1
|
Kronk TA, Solorzano E, Robinson GT, Castor J, Ball HC, Safadi FF. The expression and function of Gpnmb in lymphatic endothelial cells. Gene 2025; 942:148993. [PMID: 39389329 DOI: 10.1016/j.gene.2024.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.
Collapse
Affiliation(s)
- Trinity A Kronk
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Orthopaedics, Akron Children's Hospital, Akron, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Ernesto Solorzano
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gabrielle T Robinson
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Joshua Castor
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Foundations of Medicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hope C Ball
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
2
|
Nishida N, Otsu M, Mizutani Y, Ishitsuka A, Mizukami Y, Inoue S. The glycoprotein GPNMB protects against oxidative stress through enhanced PI3K/AKT signaling in epidermal keratinocytes. J Biol Chem 2025; 301:108299. [PMID: 39947468 PMCID: PMC11930081 DOI: 10.1016/j.jbc.2025.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Vitiligo, an autoimmune disease caused by environmental and genetic factors, is characterized by the specific loss of epidermal melanocytes (MCs). IFN-γ, predominantly derived from MC-targeting CD8+ T cells, plays a key role in vitiligo pathogenesis. Previously, we found that glycoprotein nonmetastatic melanoma protein B (GPNMB) is specifically lost in the basal epidermal layer of vitiligo lesions and downregulated by IFN-γ in normal human epidermal keratinocytes (KCs) (NHEKs). This study aimed to determine the role of KC GPNMB in normal and vitiligo epidermis and demonstrated that GPNMB plays a protective role against H2O2-induced oxidative stress due to its extracellular domain. In contrast, the NRF2/KEEP1 system was not involved in the anti-oxidative response in NHEKs but was active in MCs. GPNMB knockdown reduced the phosphorylation levels of AKTT308 and AKTS473 after H2O2 treatment, accompanied by reduced Dickkopf-1 (DKK1) mRNA and protein production and decreased FOXM1 mRNA expression. These results suggested that GPNMB protects KCs from H2O2-induced cell death through enhanced PI3K/AKT signaling, and WNT/β-catenin/FOXM1 and DKK1/CKAP4/AKT pathways. Furthermore, a significant increase in thioredoxin-interacting protein (TXNIP) following GPNMB knockdown was observed, indicating the enhanced phosphorylation of JNK and p38 and suppression of WNT/β-catenin signaling. These results suggest that the decreased expression of epidermal GPNMB in vitiligo lesions triggers increased sensitivity to H2O2-induced oxidative stress and decreased WNT/β-catenin signaling, consistent with the pathological features of the vitiligo epidermis. These findings may enhance our understanding of vitiligo pathogenesis, provide insights into the reduced risk of epidermal cancers, and highlight novel targets for treatment.
Collapse
Affiliation(s)
- Natsuki Nishida
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Mariko Otsu
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Yamaguchi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
3
|
Izumiya M, Nobuoka H, Endo H, Ueno R, Mimura M, Saito N, Haniu H. Genetic Profiling of MC3T3-E1 Cells in Different Media: Implications for In Vitro Screening Development. Biomedicines 2025; 13:489. [PMID: 40002902 PMCID: PMC11853507 DOI: 10.3390/biomedicines13020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The translation of in vitro biomaterial evaluations into successful clinical applications often fails due to discrepancies with in vivo results. Previously, we demonstrated that differences in culture medium conditions influence the bone formation process. This study aimed to investigate the influence of culture media on gene expression during calcification induction in osteoblasts. Methods: Using MC3T3-E1 cells cultured in α Minimum Essential Medium without L-ascorbic acid (αMEM(-)) and Dulbecco's Modified Eagle Medium (DMEM), we screened gene expression profiles through microarray analysis and validated key findings with quantitative PCR. Additionally, we compared these gene expression patterns with those in primary osteoblasts (POBs) cultured under the same medium conditions. Results: The results revealed distinct gene expression profiles in MC3T3-E1 cells depending on the culture medium, while POBs exhibited minimal differences between media, except for the gene Alpl. In αMEM(-), Alpl expression in POBs was significantly increased approximately 4-fold via calcification stimulation (p < 0.0001). POBs cultured in DMEM showed calcification appearance differing from the αMEM(-) condition, even though no significant increase in Alpl expression via calcification stimulation was observed. Conclusions: Differences in media appear to remarkably impact osteoblast gene expression and mineralization. These findings may help improve biomaterial evaluation when transitioning from in vitro assessments to in vivo evaluations. Moreover, our results suggest the possibility that gene expression differences observed in MC3T3-E1 cells reflect the diverse bone formation processes in vivo. Focusing on these genes could facilitate the development of screening methods for bone formation, supporting future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Hidehiko Nobuoka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Hono Endo
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Rintaro Ueno
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Masaki Mimura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan; (M.I.); (H.N.); (H.E.); (R.U.); (M.M.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
4
|
Ramadoss S, Qin J, Tao B, Thomas NE, Cao E, Wu R, Sandoval DR, Piermatteo A, Grunddal KV, Ma F, Li S, Sun B, Zhou Y, Wan J, Pellegrini M, Holst B, Lusis AJ, Gordts PLSM, Deb A. Bone-marrow macrophage-derived GPNMB protein binds to orphan receptor GPR39 and plays a critical role in cardiac repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1356-1373. [PMID: 39455836 DOI: 10.1038/s44161-024-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein initially identified in nonmetastatic melanomas and has been associated with human heart failure; however, its role in cardiac injury and function remains unclear. Here we show that GPNMB expression is elevated in failing human and mouse hearts after myocardial infarction (MI). Lineage tracing and bone-marrow transplantation reveal that bone-marrow-derived macrophages are the main source of GPNMB in injured hearts. Using genetic loss-of-function models, we demonstrate that GPNMB deficiency leads to increased mortality, cardiac rupture and rapid post-MI left ventricular dysfunction. Conversely, increasing circulating GPNMB levels through viral delivery improves heart function after MI. Single-cell transcriptomics show that GPNMB enhances myocyte contraction and reduces fibroblast activation. Additionally, we identified GPR39 as a receptor for circulating GPNMB, with its absence negating the beneficial effects. These findings highlight a pivotal role of macrophage-derived GPNMBs in post-MI cardiac repair through GPR39 signaling.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Humans
- Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/genetics
- Mice, Knockout
- Disease Models, Animal
- Myocytes, Cardiac/metabolism
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Ventricular Function, Left
- Heart Failure/metabolism
- Heart Failure/genetics
- Female
- Mice
- Cells, Cultured
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/genetics
- Bone Marrow Transplantation
- Protein Binding
- Regeneration
- Eye Proteins
Collapse
Affiliation(s)
- Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Juan Qin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Nathan E Thomas
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Edward Cao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rimao Wu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Ann Piermatteo
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Kaare V Grunddal
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Feiyang Ma
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yu T, Wang J, Zhou Y, Ma C, Bai R, Huang C, Wang S, Liu K, Han B. Harnessing Engineered Extracellular Vesicles from Mesenchymal Stem Cells as Therapeutic Scaffolds for Bone‐Related Diseases. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 10/05/2024]
Abstract
AbstractMesenchymal stem cells (MSCs) play a crucial role in maintaining bone homeostasis and are extensively explored for cell therapy in various bone‐related diseases. In addition to direct cell therapy, the secretion of extracellular vesicles (EVs) by MSCs has emerged as a promising alternative approach. MSC‐derived EVs (MSC‐EVs) offer equivalent therapeutic efficacy to MSCs while mitigating potential risks. These EVs possess unique properties that enable them to traverse biological barriers and deliver bioactive cargos to target cells. Furthermore, by employing modification and engineering strategies, the therapeutic effects and tissue targeting specificity of MSC‐EVs can be further enhanced to meet specific therapeutic needs. In this review, the mechanisms and advantages of MSC‐EV therapy in diseased bone tissues are highlighted. Through simple isolation and modification techniques, MSC‐EV‐based biomaterials have demonstrated great promise for bone regeneration. Finally, future perspectives on MSC‐EV therapy are presented, envisioning the development of next‐generation regenerative materials and bioactive agents for clinical translation in the field of bone regeneration.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Jingwei Wang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Yusai Zhou
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Rushui Bai
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Cancan Huang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor Center Peking University People's Hospital No.11 Xizhimen South St. Beijing 100044 P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
6
|
Vakayil M, Madani AY, Agha MV, Majeed Y, Hayat S, Yonuskunju S, Mohamoud YA, Malek J, Suhre K, Mazloum NA. The E3 ubiquitin-protein ligase UHRF1 promotes adipogenesis and limits fibrosis by suppressing GPNMB-mediated TGF-β signaling. Sci Rep 2024; 14:11886. [PMID: 38789534 PMCID: PMC11126700 DOI: 10.1038/s41598-024-62508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-β signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-β1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-β protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-β, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-β signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.
