that regulate the behaviour of tumour cells at an implant site. Such oncomaterials offer strategies for early detection of metastatic events, inhibiting the formation of the pre-metastatic niche, and attenuating metastatic progression.
Collapse
|
20
|
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141:1091-1109. [PMID: 28439901 DOI: 10.1002/ijc.30748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
21
|
Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016; 5:610-618. [PMID: 27965220 PMCID: PMC5227059 DOI: 10.1302/2046-3758.512.bjr-2016-0102.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
Abstract
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610-618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.
Collapse
Affiliation(s)
- A A Abubakar
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M M Noordin
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - T I Azmi
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - U Kaka
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M Y Loqman
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
22
|
Serum sclerostin levels in renal cell carcinoma patients with bone metastases. Sci Rep 2016; 6:33551. [PMID: 27666393 PMCID: PMC5036091 DOI: 10.1038/srep33551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/24/2016] [Indexed: 11/08/2022] Open
Abstract
Sclerostin has been proposed as a potent inhibitor of bone formation. Sclerostin antibodies are under clinical development to treat osteoporosis and metastatic bone disease. Serum sclerostin level is elevated in multiple myeloma, an osteolytic malignancy, where it might serve as predictive marker for the use of sclerostin-directed antibodies. As renal cell carcinoma (RCC) patients often present with osteolytic metastases, we aimed to investigate serum sclerostin levels in RCC patients. Our study included 53 RCC patients (19 with bone metastases, 25 with visceral metastases and 9 with localized disease) and 53 age- and gender-matched non-osteoporotic controls. Frozen serum samples were subjected to sclerostin quantitative sandwich ELISA. The mean serum sclerostin levels of RCC patients and controls were 45.8 pmol/l and 45.1 pmol/l, respectively (p = 0.86). Analysis of variance showed no difference between the subgroups of RCC patients with regard to visceral or bone metastases or localized disease (p = 0.22). There was no significant association between eGFR (estimated glomerular filtration rate) and serum sclerostin levels in RCC patients (r = 0.05; p = 0.74) and controls (r = 0.06; p = 0.68). Our results indicate that serum sclerostin levels appear not to be a valuable biomarker to assess the occurrence of bone metastases in RCC patients.
Collapse
|
23
|
In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone. Int J Mol Sci 2016; 17:ijms17091405. [PMID: 27571063 PMCID: PMC5037685 DOI: 10.3390/ijms17091405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022] Open
Abstract
Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.
Collapse
|
24
|
Krishnan V, Vogler EA, Mastro AM. Three-Dimensional in Vitro Model to Study Osteobiology and Osteopathology. J Cell Biochem 2016; 116:2715-23. [PMID: 26039562 DOI: 10.1002/jcb.25250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023]
Abstract
The bone is an amazing organ that grows and remodels itself over a lifetime. It is generally accepted that bone sculpting in response to stress and force is carried out by groups of cells contained within bone multicellular units that are coordinated to degrade existing bone and form new bone. Because of the nature of bone and the extensiveness of the skeleton, it is difficult to study bone remodeling in vivo. On the other hand, because the bone contains a complex environment of many cell types, is it possible to study bone remodeling in vitro? We propose that one can at minimum study the interaction between osteoblasts (bone formation) and osteoclasts (bone degradation) in a three dimensional (3D) "bioreactor". Furthermore, one can add bone degrading metastatic cancer cells, and study how they contribute to and take part in the bone degradation process. We have primarily cultured and differentiated MC3T3-E1 osteoblasts for long periods (2-10 months) before addition of bone marrow osteoclasts and/or metastatic (MDA-MB-231), metastasis suppressed (MDA-MB-231BRMS1) or non-metastatic (MCF-7) breast cancer cells. In the co-culture of osteoblasts and osteoclasts there was clear evidence of matrix degradation. Loss of matrix was also evident after co-culture with metastatic breast cancer cells. Tri-culture permitted an evaluation of the interaction of the three cell types. The 3D system holds promise for further studies of cancer dormancy, hormone, and cytokine effects and matrix manipulation.
