1
|
Zhang F, Geng Y, Shi X, Duo J. EGR3 deficiency alleviates cigarette smoke-induced pulmonary inflammation in COPD through TLR4/NF-κB/TIMP-1 axis. Biochem Biophys Res Commun 2025; 763:151741. [PMID: 40220490 DOI: 10.1016/j.bbrc.2025.151741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by irreversible airflow limitation, lacks effective early diagnostic and therapeutic strategies. While airway inflammation drives COPD progression, its mechanisms remain unclear. Early growth response protein 3 (EGR3), a regulator of adaptive immunity, has not been explored in COPD-related inflammation. Here, we investigated EGR3's role in COPD pathogenesis using a cigarette smoke-induced murine model. EGR3 knockout (EGR3-/-) and wild-type mice were exposed to smoke for 6 months. EGR3-/- mice exhibited improved lung function, reduced airway resistance, and attenuated alveolar structural damage compared to wild-type. Mechanistically, EGR3 deficiency suppressed cigarette smoke-induced activation of the TLR4/NF-κB pathway and downregulated TIMP-1 expression in lung tissues and serum. This study identifies EGR3 as a novel promoter of COPD progression via the TLR4/NF-κB/TIMP-1 axis, offering a potential biomarker and therapeutic target for COPD management.
Collapse
Affiliation(s)
- Fang Zhang
- Suzhou Medical College of Soochow University, No.199 Renai Road, Suzhou Industrial Park, Suzhou 215123, People's Republic of China; Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, No.2 Gonghe Road, Chengdong District, Xining 810000, People's Republic of China
| | - Yumei Geng
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, No.2 Gonghe Road, Chengdong District, Xining 810000, People's Republic of China
| | - Xuefeng Shi
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, No.2 Gonghe Road, Chengdong District, Xining 810000, People's Republic of China.
| | - Jie Duo
- Suzhou Medical College of Soochow University, No.199 Renai Road, Suzhou Industrial Park, Suzhou 215123, People's Republic of China; Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, No.2 Gonghe Road, Chengdong District, Xining 810000, People's Republic of China.
| |
Collapse
|
2
|
Zakyrjanova GF, Matigorova VA, Kuznetsova EA, Dmitrieva SA, Tyapkina OV, Tsentsevitsky AN, Andreyanova SN, Odnoshivkina JG, Shigapova RR, Mukhamedshina YO, Gogolev YV, Petrov AM. Key genes and processes affected by atorvastatin treatment in mouse diaphragm muscle. Arch Toxicol 2025:10.1007/s00204-025-04056-6. [PMID: 40234311 DOI: 10.1007/s00204-025-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Statins are one of the top prescribed medications and are used for preventing or treating cardiovascular diseases. Myalgia, muscle fatigue, weakness, and inflammation are the most common side effects of these drugs collectively named statin-associated muscle symptoms (SAMS). The mechanisms underlying SAMS remain unclear. Given that statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of mevalonate pathway, responsible for synthesis of cholesterol and other vital molecules, SAMS may be mediated by multiple reasons. Herein, using unbiased whole transcriptome sequencing, we identified statin-affected processes and then assessed them using fluorescent, biochemical, and histological approaches in the mouse diaphragm, the main respiratory muscle. Mice were orally treated for 1 month with atorvastatin, the most prescribed statin, at clinically relevant dose. We found that atorvastatin caused downregulation of genes encoding proteins required for oxidative phosphorylation and anabolic processes, whereas genes of proteins engaged inflammation and muscle atrophy were mainly up-regulated. Furthermore, alterations in gene expression pattern suggest oxidative stress and abnormal lipid accumulation. This transcriptome signature correlated to a decrease in mitochondrial polarization and protein synthesis capacity, as well as an increase in lipid peroxidation and reactive oxygen species production. In addition, atorvastatin treatment caused lipid raft disruption, phospholipidosis, myelin de-compactization, and appearance of greater heterogeneity of muscle fiber cross-section diameter. Thus, atorvastatin treatment can negatively affect diaphragm muscle via oxidative stress accompanied by decrease in mitochondrial activity, protein synthesis, and stability of plasma membrane. As a part of compensatory response can serve enhanced activity of superoxide dismutase and cholesterol uptake capacity.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Valeriya A Matigorova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Oksana V Tyapkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Sofya N Andreyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Julia G Odnoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Rezeda R Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
3
|
Shen E, Piao M, Li Y, Wu Y, Li S, Lee SH, Jin L, Lee KY. CMTM3 Suppresses Proliferation and Osteogenic Transdifferentiation of C2C12 Myoblasts through p53 Upregulation. Cells 2024; 13:1352. [PMID: 39195242 PMCID: PMC11352514 DOI: 10.3390/cells13161352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family that is closely related to tumor occurrence and progression, plays crucial roles in the immune system, cardiovascular system, and male reproductive system. Recently, CMTM3 has emerged as a potential target for treating diseases related to bone formation. However, additional studies are needed to understand the mechanisms by which CMTM3 regulates the process of osteogenic differentiation. In this study, we observed a significant downregulation of Cmtm3 expression during the transdifferentiation of C2C12 myoblasts into osteoblasts induced by BMP4. Cmtm3 overexpression suppressed proliferation and osteogenic differentiation in BMP4-induced C2C12 cells, whereas its knockdown conversely facilitated the process. Mechanistically, Cmtm3 overexpression upregulated both the protein and mRNA levels of p53 and p21. Conversely, Cmtm3 knockdown exerted the opposite effects. Additionally, we found that Cmtm3 interacts with p53 and increases protein stability by inhibiting proteasome-mediated ubiquitination and degradation. Notably, Trp53 downregulation abrogated the inhibitory effect of Cmtm3 on BMP4-induced proliferation and osteogenic differentiation of C2C12 myoblasts. Collectively, our findings provide key insights into the role of CMTM3 in regulating myoblast proliferation and transdifferentiation into osteoblasts, highlighting its significance in osteogenesis research.