Collapse
Affiliation(s)
- Muneera Vakayil
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Maha V Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shahina Hayat
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shameem Yonuskunju
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yasmin Ali Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Joel Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
7
|
Cherian P, Al-Khairi I, Abu-Farha M, Alramah T, Albatineh AN, Alhomaidah D, Safadi F, Ali H, Abdul-Ghani M, Tuomilehto J, Koistinen HA, Al-Mulla F, Abubaker J. Ethnic Variations in the Levels of Bone Biomarkers (Osteoprostegerin, Receptor Activator of Nuclear Factor Kappa-Β Ligand and Glycoprotein Non-Metastatic Melanoma Protein B) in People with Type 2 Diabetes. Biomedicines 2024; 12:1019. [PMID: 38790981 PMCID: PMC11117910 DOI: 10.3390/biomedicines12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The global incidence of Type 2 diabetes (T2D) is on the rise, fueled by factors such as obesity, sedentary lifestyles, socio-economic factors, and ethnic backgrounds. T2D is a multifaceted condition often associated with various health complications, including adverse effects on bone health. This study aims to assess key biomarkers linked to bone health and remodeling-Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL), and Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB)-among individuals with diabetes while exploring the impact of ethnicity on these biomarkers. A cross-sectional analysis was conducted on a cohort of 2083 individuals from diverse ethnic backgrounds residing in Kuwait. The results indicate significantly elevated levels of these markers in individuals with T2D compared to non-diabetic counterparts, with OPG at 826.47 (405.8) pg/mL, RANKL at 9.25 (17.3) pg/mL, and GPNMB at 21.44 (7) ng/mL versus 653.75 (231.7) pg/mL, 0.21 (9.94) pg/mL, and 18.65 (5) ng/mL in non-diabetic individuals, respectively. Notably, this elevation was consistent across Arab and Asian populations, except for lower levels of RANKL observed in Arabs with T2D. Furthermore, a positive and significant correlation between OPG and GPNMB was observed regardless of ethnicity or diabetes status, with the strongest correlation (r = 0.473, p < 0.001) found among Arab individuals with T2D. Similarly, a positive and significant correlation between GPNMB and RANKL was noted among Asian individuals with T2D (r = 0.401, p = 0.001). Interestingly, a significant inverse correlation was detected between OPG and RANKL in non-diabetic Arab individuals. These findings highlight dysregulation in bone remodeling markers among individuals with T2D and emphasize the importance of considering ethnic variations in T2D-related complications. The performance of further studies is warranted to understand the underlying mechanisms and develop interventions based on ethnicity for personalized treatment approaches.
Collapse
Affiliation(s)
- Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Tahani Alramah
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| | | | - Doha Alhomaidah
- Department of Population Health, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fayez Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, OH 44308, USA
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait 15462, Kuwait;
| | - Muhammad Abdul-Ghani
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX 78030, USA
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (J.T.); (H.A.K.)
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heikki A. Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; (J.T.); (H.A.K.)
- Department of Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (P.C.); (I.A.-K.); (M.A.-F.); (T.A.)
| |
Collapse
|
8
|
Wang X, Qin S, Ren Y, Feng B, Liu J, Yu K, Yu H, Liao Z, Mei H, Tan M. Gpnmb silencing protects against hyperoxia-induced acute lung injury by inhibition of mitochondrial-mediated apoptosis. Hum Exp Toxicol 2024; 43:9603271231222873. [PMID: 38166464 DOI: 10.1177/09603271231222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenliang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Solorzano E, Alejo AL, Ball HC, Robinson GT, Solorzano AL, Safadi R, Douglas J, Kelly M, Safadi FF. The Lymphatic Endothelial Cell Secretome Inhibits Osteoblast Differentiation and Bone Formation. Cells 2023; 12:2482. [PMID: 37887326 PMCID: PMC10605748 DOI: 10.3390/cells12202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Gabrielle T. Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrea L. Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Rama Safadi
- College of Arts and Sciences, Kent State University, Kent, OH 44243, USA;
| | - Jacob Douglas
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
| | - Michael Kelly
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
10
|
Grgic O, Prijatelj V, Dudakovic A, Vucic S, Dhamo B, Trajanoska K, Monnereau C, Zrimsek M, Gautvik K, Reppe S, Shimizu E, Haworth S, Timpson N, Jaddoe V, Jarvelin MR, Evans D, Uitterlinden A, Ongkosuwito E, van Wijnen A, Medina-Gomez C, Rivadeneira F, Wolvius E. Novel Genetic Determinants of Dental Maturation in Children. J Dent Res 2023; 102:349-356. [PMID: 36437532 PMCID: PMC10083589 DOI: 10.1177/00220345221132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dental occlusion requires harmonious development of teeth, jaws, and other elements of the craniofacial complex, which are regulated by environmental and genetic factors. We performed the first genome-wide association study (GWAS) on dental development (DD) using the Demirjian radiographic method. Radiographic assessments from participants of the Generation R Study (primary study population, N1 = 2,793; mean age of 9.8 y) were correlated with ~30 million genetic variants while adjusting for age, sex, and genomic principal components (proxy for population stratification). Variants associated with DD at genome-wide significant level (P < 5 × 10-8) mapped to 16q12.2 (IRX5) (lead variant rs3922616, B = 0.16; P = 2.2 × 10-8). We used Fisher's combined probability tests weighted by sample size to perform a meta-analysis (N = 14,805) combining radiographic DD at a mean age of 9.8 y from Generation R with data from a previous GWAS (N2 = 12,012) on number of teeth (NT) in infants used as proxy of DD at a mean age of 9.8 y (including the ALSPAC and NFBC1966). This GWAS meta-analysis revealed 3 novel loci mapping to 7p15.3 (IGF2BP3: P = 3.2 × 10-8), 14q13.3 (PAX9: P = 1.9 × 10-8), and 16q12.2 (IRX5: P = 1.2 × 10-9) and validated 8 previously reported NT loci. A polygenic allele score constructed from these 11 loci was associated with radiographic DD in an independent Generation R set of children (N = 703; B = 0.05, P = 0.004). Furthermore, profiling of the identified genes across an atlas of murine and human stem cells observed expression in the cells involved in the formation of bone and/or dental tissues (>0.3 frequency per kilobase of transcript per million mapped reads), likely reflecting functional specialization. Our findings provide biological insight into the polygenic architecture of the pediatric dental maturation process.