Collapse
Affiliation(s)
- Venkatesh Krishnan
- The Huck Institute of Life Sciences, Penn State University, University Park, Pennsylvania
| | - Erwin A Vogler
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania
| | - Andrea M Mastro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, Pennsylvania
| |
Collapse
|
25
|
Regier MC, Alarid ET, Beebe DJ. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer. Integr Biol (Camb) 2016; 8:684-92. [PMID: 27097801 PMCID: PMC4993016 DOI: 10.1039/c6ib00001k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironments in primary tumors and metastases include multiple cell types whose dynamic and reciprocal interactions are central to progression of the disease. However, the literature involving breast cancer studied in vitro is dominated by cancer cells in mono-culture or co-cultured with one other cell type. For in vitro studies of breast cancer the inclusion of multiple cell types has led to models that are more representative of in vivo behaviors and functions as compared to more traditional monoculture. Here, we review foundational co-culture techniques and their adaptation to multi-culture (including three or more cell types). Additionally, while macroscale methods involving conditioned media, direct contact, and indirect interactions have been informative, we examined many advances that have been made more recently using microscale systems with increased control over cellular and structural complexity. Throughout this discussion we consider the benefits and limitations of current multi-culture methods and the significant results they have produced.
Collapse
Affiliation(s)
- Mary C Regier
- Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
26
|
Salamanna F, Contartese D, Maglio M, Fini M. A systematic review on in vitro 3D bone metastases models: A new horizon to recapitulate the native clinical scenario? Oncotarget 2016; 7:44803-44820. [PMID: 27027241 PMCID: PMC5190136 DOI: 10.18632/oncotarget.8394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Melania Maglio
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
27
|
Hikita A, Iimura T, Oshima Y, Saitou T, Yamamoto S, Imamura T. Analyses of bone modeling and remodeling using in vitro reconstitution system with two-photon microscopy. Bone 2015; 76:5-17. [PMID: 25771421 DOI: 10.1016/j.bone.2015.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Bone modeling and remodeling are cellular events during which osteoblast lineage cells and osteoclasts interact. During these events, cells undergo drastic changes with time as they become differentiated. Their morphology, topology, and activity are affected by other cells and the extracellular matrices. Since the mechanisms underlying the cellular events of bone metabolism have not been elucidated, there is a need for systems to analyze these cellular networks and their microenvironments spatiotemporally at the cellular level. Here we report a novel in vitro system for reconstituting the bone cell network of osteoclasts, osteoblasts, and osteocytes in the mineralized nodule, allowing for observation of bone modeling and remodeling phenomena by 2-photon microscopy. Using this system, the change in morphology of osteoblasts from cuboidal to flat cells was observed and measured during the formation of mineralized nodules. Furthermore, the recruitment of osteoblasts to resorption pits and their replenishment by newly formed matrices were successfully observed, providing strong evidence for the coupling of bone resorption and bone formation at cellular level. During such remodeling cycle, flat osteoblasts that survived more than 7 weeks were recruited to resorption pits, where they became cuboidal osteoblasts that express osteocalcin. This novel system permitted the elucidation of cellular behavior during bone modeling and remodeling, and can be used to analyze cellular events involved in bone metabolism.
Collapse
Affiliation(s)
- Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Department of Cartilage & Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tadahiro Iimura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Takashi Saitou
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Gastroenterology and Metabiology, Ehime University, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan.
| |
Collapse
|
28
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Templeton ZS, Bachmann MH, Alluri RV, Maloney WJ, Contag CH, King BL. Methods for culturing human femur tissue explants to study breast cancer cell colonization of the metastatic niche. J Vis Exp 2015:52656. [PMID: 25867136 PMCID: PMC4401351 DOI: 10.3791/52656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.
