1
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
2
|
Marsman C, Verstegen NJM, Streutker M, Jorritsma T, Boon L, ten Brinke A, van Ham SM. Termination of CD40L co-stimulation promotes human B cell differentiation into antibody-secreting cells. Eur J Immunol 2022; 52:1662-1675. [PMID: 36073009 PMCID: PMC9825913 DOI: 10.1002/eji.202249972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.
Collapse
Affiliation(s)
- Casper Marsman
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marij Streutker
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Anja ten Brinke
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
CD40 signaling-mediated delay in terminal differentiation of B cells enables alternate fate choices during early divisions. Mol Immunol 2022; 144:1-15. [PMID: 35149319 DOI: 10.1016/j.molimm.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
Abstract
Memory B cells and differentiated plasma cells combine to confer sustained humoral immunity. Nonetheless, we are yet to understand how B cells decide between these fates. Although pan-T cell help augments plasma cell differentiation, signaling via CD40 alone is considered to be inhibitory. Here, we examine the capacity of CD40 signaling to interfere with lipopolysaccharide-induced differentiation. Whereas lipopolysaccharide stimulation yielded only short-lived plasmablasts, co-stimulation of CD40 enhanced activation, proliferation, survival, and isotype-switching, leading to alternate fate choices such as germinal center and memory B cells during early divisions. Contrary to the notion that CD40 signaling simply arrests differentiation, the survivors, at later time points, developed into long-lived mature plasma cells, after progressively losing their ability to get restimulated. Counterintuitively, as constitutive lipopolysaccharide stimulation itself hampered differentiation, we identified that the proliferation potential of cells acted alongside CD40 signaling. Accordingly, we propose a bi-layered regulation of differentiation - CD40 signaling and proliferation potential of cells independently inhibit the commitment to and maturation of differentiation, respectively. Elucidating such cell fate decision mechanisms will aid in better vaccine design and disease management.
Collapse
|
4
|
Vijayashankar DP, Vaidya T. Homotypic aggregates contribute to heterogeneity in B cell fates due to an intrinsic gradient of stimulant exposure. Exp Cell Res 2021; 405:112650. [PMID: 34029570 DOI: 10.1016/j.yexcr.2021.112650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
Monocultures of several cell types result in the formation of robust clusters called homotypic aggregates (HAs). How this physical aggregation affects cell fates in immune cell cultures, is poorly understood. We studied anti-CD40-stimulated primary B cell cultures, where cells assembled into large three-dimensional LFA1-driven HAs by 72 h. The dense packing in these aggregates restricts the infiltration of stimulants, such as antibodies, to cells inside the clusters. This creates a concentration gradient of stimulant availability across the cross-section of HAs. We describe a method to retain this positional information even after the disruption of HAs, for analysis by flow cytometry. Comparison of stage-specific cell-surface markers showed that the extent of stimulant-binding affected multiple fates non-uniformly. While germinal center and lineage markers were moderately upregulated, immunoglobulins and markers associated with memory were more than doubled in the peripheral cells binding more anti-CD40. These cells also experienced a strong repression of the plasma cell regulator Prdm1 and an upregulation of the oncogene Myc. Thus, cells at different locations in HAs are subjected to unequal doses of stimulants, leading to a hitherto unreported source of heterogeneity in cell fates. These findings can be extrapolated to understand the dose-dependent effects of stimulants in other three-dimensional cell clusters.
Collapse
Affiliation(s)
- Devi Prasad Vijayashankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Tushar Vaidya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.
| |
Collapse
|
5
|
Salunkhe S, Vaidya T. CD40-miRNA axis controls prospective cell fate determinants during B cell differentiation. Mol Immunol 2020; 126:46-55. [DOI: 10.1016/j.molimm.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
6
|
Burghuber CK, Manook M, Ezekian B, Gibby AC, Leopardi FV, Song M, Jenks J, Saccoccio F, Permar S, Farris AB, Iwakoshi NN, Kwun J, Knechtle SJ. Dual targeting: Combining costimulation blockade and bortezomib to permit kidney transplantation in sensitized recipients. Am J Transplant 2019; 19:724-736. [PMID: 30102844 PMCID: PMC7185755 DOI: 10.1111/ajt.15067] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023]
Abstract
Previous evidence suggests that a homeostatic germinal center (GC) response may limit bortezomib desensitization therapy. We evaluated the combination of costimulation blockade with bortezomib in a sensitized non-human primate kidney transplant model. Sensitized animals were treated with bortezomib, belatacept, and anti-CD40 mAb twice weekly for a month (n = 6) and compared to control animals (n = 7). Desensitization therapy-mediated DSA reductions approached statistical significance (P = .07) and significantly diminished bone marrow PCs, lymph node follicular helper T cells, and memory B cell proliferation. Graft survival was prolonged in the desensitization group (P = .073). All control animals (n = 6) experienced graft loss due to antibody-mediated rejection (AMR) after kidney transplantation, compared to one desensitized animal (1/5). Overall, histological AMR scores were significantly lower in the treatment group (n = 5) compared to control (P = .020). However, CMV disease was common in the desensitized group (3/5). Desensitized animals were sacrificed after long-term follow-up with functioning grafts. Dual targeting of both plasma cells and upstream GC responses successfully prolongs graft survival in a sensitized NHP model despite significant infectious complications and drug toxicity. Further work is planned to dissect underlying mechanisms, and explore safety concerns.