Collapse
Affiliation(s)
- O. Grgic
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - V. Prijatelj
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - A. Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - S. Vucic
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - B. Dhamo
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - K. Trajanoska
- Department of Human Genetics McGill
University, Montréal, Québec, Canada
- Canada Excellence Research Chair in
Genomic Medicine, McGill University, Montréal, Québec, Canada
| | - C. Monnereau
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - M. Zrimsek
- Department of Pathology, Medical
University of Vienna, Vienna, Austria
| | - K.M. Gautvik
- Department of Medical Biochemistry,
Oslo University Hospital, Oslo, Norway
| | - S. Reppe
- Department of Medical Biochemistry,
Oslo University Hospital, Oslo, Norway
| | - E. Shimizu
- Department of Oral Biology, Rutgers
School of Dental Medicine, Newark, NJ, USA
| | - S. Haworth
- Department of Population Health
Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Dental School, University of
Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
| | - N.J. Timpson
- Department of Population Health
Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
| | - V.W.V. Jaddoe
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - M.-R. Jarvelin
- Faculty of Medicine, Center for Life
Course Health Research, University of Oulu, Oulu, Finland
- Faculty of Medicine, School of Public
Health, Imperial College, London, UK
| | - D. Evans
- MRC Integrative Epidemiology Unit,
University of Bristol, Bristol, UK
- Diamantina Institute, The University
of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience,
The University of Queensland, Brisbane, Australia
| | | | - E.M. Ongkosuwito
- Dentistry, Section Orthodontics and
Craniofacial Biology, Radboud University Medical Center, Nijmegen, The
Netherlands
| | - A.J. van Wijnen
- Department of Biochemistry,
University of Vermont, Burlington, VT, USA
| | - C. Medina-Gomez
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - F. Rivadeneira
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| | - E.B. Wolvius
- Department of Oral and Maxillofacial
Surgery, ErasmusMC, Rotterdam, The Netherlands
- The Generation R Study, ErasmusMC,
Rotterdam, The Netherlands
| |
Collapse
|
11
|
Zhang C, Gawri R, Lau YK, Spruce LA, Fazelinia H, Jiang Z, Jo SY, Scanzello CR, Mai W, Dodge GR, Casal ML, Smith LJ. Proteomics identifies novel biomarkers of synovial joint disease in a canine model of mucopolysaccharidosis I. Mol Genet Metab 2023; 138:107371. [PMID: 36709534 PMCID: PMC9918716 DOI: 10.1016/j.ymgme.2023.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Hossein Fazelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Zhirui Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Stephanie Y Jo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Carla R Scanzello
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
A novel molecular mechanism of vascular fibrosis in Takayasu arteritis: macrophage-derived GPNMB promoting adventitial fibroblast extracellular matrix production in the aorta. Transl Res 2022; 255:128-139. [PMID: 36566014 DOI: 10.1016/j.trsl.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Takayasu arteritis (TAK) is a chronic large vessel disease characterized by aortic fibrotic thickening, which was mainly mediated by activation of aorta adventitial fibroblasts (AAFs). Our previous genetic study demonstrated that TAK-associated locus IL6 rs2069837 regulated glycoprotein non-metastatic melanoma protein B (GPNMB) expression. Thus, this study aimed to investigate the pathogenic role of GPNMB in TAK. Through pathological staining, we find that GPNMB was mainly expressed in vascular adventitia and positively correlated with adventitial extracellular matrix (ECM) expression in TAK vascular lesion. Specifically, GPNMB was increased in adventitial CD68+ macrophages, which were closely located with CD90+ adventitial fibroblasts. In in-vitro cell culture, THP-1-derived macrophages with GPNMB overexpression promoted ECM expression in AAFs. This effect was also confirmed in aortic tissue or AAFs culture with GPNMB overexpression or active GPNMB protein stimulation. Mechanistically, Co-IP assay and siRNA or inhibitor intervention demonstrated that integrin αVβ1 receptor mediated GPNMB effect on AAFs, which also activated downstream Akt and Erk pathway in AAFs. Furthermore, we showed that leflunomide treatment inhibited GPNMB-mediated fibrosis in AAFs, as well as GPNMB expression in macrophages, which were also partially validated in leflunomide-treated patients. Taken together, these data indicated that macrophage-derived GPNMB promotes AAFs ECM expression via the integrin αVβ1 receptor and Akt/Erk signaling pathway and leflunomide might play an anti-fibrotic role in TAK by interfering with the macrophage-derived GPNMB/AAFs axis. This study provides evidence that targeting GPNMB is a potential therapeutic strategy for treating vascular fibrosis in TAK.
Collapse
|
13
|
Wang D, Teng M, Wang Y, Cao Y, Tian W, Wang Z, Guo Y, Li H, Li Z, Jiang R, Li G, Tian Y, Liu X. GPNMB promotes abdominal fat deposition in chickens: genetic variation, expressional profile, biological function, and transcriptional regulation. Poult Sci 2022; 101:102216. [PMID: 36279606 PMCID: PMC9597125 DOI: 10.1016/j.psj.2022.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a vital secreted factor that promotes the occurrence of obesity in mammals. However, the effects of GPNMB on abdominal fat deposition is still unknown in chickens. In this study, we looked into the genetic and expression association of GPNMB gene with abdominal fat traits in chicken, and found that a genetic variation rs31126482 in GPNMB promoter was significantly associated with abdominal fat weight (AFW, P < 0.05) and abdominal fat percentage (AFP, P < 0.01). Express profile analysis of the GPNMB indicated that the gene was mainly expressed in abdominal fat tissue, and its expression level was strongly positively correlated with AFW (R2 = 0.6356, P = 4.10E−05) and AFP (R2 = 0.6450, P = 2.90E−05). We then investigated biological function of GPNMB on adipogenesis in chicken, and found that GPNMB could inhibit abdominal preadipocyte proliferation, but promote abdominal preadipocyte differentiation and lipid deposition. Furthermore, we explored regulatory mechanism of GPNMB gene in chicken, and detected one nonclassical estrogen regulatory element (AP1) and one peroxisome proliferator-activated receptor α (PPARα) responsive element in the 2 kb promoter region of GPNMB gene, and demonstrated that estrogen could up-regulate GPNMB mRNA expression in adipose tissue and primary abdominal preadipocytes, while PPARα could down-regulate GPNMB expression in primary preadipocytes. Taken together, this study brings new insights into understanding the function and transcriptional control of GPNMB gene, and provides genetic markers for breeding selection to improve abdominal fat traits in chicken.
Collapse
|
14
|
Xu J, Zhang S, Si H, Zeng Y, Wu Y, Liu Y, Li M, Wu L, Shen B. A genetic correlation scan identifies blood proteins associated with bone mineral density. BMC Musculoskelet Disord 2022; 23:530. [PMID: 35659283 PMCID: PMC9164489 DOI: 10.1186/s12891-022-05453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoporosis is a common metabolic bone disease that is characterized by low bone mass. However, limited efforts have been made to explore the functional relevance of the blood proteome to bone mineral density across different life stages. Methods Using genome-wide association study summary data of the blood proteome and two independent studies of bone mineral density, we conducted a genetic correlation scan of bone mineral density and the blood proteome. Linkage disequilibrium score regression analysis was conducted to assess genetic correlations between each of the 3283 plasma proteins and bone mineral density. Results Linkage disequilibrium score regression identified 18 plasma proteins showing genetic correlation signals with bone mineral density in the TB-BMD cohort, such as MYOM2 (coefficient = 0.3755, P value = 0.0328) among subjects aged 0 ~ 15, POSTN (coefficient = − 0.5694, P value = 0.0192) among subjects aged 30 ~ 45 and PARK7 (coefficient = − 0.3613, P value = 0.0052) among subjects aged over 60. Conclusions Our results identified multiple plasma proteins associated with bone mineral density and provided novel clues for revealing the functional relevance of plasma proteins to bone mineral density. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05453-z.