Collapse
Affiliation(s)
| | | | - Rajiv V Alluri
- Department of Pediatrics, Stanford University School of Medicine
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University School of Medicine
| | | | - Bonnie L King
- Department of Pediatrics, Stanford University School of Medicine;
| |
Collapse
|
30
|
Hung JY, Chang WA, Tsai YM, Hsu YL, Chiang HH, Chou SH, Huang MS, Kuo PL. Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene‑induced human non‑small cell lung cancer bone metastasis. Int J Oncol 2015; 46:1985-93. [PMID: 25738754 DOI: 10.3892/ijo.2015.2915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
This is the first study to demonstrate that benzo(a)-pyrene (BaP) was able to enhance the production of parathyroid hormone‑related protein (PTHrP) by human non‑small cell lung cancer H460 cells. Such effect would further contribute to bone metastasis of lung cancer by increasing osteoclastogenesis. This study is also the first to reveal that tricetin (TCN), a flavonoid derivative found in Myrtaceae pollen and Eucalyptus honey, was able to reverse BaP‑mediated bone resorption activity of lung cancer cells. Human non‑small cell lung cancer H460 cells were treated with BaP to generate conditioned medium. When osteoblasts were cultured with BaP‑H460‑CM, their expression of osteoclastogenesis activator macrophage colony‑stimulating factor (M‑CSF) and receptor activator of nuclear factor κB ligand (RANKL) was increased. BaP‑H460‑CM reduced the production of osteoprotegerin (OPG), an osteoclastogenesis inhibitor, in osteoblasts. Osteoclastogenesis and bone resorption activity of H460 cells were increased by BaP‑H460‑CM. With BaP‑mediated PTHrP upregulation, IL‑8 secretion in H460 cells was increased contributing to human non‑small cell lung cancer‑mediated osteoclast differentiation and bone resorption. Moreover, TCN suppressed BaP‑mediated bone resorption. Therefore, TCN may be a novel agent for treatment of non‑small cell lung cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hung-Hsing Chiang
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Shah-Hwa Chou
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Shyan Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
31
|
Taubenberger AV. In vitro microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev 2014; 79-80:135-44. [PMID: 25453260 DOI: 10.1016/j.addr.2014.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 09/13/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022]
Abstract
Bone metastasis occurs frequently in patients with advanced breast cancer and is a major cause of morbidity and mortality in these patients. In order to advance current therapies, the mechanisms leading to the formation of bone metastases and their pathophysiology have to be better understood. Several in vitro models have been developed for systematic studies of interactions between breast cancer cells and the bone microenvironment. Such models can provide insights into the molecular basis of bone metastatic colonisation and also may provide a useful platform to design more physiologically relevant drug testing assays. This review describes different in vitro approaches and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Anna V Taubenberger
- Group of Cellular Machines, Biotec TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany; Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue 60, Kelvin Grove, QLD, Australia.
| |
Collapse
|
32
|
Hsu YL, Tsai EM, Hou MF, Wang TN, Hung JY, Kuo PL. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11933-11940. [PMID: 25415928 DOI: 10.1021/jf5042905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study is the first to demonstrate that parathyroid hormone-related protein (PTHrP), produced by human breast cancer cells after exposure to phthalate esters, contributes to bone metastasis by increasing osteoclastogenesis. This is also the first to reveal that obtusifolin reverses phthalate esters-mediated bone resorption. Human breast cancer cells were treated with dibutyl phthalate (DBP), harvested in conditioned medium, and cultured to osteoblasts or osteoclasts. Cultures of osteoblasts with DBP-MDA-MB-231-CM increased the osteoclastogenesis activator RANKL (receptor activator of nuclear factor κ-B ligand) and M-CSF (macrophage colony-stimulating factor). PTHrP was secreted in MDA-MB-231 cells. DBP-MDA-MB-231-CM reduced osteoblasts to produce osteoprotegerin, an osteoclastogenesis inhibitor, while DBP mediated PTHrP up-regulation, increasing IL-8 secretion in MDA-MB-231 and contributing to breast cancer-mediated osteoclast differentiation and bone resorption. Obtusifolin, a major bioactive compound present in Cassia tora L., suppressed phthalate esters-mediated bone resorption. Therefore, obtusifolin may be a novel anti-breast-cancer bone metastasis agent.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, ‡Institute of Clinical Medicine, College of Medicine, §Department of Public Health, College of Health Science, ∥School of Medicine, College of Medicine, ⊥Research Center for Environmental Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|