Collapse
Affiliation(s)
- Christopher K. Burghuber
- Emory Transplant Center, Department of Surgery, Emory School of Medicine, Atlanta, GA, USA
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| | - Adriana C. Gibby
- Emory Transplant Center, Department of Surgery, Emory School of Medicine, Atlanta, GA, USA
| | - Frank V. Leopardi
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| | - Minqing Song
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| | - Jennifer Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Frances Saccoccio
- Pediatric Infectious Diseases, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Sallie Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Pediatric Infectious Diseases, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Alton B. Farris
- Department of Pathology, Emory School of Medicine, Atlanta, GA, USA
| | - Neal N. Iwakoshi
- Emory Transplant Center, Department of Surgery, Emory School of Medicine, Atlanta, GA, USA
| | - Jean Kwun
- Emory Transplant Center, Department of Surgery, Emory School of Medicine, Atlanta, GA, USA
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| | - Stuart J. Knechtle
- Emory Transplant Center, Department of Surgery, Emory School of Medicine, Atlanta, GA, USA
- Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ, Poland GA. Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Front Immunol 2019; 10:180. [PMID: 30873150 PMCID: PMC6400991 DOI: 10.3389/fimmu.2019.00180] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Sex differences in immune responses to influenza vaccine may impact efficacy across populations. Methods: In a cohort of 138 older adults (50-74 years old), we measured influenza A/H1N1 antibody titers, B-cell ELISPOT response, PBMC transcriptomics, and PBMC cell compositions at 0, 3, and 28 days post-immunization with the 2010/11 seasonal inactivated influenza vaccine. Results: We identified higher B-cell ELISPOT responses in females than males. Potential mechanisms for sex effects were identified in four gene clusters related to T, NK, and B cells. Mediation analysis indicated that sex-dependent expression in T and NK cell genes can be partially attributed to higher CD4+ T cell and lower NK cell fractions in females. We identified strong sex effects in 135 B cell genes whose expression correlates with ELISPOT measures, and found that cell subset differences did not explain the effect of sex on these genes' expression. Post-vaccination expression of these genes, however, mediated 41% of the sex effect on ELISPOT responses. Conclusions: These results improve our understanding of sexual dimorphism in immunity and influenza vaccine response.
Collapse
Affiliation(s)
- Emily A. Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | | | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Daniel J. Schaid
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Wennhold K, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. B Cell-Based Cancer Immunotherapy. Transfus Med Hemother 2019; 46:36-46. [PMID: 31244580 PMCID: PMC6558332 DOI: 10.1159/000496166] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
B cells are not only producers of antibodies, but also contribute to immune regulation or act as potent antigen-presenting cells. The potential of B cells for cellular therapy is still largely underestimated, despite their multiple diverse effector functions. The CD40L/CD40 signaling pathway is the most potent activator of antigen presentation capacity in B lymphocytes. CD40-activated B cells are potent antigen-presenting cells that induce specific T-cell responses in vitro and in vivo. In preclinical cancer models in mice and dogs, CD40-activated B cell-based cancer immunotherapy was able to induce effective antitumor immunity. So far, there have been only few early-stage clinical studies involving B cell-based cancer vaccines. These trials indicate that B cell-based immunotherapy is generally safe and associated with little toxicity. Furthermore, these studies suggest that B-cell immunotherapy can elicit antitumor T-cell responses. Alongside the recent advances in cellular therapies in general, major obstacles for generation of good manufacturing practice-manufactured B-cell immunotherapies have been overcome. Thus, a first clinical trial involving CD40-activated B cells might be in reach.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Michael von Bergwelt-Baildon
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Center Munich, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Das A, Ranganathan V, Umar D, Thukral S, George A, Rath S, Bal V. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3. PLoS One 2017; 12:e0185932. [PMID: 29088218 PMCID: PMC5663332 DOI: 10.1371/journal.pone.0185932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Naïve CD4 T (NCD4T) cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either ‘Th1’ (interferon-gamma [IFNg]) or ‘Th2’ (interleukin [IL]-4/5/13) cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs). However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T) cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co-expressing TFs, and their cytokine commitment varied depending on genetic background or priming conditions, without altering pattern of TF co-expression. Thus, the model of mutually antagonistic differentiation programs driven by mutually exclusively expressed T-bet or GATA-3 does not completely explain natural CD4 T cell priming outcomes.
Collapse
Affiliation(s)
| | | | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nat Commun 2017; 8:16067. [PMID: 28677680 PMCID: PMC5504274 DOI: 10.1038/ncomms16067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves a major transcriptional switch that promotes a halt in cell proliferation and the production of secreted immunoglobulins. Here we show that the CCCTC-binding factor (CTCF) is required for the GC reaction in vivo, whereas in vitro the requirement for CTCF is not universal and instead depends on the pathways used for B-cell activation. CTCF maintains the GC transcriptional programme, allows a high proliferation rate, and represses the expression of Blimp-1, the master regulator of PC differentiation. Restoration of Blimp-1 levels partially rescues the proliferation defect of CTCF-deficient B cells. Thus, our data reveal an essential function of CTCF in maintaining the GC transcriptional programme and preventing premature PC differentiation. Activated B cells differentiate into antibody-producing plasma cells in the germinal centre in secondary lymphoid organs. Here the authors show that this differentiation process and related transcription programs are modulated by the transcription factor CTCF, partly by suppressing the premature expression of Blimp-1.
Collapse
|
11
|
Basu S, Kaw S, D’Souza L, Vaidya T, Bal V, Rath S, George A. Constitutive CD40 Signaling Calibrates Differentiation Outcomes in Responding B Cells via Multiple Molecular Pathways. THE JOURNAL OF IMMUNOLOGY 2016; 197:761-70. [DOI: 10.4049/jimmunol.1600077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
|