Collapse
|
15
|
Qiu M, Chen M, Lan Z, Liu B, Xie J, Li X. Plasmacytoma variant translocation 1 stabilized by EIF4A3 promoted malignant biological behaviors of lung adenocarcinoma by generating circular RNA LMNB2. Bioengineered 2022; 13:10123-10140. [PMID: 35435126 PMCID: PMC9161831 DOI: 10.1080/21655979.2022.2063666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Meizhen Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Zhongping Lan
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| |
Collapse
|
16
|
Palisoc PJ, Vaikutis L, Gurrea-Rubio M, Model EN, O'mara MM, Ory S, Vichaikul S, Khanna D, Tsou PS, Sawalha AH. Functional Characterization of Glycoprotein Nonmetastatic Melanoma Protein B in Scleroderma Fibrosis. Front Immunol 2022; 13:814533. [PMID: 35280996 PMCID: PMC8907428 DOI: 10.3389/fimmu.2022.814533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is involved in various cell functions such as cell adhesion, migration, proliferation, and differentiation. In this study, we set forth to determine the role of GPNMB in systemic sclerosis (SSc) fibroblasts. Dermal fibroblasts were isolated from skin biopsies from healthy subjects and patients with diffuse cutaneous (dc)SSc. GPNMB was upregulated in dcSSc fibroblasts compared to normal fibroblasts, and correlated negatively with the modified Rodnan skin score. In addition, dcSSc fibroblasts secreted higher levels of soluble (s)GPNMB (147.4 ± 50.2 pg/ml vs. 84.8 ± 14.8 pg/ml, p<0.05), partly due to increased ADAM10. sGPNMB downregulated profibrotic genes in dcSSc fibroblasts and inhibited cell proliferation and gel contraction. The anti-fibrotic effect of sGPNMB was at least in part mediated through CD44, which is regulated by histone acetylation. TGFβ downregulated GPNMB and decreased the release of its soluble form in normal fibroblasts. In dcSSc fibroblasts, GPNMB is upregulated by its own soluble form. Our data demonstrate an anti-fibrotic role of sGPNMB in SSc and established a role for the ADAM10-sGPNMB-CD44 axis in dermal fibroblasts. Upregulating GPNMB expression might provide a novel therapeutic approach in SSc.
Collapse
Affiliation(s)
- Pamela J Palisoc
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Leah Vaikutis
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mikel Gurrea-Rubio
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ellen N Model
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Morgan M O'mara
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Sarah Ory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Sirapa Vichaikul
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Scleroderma Program, University of Michigan, Ann Arbor, MI, United States
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Yukata K, Nikawa T, Takahashi M, Yasui N. Overexpressed osteoactivin reduced osteoclastic callus resorption during distraction osteogenesis in mice. J Pediatr Orthop B 2021; 30:500-506. [PMID: 32732799 DOI: 10.1097/bpb.0000000000000789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Distraction osteogenesis is a widely used surgical technique to treat bone deformity and shortening. Several biological treatments have been studied to enhance bone formation during distraction osteogenesis in animals. However, role of osteoactivin in the osseous tissues during distraction osteogenesis remains poorly understood. In this animal experimental study, we investigated the spatiotemporal expression of osteoactivin by immunohistochemistry and real-time PCR using a mouse model for tibial lengthening. Furthermore, to address the role of osteoactivin in bone lengthening, we subjected the osteoactivin-transgenic mice to distraction osteogenesis model. During the lag phase, the fibroblast-like cells (possible progenitors of the osteoblasts or chondrocytes), which mainly express osteoactivin, were infiltrated into the osteotomy site. Osteoactivin was ubiquitously expressed in the lengthened segment during the distraction and consolidation phases. Consistent with the immunohistochemical analysis, the levels of the osteoactivin transcripts in the tibias were significantly increased throughout the distraction osteogenesis process. The bone mineral content in the osteoactivin-transgenic mice calculated using peripheral quantitative computed tomography was also significantly increased at the remodeling zone. The histomorphometric analysis revealed that newly formed callus resorption in the remodeling zone was significantly reduced but bone formation was not altered in the osteoactivin-transgenic mice. We conclude that osteoactivin functions as an inhibitor of callus resorption during the consolidation phase of distraction osteogenesis.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
- Department of Orthopedic Surgery, Ogori Daiichi General Hospital, Yamaguchi
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mitsuhiko Takahashi
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| | - Natsuo Yasui
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| |
Collapse
|
18
|
Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function. Sci Rep 2021; 11:10249. [PMID: 33986446 PMCID: PMC8119501 DOI: 10.1038/s41598-021-89800-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that the DBA/2J versus AKR/J mouse strain is associated with decreased autophagy-mediated lysosomal hydrolysis of cholesterol esters. Our objective was to determine differences in lysosome function in AKR/J and DBA/2J macrophages, and identify the responsible genes. Using a novel dual-labeled indicator of lysosome function, DBA/2J versus AKR/J bone marrow derived macrophages had significantly decreased lysosome function. We performed quantitative trait loci mapping of lysosome function in bone marrow macrophages from an AKR/J × DBA/2J strain intercross. Four distinct lysosome function loci were identified, which we named macrophage lysosome function modifier (Mlfm) Mlfm1 through Mlfm4. The strongest locus Mlfm1 harbors the Gpnmb gene, which has been shown to recruit autophagy protein light chain 3 to autophagosomes for lysosome fusion. The parental DBA/2J strain has a nonsense variant in Gpnmb. siRNA knockdown of Gpnmb in AKR/J macrophages decreased lysosome function, and Gpnmb deletion through CRISP/Cas9 editing in RAW 264.7 mouse macrophages also demonstrated a similar result. Furthermore, a DBA/2 substrain, called DBA/2J-Gpnmb+/SjJ, contains the wildtype Gpnmb gene, and macrophages from this Gpnmb-preserved DBA/2 substrain exhibited recovered lysosome function. In conclusion, we identified Gpnmb as a causal modifier gene of lysosome function in this strain pair.
Collapse
|
19
|
Moussa FM, Cook BP, Sondag GR, DeSanto M, Obri MS, McDermott SE, Safadi FF. The role of miR-150 regulates bone cell differentiation and function. Bone 2021; 145:115470. [PMID: 32526406 DOI: 10.1016/j.bone.2020.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND mir-RNAs play a role in regulating bone homeostasis. In this study we assessed the functional role of mir-RNA 150 in bone homeostasis. We also assess the effects of miR-150 deficiency on osteoblast and osteoclast differentiation and function using in vivo and in vitro approaches. METHODS Wild type (WT) (C57BL/6J) and miR-150 KO mice were compared for a variety of parameters. Micro-CT imaging was conducted to quantify trabecular bone mass inferior to the distal growth plate of the femur. Von Kossa staining was performed for osteoblast culture mineralization. RT-qPCR, biochemical analysis and bone histomorphometry were utilized for quantification of relevant genes and serum protein measurements. Differentiation and function of osteoblasts and osteoclasts was performed using primarily cultures and assessed the cell autonomous response of mir-RNA-150 on cell differentiation and function. RESULTS Mir-150 exhibited expression in a variety of tissues and increases progressively with age. Through micro-CT imaging, we found that KO mice presented reduced bone mass at 4, 8, and 16 weeks of age compared to WT mice. Furthermore, histomorphometric analysis revealed increased trabecular separation, decreased bone thickness, and decreased osteoblast number in KO compared to WT mice. Mir-150 deficiency also correlated with higher bone resorption, accompanied with significant increases in CTX-1 serum levels, and a decrease in cell apoptotic rate ex vivo. Additionally, miR-150 KO mice showed increased osteoblast differentiation and decreased osteoclastogenesis ex vivo. Luciferase assay showed increased Osteoactivin/GPNMB expression in miR-150 KO osteoblasts compared to WT cells. CONCLUSION Our data suggests that miR-150 influences osteoblast and osteoclast functionality and differentiation; specifically, miR-150 serves as a negative regulator for osteoblasts and a positive regulator for osteoclasts by regulating, at least in part, Osteoactivin/GPNMB expression.
Collapse
Affiliation(s)
- Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America; School of Biomedical Sciences, Kent State University, Kent, OH, United States of America
| | - Bryson P Cook
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America
| | - Greg R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America; School of Biomedical Sciences, Kent State University, Kent, OH, United States of America
| | - Matthew DeSanto
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America
| | - Mark S Obri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America
| | - Scott E McDermott
- Department of Orthopaedics, SUMMA Health System, Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, United States of America
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, United States of America; Musculoskeletal Research Group, NEOMED, Rootstown, OH, United States of America; School of Biomedical Sciences, Kent State University, Kent, OH, United States of America; Department of Orthopaedics, SUMMA Health System, Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, United States of America.
| |
Collapse
|
20
|
Pretemer Y, Kawai S, Nagata S, Nishio M, Watanabe M, Tamaki S, Alev C, Yamanaka Y, Xue JY, Wang Z, Fukiage K, Tsukanaka M, Futami T, Ikegawa S, Toguchida J. Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports 2021; 16:610-625. [PMID: 33636111 PMCID: PMC7940258 DOI: 10.1016/j.stemcr.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Chondrodysplasias are hereditary diseases caused by mutations in the components of growth cartilage. Although the unfolded protein response (UPR) has been identified as a key disease mechanism in mouse models, no suitable in vitro system has been reported to analyze the pathology in humans. Here, we developed a three-dimensional culture protocol to differentiate hypertrophic chondrocytes from induced pluripotent stem cells (iPSCs) and examine the phenotype caused by MATN3 and COL10A1 mutations. Intracellular MATN3 or COL10 retention resulted in increased ER stress markers and ER size in most mutants, but activation of the UPR was dependent on the mutation. Transcriptome analysis confirmed a UPR with wide-ranging changes in bone homeostasis, extracellular matrix composition, and lipid metabolism in the MATN3 T120M mutant, which further showed altered cellular morphology in iPSC-derived growth-plate-like structures in vivo. We then applied our in vitro model to drug testing, whereby trimethylamine N-oxide led to a reduction of ER stress and intracellular MATN3.
Collapse
Affiliation(s)
- Yann Pretemer
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shunsuke Kawai
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Nishio
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Watanabe
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sakura Tamaki
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Institute for Advancement of Clinical and Translational Sciences, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yoshihiro Yamanaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan; McKusick-Zhang Center for Genetic Medicine and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kenichi Fukiage
- Department of Pediatric Orthopaedics, Shiga Medical Center for Children, Moriyama, Japan; Department of Orthopaedic Surgery, Bobath Memorial Hospital, Osaka, Japan
| | - Masako Tsukanaka
- Department of Pediatric Orthopaedics, Shiga Medical Center for Children, Moriyama, Japan
| | - Tohru Futami
- Department of Pediatric Orthopaedics, Shiga Medical Center for Children, Moriyama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advancement of Clinical and Translational Sciences, Kyoto University Hospital, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Life Sci 2021; 272:119208. [PMID: 33582177 DOI: 10.1016/j.lfs.2021.119208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
AIMS The efficacy of anti-osteoporotic treatments is still limited. Our study aimed to investigate the effect of extracellular vesicles (EVs) derived from bone marrow-derived MSCs (BMSCs) overexpressing glycoprotein non-melanoma clone B (GPNMB) on osteoporosis (OP). MAIN METHODS Lentiviral vector for GPNMB overexpression or its negative control was generated and transfected into BMSCs. EVs enriched with GPNMB (GPNMB-EVs) were extracted from GPNMB-modified BMSC-conditioned medium and then identified. Cellular uptake and proliferation were analyzed using the Dil-labeled assay and CCK-8 assay, respectively. Cytochemical staining, western blot, and RT-qPCR analysis were performed to assess the effect of GPNMB-EVs on osteogenic differentiation of BMSCs in vitro. Dickkopf-1 (DKK1) as the inhibitor was applied to explore the Wnt/β-catenin signaling pathway involved in the GPNMB-EV-induced osteogenic differentiation. In vivo experiments were conducted using an ovariectomized (OVX) rat model of postmenopausal osteoporosis, and then assessed the effect of GPNMB-EVs by micro-CT, and histological and immunohistochemical assays. KEY FINDINGS GPNMB-EVs were taken up by BMSCs, and they noticeably promoted the proliferation of BMSCs. Additionally, GPNMB-EVs activated the Wnt/β-catenin signaling to stimulate osteogenesis in BMSCs. In vivo examination showed that GPNMB-EVs remarkably improved trabecular bone regeneration and alleviated the osteoporotic phenotype in the OVX-induced rat model of OP. SIGNIFICANCE EVs derived from GPNMB-modified BMSCs significantly stimulated the proliferation and osteogenic differentiation of BMSCs via the activation of Wnt/β-catenin signaling and attenuated the bone loss in the OVX-induced rat model of OP. Our findings suggest the promising potential of GPNMB-EVs as cell-free therapy for the treatment of OP.
Collapse
|
22
|
Lin J, Zhang P, Huang Y, Wei X, Guo D, Liu J, Liu D, Deng Y, Xu B, Huang C, Yang X, Lu Y, Jia L, Zhang H. Elevated circulating Gpnmb levels are associated with hyperthyroidism. Endocr Connect 2020; 9:783-792. [PMID: 32688342 PMCID: PMC7487193 DOI: 10.1530/ec-20-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glycoprotein non-metastatic protein B (Gpnmb) has been identified as a new cytokine secreted by hepatocyte that plays an important role in balancing lipid homeostasis and development of obesity and metabolic disorders. However, information is not available regarding the association between circulating Gpnmb and hyperthyroid in humans. METHODS We measured serum Gpnmb in 180 hyperthyroid patients and 82 healthy subjects that were recruited from the clinic. Of them, 46 hyperthyroid patients received thionamide treatment for 3 months. RESULTS Hyperthyroid subjects had higher levels of circulating Gpnmb than healthy controls (47.8 ± 10.1 ng/mL vs 31.0 ± 4.9 ng/mL, P < 0.001). Subjects with higher levels of serum free triiodothyronine (T3) and free thyroxine (T4) had higher levels of circulating Gpnmb. After thionamide treatment, levels of circulating Gpnmb in hyperthyroid subjects remarkably declined with significant improvement of thyroid function (P < 0.001). Furthermore, the change of circulating Gpnmb levels was significantly associated with basal metabolic rate (BMR) and thyroid hormones, including free T3 and free T4, adjusting for age, gender, smoking and BMI before thionamide treatment. In multivariable logistic regression analyses, circulating Gpnmb was significantly associated with risks of hyperthyroidism (OR (95% CI): 1.44 (1.20-1.74), P < 0.001), adjusted for age, gender, BMI, fasting glucose, HOMA-IR, LDL-cholesterol, ALT and AST. CONCLUSIONS These findings indicate that circulating Gpnmb concentrations are independently associated with hyperthyroid, suggesting that circulating Gpnmb may be a predictor of risk for hyperthyroidism and can be used for therapeutic monitoring.
Collapse
Affiliation(s)
- Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfang Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
- Correspondence should be addressed to L Jia or H Zhang: or
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Correspondence should be addressed to L Jia or H Zhang: or
| |
Collapse
|
23
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
24
|
Yu Y, Wu J, Li J, Liu Y, Zheng X, Du M, Zhou L, Yang Y, Luo S, Hu W, Li L, Yao W, Liu Y. Cycloastragenol prevents age-related bone loss: Evidence in d-galactose-treated and aged rats. Biomed Pharmacother 2020; 128:110304. [PMID: 32497865 DOI: 10.1016/j.biopha.2020.110304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Aging-induced bone loss is a multifactorial, age-related, and progressive phenomenon among the general population and may further progress to osteoporosis and increase the risk of fractures. Cycloastragenol (CAG), currently the only compound reported that activates human telomerase, is thought to be able to alleviate or delay the symptoms of aging and chronic diseases. Previous research has suggested that CAG may have the potential to alleviate age-related bone loss. However, to date, no research has specifically focused on this aspect. In this study, we aimed to investigate whether CAG could prevent senile osteoporosis, and further reveal its underlying mechanism. METHODS CAG treatment was administrated into two bone loss rat models (D-galactose administration and aging) for 20 weeks and 33 weeks, respectively. Serum biomarkers analyses, bone biomechanical tests, micro-computed tomography assessment, and bone histomorphometry analyses were performed on the bone samples collected at the endpoint, to determine whether CAG could prevent or alleviate age-related bone loss. Proteomic analysis was performed to reveal the changes in protein profiles of the bones, and western blot was used to further verify the identity of the key proteins. The viability, osteoblastic differentiation, and mineralization of MC3T3-E1 cells were also evaluated after CAG treatment in vitro. RESULTS The results suggest that CAG treatment improves bone formation, reduces osteoclast number, alleviates the degradation of bone microstructure, and enhances bone biomechanical properties in both d-galactose- and aging-induced bone loss models. CAG treatment promotes viability, osteoblastic differentiation, and mineralization in MC3T3-E1 cells. Proteomic and western blot analyses revealed that CAG treatment increases osteoactivin (OA) expression to alleviate bone loss. CONCLUSION The results revealed that CAG alleviates age-related bone loss and improves bone microstructure and biomechanical properties. This may due to CAG-induced increase in OA expression. In addition, the results support preclinical investigations of CAG as a potential therapeutic medicine for the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Yongjie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Jingkai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yanzhi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China; Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, PR China
| | - Xiaoyan Zheng
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Mingzhu Du
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Limin Zhou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Shiying Luo
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Wenjia Hu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Weimin Yao
- Department of Respiratory Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, PR China.
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China.
| |
Collapse
|
25
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Budge KM, Neal ML, Richardson JR, Safadi FF. Transgenic Overexpression of GPNMB Protects Against MPTP-Induced Neurodegeneration. Mol Neurobiol 2020; 57:2920-2933. [PMID: 32436108 DOI: 10.1007/s12035-020-01921-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease highlighted by a marked loss of dopaminergic cell loss and motor disturbances. Currently, there are no drugs that slow the progression of the disease. A myriad of factors have been implicated in the pathogenesis and progression of PD including neuroinflammation. Although anti-inflammatory agents are being evaluated as potential disease-modifying therapies for PD, none has proven effective to date, suggesting that new and novel targets are needed. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that has recently been shown to reduce inflammation in astrocytes and to be increased in post-mortem PD brain samples. Here we show that transgenic overexpression of GPNMB protects against dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropridine mouse model of Parkinson's disease. Furthermore, GPNMB overexpression reduces gliosis and prevented microglial morphological changes following MPTP treatment compared with wild-type MPTP-treated mice. Additionally, recombinant GPNMB attenuates LPS-induced inflammation in primary mouse microglia. These results suggest a neuroprotective and anti-inflammatory role for GPNMB and warrant further investigation for GPNMB as a novel therapy for PD.
Collapse
Affiliation(s)
- Kevin M Budge
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew L Neal
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA. .,Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA.
| | - Fayez F Safadi
- School of Biomedical Sciences, Kent State University, Kent, OH, USA. .,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA. .,Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA.
| |
Collapse
|
27
|
Peck SH, Tobias JW, Shore EM, Malhotra NR, Haskins ME, Casal ML, Smith LJ. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone 2019; 128:115042. [PMID: 31442675 PMCID: PMC6813906 DOI: 10.1016/j.bone.2019.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient activity of β-glucuronidase, leading to progressive accumulation of incompletely degraded heparan, dermatan, and chondroitin sulfate glycosaminoglycans (GAGs). Patients with MPS VII exhibit progressive skeletal deformity including kyphoscoliosis and joint dysplasia, which decrease quality of life and increase mortality. Previously, using the naturally-occurring canine model, we demonstrated that one of the earliest skeletal abnormalities to manifest in MPS VII is failed initiation of secondary ossification in vertebrae and long bones at the requisite postnatal developmental stage. The objective of this study was to obtain global insights into the molecular mechanisms underlying this failed initiation of secondary ossification. Epiphyseal tissue was isolated postmortem from the vertebrae of control and MPS VII-affected dogs at 9 and 14 days-of-age (n = 5 for each group). Differences in global gene expression across this developmental window for both cohorts were measured using whole-transcriptome sequencing (RNA-Seq). Principal Component Analysis revealed clustering of samples within each group, indicating clear effects of both age and disease state. At 9 days-of-age, 1375 genes were significantly differentially expressed between MPS VII and control, and by 14 days-of-age, this increased to 4719 genes. A targeted analysis focused on signaling pathways important in the regulation of endochondral ossification was performed, and a subset of gene expression differences were validated using qPCR. Osteoactivin (GPNMB) was the top upregulated gene in MPS VII at both ages. In control samples, temporal changes in gene expression from 9 to 14 days-of-age were consistent with chondrocyte maturation, cartilage resorption, and osteogenesis. In MPS VII samples, however, elements of key osteogenic pathways such as Wnt/β-catenin and BMP signaling were not upregulated during this same developmental window suggesting that important bone formation pathways are not activated. In conclusion, this study represents an important step towards identifying therapeutic targets and biomarkers for bone disease in MPS VII patients during postnatal growth.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, Goodman SM, Tabechian D, Hughes LB, Salomon-Escoto K, Watts GFM, Jonsson AH, Rangel-Moreno J, Meednu N, Rozo C, Apruzzese W, Eisenhaure TM, Lieb DJ, Boyle DL, Mandelin AM, Boyce BF, DiCarlo E, Gravallese EM, Gregersen PK, Moreland L, Firestein GS, Hacohen N, Nusbaum C, Lederer JA, Perlman H, Pitzalis C, Filer A, Holers VM, Bykerk VP, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 2019; 20:928-942. [PMID: 31061532 PMCID: PMC6602051 DOI: 10.1038/s41590-019-0378-1] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chamith Y Fonseka
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Kelly
- Department of Rheumatology, Barts Health NHS Trust, London, UK
| | - Susan M Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura B Hughes
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen Salomon-Escoto
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Helena Jonsson
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Rozo
- Arthritis and Tissue Degeneration, Hospital for Special Surgery, New York, NY, USA
| | - William Apruzzese
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - David J Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David L Boyle
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Arthur M Mandelin
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Larry Moreland
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary S Firestein
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Vivian P Bykerk
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Laura T Donlin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Arthritis and Tissue Degeneration, Hospital for Special Surgery, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Liu F, Wang X, Yang Y, Hu R, Wang W, Wang Y. The suppressive effects of miR-508-5p on the odontogenic differentiation of human dental pulp stem cells by targeting glycoprotein non-metastatic melanomal protein B. Stem Cell Res Ther 2019; 10:35. [PMID: 30670091 PMCID: PMC6341723 DOI: 10.1186/s13287-019-1146-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although the involvement of glycoprotein non-metastatic melanomal protein B (GPNMB) in regulating the odontogenic differentiation of human dental pulp stem cells (hDPCs) has been identified, the underlying mechanisms are largely unknown. The purpose of this study is to investigate the effects of miR-508-5p on the GPNMB expression and the odontogenic differentiation of hDPCs. METHODS In this study, hDPCs were isolated and identified by flow cytometric analysis. Based on bioinformatics analysis, dual luciferase reporter assay was performed to verify GPNMB acting as a target of miR-508-5p. The regulatory roles of miR-508-5p in odontogenetic differentiation of hDPCs were investigated through its inhibition or overexpression (miRNA mimics and miRNA inhibitors). qRT-PCR and Western blot analysis were used to detect the expression of odontogenetic marker genes and proteins. The assays of alkaline phosphatase (ALP) activity and Alizarin Red S staining were performed to evaluate the odontogenetic phenotype. RESULTS We first found that the levels of miR-508-5p expression decreased gradually during odontogenesis of hDPCs, while the expressions of GPNMB were upregulated obviously. The suppressive effects of miR-508-5p on GPNMB were determined by oligonucleotide transfection in hDPCs and dual luciferase reporter assay in 293T cells. Subsequently, the significant inhibition of hDPC odontogenesis after the overexpression of miR-508-5p was observed, which is consistent with the decreased expression levels of several odontoblast-specific genes, such as dentin matrix protein 1 (DMP-1), dentin sialophosphoprotein (DSPP), and osteocalcin (OCN), as well as the decreased activity of ALP and weakened Alizarin Red S staining. Furthermore, ectopic expression of GPNMB (lacking 3'-UTR) rescued the effects of miR-508-5p on odontogenic differentiation. CONCLUSIONS Our study demonstrated that miR-508-5p regulated the osteogenesis of hDPCs by targeting GPNMB and provided novel insight into the critical roles of microRNAs in hDPC differentiation.
Collapse
Affiliation(s)
- Fengxi Liu
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, No 717, Jinbu Street, Muping District, Yantai, 264100, People's Republic of China.,Department of Stomatology, Maternal and Child Care Service Centre of Zibo, Zibo, 255029, People's Republic of China
| | - Xin Wang
- Department of Blood Transfusion and Clinical Central Laboratory, PLA 107th Hospital affiliated to Binzhou Medical University, Yantai, 264002, People's Republic of China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Rongrong Hu
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, No 717, Jinbu Street, Muping District, Yantai, 264100, People's Republic of China.,College of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wenhao Wang
- College of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuliang Wang
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, No 717, Jinbu Street, Muping District, Yantai, 264100, People's Republic of China. .,College of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| |
Collapse
|
30
|
Fader KA, Nault R, Raehtz S, McCabe LR, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 2018; 348:85-98. [PMID: 29673856 PMCID: PMC5984050 DOI: 10.1016/j.taap.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) agonists have been shown to regulate bone development and remodeling in a species-, ligand-, and age-specific manner, however the underlying mechanisms remain poorly understood. In this study, we characterized the effect of 0.01-30 μg/kg TCDD on the femoral morphology of male and female juvenile mice orally gavaged every 4 days for 28 days and used RNA-Seq to investigate gene expression changes associated with the resultant phenotype. Micro-computed tomography revealed that TCDD dose-dependently increased trabecular bone volume fraction (BVF) 2.9- and 3.3-fold in male and female femurs, respectively. Decreased serum tartrate-resistant acid phosphatase (TRAP) levels, combined with a reduced osteoclast surface to bone surface ratio and repression of femoral proteases (cathepsin K, matrix metallopeptidase 13), suggests that TCDD impaired bone resorption. Increased osteoblast counts at the trabecular bone surface were consistent with a reciprocal reduction in the number of bone marrow adipocytes, suggesting AhR activation may direct mesenchymal stem cell differentiation towards osteoblasts rather than adipocytes. Notably, femoral expression of transmembrane glycoprotein NMB (Gpnmb; osteoactivin), a positive regulator of osteoblast differentiation and mineralization, was dose-dependently induced up to 18.8-fold by TCDD. Moreover, increased serum levels of 1,25-dihydroxyvitamin D3 were in accordance with the renal induction of 1α-hydroxylase Cyp27b1 and may contribute to impaired bone resorption. Collectively, the data suggest AhR activation tipped the bone remodeling balance towards bone formation, resulting in increased bone mass with reduced marrow adiposity.
Collapse
Affiliation(s)
- Kelly A Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Radiology, Michigan State University, East Lansing, MI 48824, United States
| | - Timothy R Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
31
|
Barbe MF, Massicotte VS, Assari S, Monroy MA, Frara N, Harris MY, Amin M, King T, Cruz GE, Popoff SN. Prolonged high force high repetition pulling induces osteocyte apoptosis and trabecular bone loss in distal radius, while low force high repetition pulling induces bone anabolism. Bone 2018; 110:267-283. [PMID: 29476978 PMCID: PMC5878749 DOI: 10.1016/j.bone.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 01/14/2023]
Abstract
We have an operant rat model of upper extremity reaching and grasping in which we examined the impact of performing a high force high repetition (High-ForceHR) versus a low force low repetition (Low-ForceHR) task for 18weeks on the radius and ulna, compared to age-matched controls. High-ForceHR rats performed at 4 reaches/min and 50% of their maximum voluntary pulling force for 2h/day, 3days/week. Low-ForceHR rats performed at 6% maximum voluntary pulling force. High-ForceHR rats showed decreased trabecular bone volume in the distal metaphyseal radius, decreased anabolic indices in this same bone region (e.g., decreased osteoblasts and bone formation rate), and increased catabolic indices (e.g., microcracks, increased osteocyte apoptosis, secreted sclerostin, RANKL, and osteoclast numbers), compared to controls. Distal metaphyseal trabeculae in the ulna of High-ForceHR rats showed a non-significant decrease in bone volume, some catabolic indices (e.g., decreased trabecular numbers) yet also some anabolic indices (e.g., increased osteoblasts and trabecular thickness). In contrast, the mid-diaphyseal region of High-ForceHR rats' radial and ulnar bones showed few to no microarchitecture differences and no changes in apoptosis, sclerostin or RANKL levels, compared to controls. In further contrast, Low-ForceHR rats showed increased trabecular bone volume in the radius in the distal metaphysis and increased cortical bone area its mid-diaphysis. These changes were accompanied by increased anabolic indices, no microcracks or osteocyte apoptosis, and decreased RANKL in each region, compared to controls. Ulnar bones of Low-ForceHR rats also showed increased anabolic indices, although fewer than in the adjacent radius. Thus, prolonged performance of an upper extremity reaching and grasping task is loading-, region-, and bone-dependent, with high force loads at high repetition rates inducing region-specific increases in bone degradative changes that were most prominent in distal radial trabeculae, while low force task loads at high repetition rates induced adaptive bone responses.
Collapse
Affiliation(s)
- Mary F Barbe
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States.
| | - Vicky S Massicotte
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Soroush Assari
- Temple University College of Engineering, Department of Mechanical Engineering, Philadelphia, PA 19122, United States
| | - M Alexandra Monroy
- Perelman School of Medicine, University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA 19104, United States
| | - Nagat Frara
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Michele Y Harris
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Mamta Amin
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Tamara King
- College of Osteopathic Medicine, Department of Biomedical Sciences, Biddeford, ME 04005, United States
| | - Geneva E Cruz
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Steve N Popoff
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| |
Collapse
|
32
|
Yang CF, Lin SP, Chiang CP, Wu YH, H'ng WS, Chang CP, Chen YT, Wu JY. Loss of GPNMB Causes Autosomal-Recessive Amyloidosis Cutis Dyschromica in Humans. Am J Hum Genet 2018; 102:219-232. [PMID: 29336782 DOI: 10.1016/j.ajhg.2017.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Amyloidosis cutis dyschromica (ACD) is a distinct form of primary cutaneous amyloidosis characterized by generalized hyperpigmentation mottled with small hypopigmented macules on the trunks and limbs. Affected families and sporadic case subjects have been reported predominantly in East and Southeast Asian ethnicities; however, the genetic cause has not been elucidated. We report here that the compound heterozygosity or homozygosity of GPNMB truncating alleles is the cause of autosomal-recessive ACD. Six nonsense or frameshift mutations were identified in nine individuals diagnosed with ACD. Immunofluorescence analysis of skin biopsies showed that GPNMB is expressed in all epidermal cells, with the highest staining observed in melanocytes. GPNMB staining is significantly reduced in the lesional skin of affected individuals. Hyperpigmented lesions exhibited significantly increased amounts of DNA/keratin-positive amyloid deposits in the papillary dermis and infiltrating macrophages compared with hypo- or depigmented macules. Depigmentation of the lesions was attributable to loss of melanocytes. Intracytoplasmic fibrillary aggregates were observed in keratinocytes scattered in the lesional epidermis. Thus, our analysis indicates that loss of GPNMB, which has been implicated in melanosome formation, autophagy, phagocytosis, tissue repair, and negative regulation of inflammation, underlies autosomal-recessive ACD and provides insights into the etiology of amyloidosis and pigment dyschromia.
Collapse
Affiliation(s)
- Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chien-Ping Chiang
- Departments of Dermatology, Tri-Service General Hospital, Taipei 114, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Hung Wu
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Weng Siong H'ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
33
|
Budge KM, Neal ML, Richardson JR, Safadi FF. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Mol Neurobiol 2017; 55:5167-5176. [PMID: 28856541 DOI: 10.1007/s12035-017-0707-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1 β), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin M Budge
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Matthew L Neal
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA. .,School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
34
|
Yang G, Chen X, Yan Z, Zhu Q, Yang C. CD11b promotes the differentiation of osteoclasts induced by RANKL through the spleen tyrosine kinase signalling pathway. J Cell Mol Med 2017; 21:3445-3452. [PMID: 28661042 PMCID: PMC5706498 DOI: 10.1111/jcmm.13254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Macrophage surface antigen‐1 (Mac‐1, CD11b/CD18) has been implicated in the regulation of osteoclastogenesis. In the synovial tissues of patients with aseptic loosening after total hip replacement, CD11b was up‐regulated, which indicated that CD11b is closely involved in osteolysis around the prosthesis. We found that CD11b, but not CD18, promoted osteoclast (OC) maturation. Here, we show CD11b up‐regulated the levels of spleen tyrosine kinase (Syk), c‐Fos and nuclear factor of activated T cells, cytoplasmic‐1 (NFATc1), as well as the activity of extracellular‐regulated kinase (Erk), and as a result, osteoclast precursors (OCPs) differentiated and became tartrate‐resistant acid phosphatase (TRAP)‐positive. In addition, increased tumour necrosis factor‐α (TNF‐α) induced by ultra‐high molecular weight polyethylene (UHMWPE) particles up‐regulated the level of CD11b. Taken together, these findings suggest that CD11b is a positive regulator of osteoclastogenesis and that it functions by activating the Syk signalling pathway, while CD18 does not have the same effect.
Collapse
Affiliation(s)
- Guoxi Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoyong Chen
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhao Yan
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qingsheng Zhu
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chongfei Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Sondag GR, Mbimba TS, Moussa FM, Novak K, Yu B, Jaber FA, Abdelmagid SM, Geldenhuys WJ, Safadi FF. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp Mol Med 2016; 48:e257. [PMID: 27585719 PMCID: PMC5050297 DOI: 10.1038/emm.2016.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Thomas S Mbimba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Fatima A Jaber
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, King Abdulaziz University, Jeddah, KSA
| | - Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA.,Department of Orthopedics, Summa Health Systems, Akron, OH, USA
| |
Collapse
|
37
|
Kramer G, Wegdam W, Donker-Koopman W, Ottenhoff R, Gaspar P, Verhoek M, Nelson J, Gabriel T, Kallemeijn W, Boot RG, Laman JD, Vissers JPC, Cox T, Pavlova E, Moran MT, Aerts JM, van Eijk M. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio 2016; 6:902-13. [PMID: 27642553 PMCID: PMC5011488 DOI: 10.1002/2211-5463.12078] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser‐dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells. In Gaucher mice, gpNMB is also produced by Gaucher cells. Correction of glucocerebrosidase deficiency in mice by gene transfer or pharmacological substrate reduction reverses gpNMB abnormalities. In conclusion, gpNMB acts as a marker for glucosylceramide‐laden macrophages in man and mouse and gpNMB should be considered as candidate biomarker for Gaucher disease in treatment monitoring.
Collapse
Affiliation(s)
- Gertjan Kramer
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands; European Molecular Biology Laboratory Germany
| | - Wouter Wegdam
- Department of Gynecology Academic Medical Center Amsterdam The Netherlands
| | - Wilma Donker-Koopman
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Paulo Gaspar
- Organelle Biogenesis & Function Group Instituto de Investigação e Inovação em Saúde (I3S) Porto Portugal; Institute of Molecular and Cell Biology (IBMC) Universidade do Porto Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS) Universidade do Porto Portugal
| | - Marri Verhoek
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Jessica Nelson
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Tanit Gabriel
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Wouter Kallemeijn
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Jon D Laman
- Department of Neuroscience University Medical Center Groningen The Netherlands
| | | | - Timothy Cox
- Department of Internal Medicine Addenbrooke's Hospital Cambridge UK
| | - Elena Pavlova
- Department of Internal Medicine Addenbrooke's Hospital Cambridge UK
| | | | - Johannes M Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands; Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University The Netherlands
| |
Collapse
|
38
|
Abstract
INTRODUCTION Osteoactivin (OA) was first discovered in an osteopetrotic rat model using mRNA differential display a decade ago and has been studied recently. OA in bone tissue can directly or indirectly regulate the differentiation of osteoblasts by influencing cell behaviours, such as proliferation and adhesion, as well as inducing serial signal cascades, which would be of great importance in the field of tissue engineering. The results of recent studies have further demonstrated that OA plays a critical role in the differentiation and function of cells, especially in bone formation and fracture healing. Areas covered: The discovery, structure, and function of OA as well as its therapeutic potential in tissue regeneration of bone defects, kidney injury, liver damage, and muscle atrophy. Expert opinion: OA has great potential in promoting the regeneration of damaged tissues, particularly bone tissue, which is supported by a large body of data. Future studies should focus on exploring the underlying mechanism of OA as well as pursuing the ideal form of OA-related regenerative medicine.
Collapse
Affiliation(s)
- Yuyang Huang
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Bo Bai
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Yongchang Yao
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
39
|
Frara N, Abdelmagid SM, Tytell M, Amin M, Popoff SN, Safadi FF, Barbe MF. Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping. BMC Musculoskelet Disord 2016; 17:34. [PMID: 26781840 PMCID: PMC4717665 DOI: 10.1186/s12891-016-0892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA's expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats. METHODS Flexor digitorum muscles and tendons were collected from 22 young adult female rats performing a HRNF reaching task for 3 to 6 weeks, and 12 food restricted control (FRC) rats. OA mRNA levels were assessed by quantitative polymerase chain reaction (qPCR). OA, MMP-1, -2, -3, and -13 and HSP72 protein expression was assayed using Western blotting. Immunohistochemistry and image analysis was used to evaluate OA and HSP72 expression. ELISA was performed for HSP72 and inflammatory cytokines. RESULTS Flexor digitorum muscles and tendons from 6-week HRNF rats showed increased OA mRNA and protein expression compared to FRC rats. MMP-1, -2 and -3 progressively increased in muscles whereas MMP-1 and -3 increased in tendons with HRNF task performance. HSP72 increased in 6-week HRNF muscles and tendons, compared to controls, and co-localized with OA in the myofiber sarcolemma. IL-1alpha and beta increased transiently in tendons or muscles in HRNF week 3 before resolving in week 6. CONCLUSION The simultaneous increases of OA with factors involved in tissue repair (MMPs and HSP72) supports a role of OA in tissue regeneration after repetitive overuse.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Samir M Abdelmagid
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Cancer-Osteoblast Interaction Reduces Sost Expression in Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer. MICROARRAYS 2015; 4:503-19. [PMID: 27600237 PMCID: PMC4996404 DOI: 10.3390/microarrays4040503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
Dynamic interaction between prostate cancer and the bone microenvironment is a major contributor to metastasis of prostate cancer to bone. In this study, we utilized an in vitro co-culture model of PC3 prostate cancer cells and osteoblasts followed by microarray based gene expression profiling to identify previously unrecognized prostate cancer–bone microenvironment interactions. Factors secreted by PC3 cells resulted in the up-regulation of many genes in osteoblasts associated with bone metabolism and cancer metastasis, including Mmp13, Il-6 and Tgfb2, and down-regulation of Wnt inhibitor Sost. To determine whether altered Sost expression in the bone microenvironment has an effect on prostate cancer metastasis, we co-cultured PC3 cells with Sost knockout (SostKO) osteoblasts and wildtype (WT) osteoblasts and identified several genes differentially regulated between PC3-SostKO osteoblast co-cultures and PC3-WT osteoblast co-cultures. Co-culturing PC3 cells with WT osteoblasts up-regulated cancer-associated long noncoding RNA (lncRNA) MALAT1 in PC3 cells. MALAT1 expression was further enhanced when PC3 cells were co-cultured with SostKO osteoblasts and treatment with recombinant Sost down-regulated MALAT1 expression in these cells. Our results suggest that reduced Sost expression in the tumor microenvironment may promote bone metastasis by up-regulating MALAT1 in prostate cancer.
Collapse
|