Collapse
Affiliation(s)
- Enzhao Shen
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Yuecheng Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Sihang Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| |
Collapse
|
4
|
Zhou KY, Deng LJ, Luo SY, Wang QX, Fang S. Expression of Early Growth Response 3 in Skin Cancers. Appl Immunohistochem Mol Morphol 2024; 32:169-175. [PMID: 38478384 DOI: 10.1097/pai.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To assess the expression of early growth response 3 (EGR3) in normal skin and different types of skin tumors: cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), melanoma (MM), and cutaneous adnexal tumors containing sebaceous carcinoma (SC), trichoepithelioma (TE) and clear cell hidradenoma (CCH). BACKGROUND EGR3, expressed in multiple organs, including skin, plays an important role in cell differentiation and tumor growth. Previous studies have shown that EGR3 suppresses tumor growth and is downregulated in various malignancies. However, its distribution in normal skin and its expression especially in skin tumors have not been studied. MATERIALS AND METHODS Samples of normal cases (n = 4), cSCC (n = 12), BCC (n = 12), MM (n = 12), SC (n = 4), TE (n = 4), and CCH (n = 4) were collected from patients treated in our department between 2018 and 2023. Immunohistochemistry was used to investigate the expression of EGR3. The results were analyzed with the description of the staining pattern and the histochemical score. RESULTS Immunohistochemical staining showed that EGR3 was uniquely expressed in normal skin in the granular layer and upper part of the stratum spinosum, as well as in sebaceous glands and hair follicles, but not in sweat glands. In skin cancers, BCC, SC, and TE showed positive EGR3 staining, whereas cSCC, MM, and CCH were negative. CONCLUSIONS EGR3 has a specific expression pattern in normal skin and in skin tumors, which is important for the differential diagnosis of skin tumors, in particular for cSCC and sebaceous gland carcinoma.
Collapse
Affiliation(s)
- Kai-Yi Zhou
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
5
|
Zou H, Zhou Y, Gong L, Huang C, Liu X, Lu R, Yu J, Kong Z, Zhang Y, Lin D. Trimethylamine N-Oxide Improves Exercise Performance by Reducing Oxidative Stress through Activation of the Nrf2 Signaling Pathway. Molecules 2024; 29:759. [PMID: 38398511 PMCID: PMC10893042 DOI: 10.3390/molecules29040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Trimethylamine N-oxide (TMAO) has attracted interest because of its association with cardiovascular disease and diabetes, and evidence for the beneficial effects of TMAO is accumulating. This study investigates the role of TMAO in improving exercise performance and elucidates the underlying molecular mechanisms. Using C2C12 cells, we established an oxidative stress model and administered TMAO treatment. Our results indicate that TMAO significantly protects myoblasts from oxidative stress-induced damage by increasing the expression of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase (NQO1), and catalase (CAT). In particular, suppression of Nrf2 resulted in a loss of the protective effects of TMAO and a significant decrease in the expression levels of Nrf2, HO-1, and NQO1. In addition, we evaluated the effects of TMAO in an exhaustive swimming test in mice. TMAO treatment significantly prolonged swimming endurance, increased glutathione and taurine levels, enhanced glutathione peroxidase activity, and increased the expression of Nrf2 and its downstream antioxidant genes, including HO-1, NQO1, and CAT, in skeletal muscle. These findings underscore the potential of TMAO to counteract exercise-induced oxidative stress. This research provides new insights into the ability of TMAO to alleviate exercise-induced oxidative stress via the Nrf2 signaling pathway, providing a valuable framework for the development of sports nutrition supplements aimed at mitigating oxidative stress.
Collapse
Affiliation(s)
- Hong Zou
- Physical Education Department, Xiamen University, Xiamen 361005, China;
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
- Affiliated High School of Minnan, Normal University, Zhangzhou 363005, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhenxing Kong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| |
Collapse
|
6
|
Johnson MG, Adam E, Watt A, Page AE. Effects of High-Speed Training on Messenger RNA Expression in Two-Year-Old Thoroughbred Racehorses. J Equine Vet Sci 2023; 128:104892. [PMID: 37433342 DOI: 10.1016/j.jevs.2023.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Accumulating high-speed exercise has been identified as a significant risk factor for catastrophic injuries in racing Thoroughbreds. Injuries, regardless of severity, are a main cause of withdrawal from the racing industry, raising animal welfare concerns and resulting in significant economic losses. While most of the current literature focuses on injuries incurred during racing rather than training, the present study aims to help fill this gap. As such, peripheral blood was collected weekly, prior to exercise or administration of medication, from eighteen, two-year-old Thoroughbreds throughout their first season of race training. Messenger RNA (mRNA) was isolated and used to analyze the expression of 34 genes via RT-qPCR. Statistical analysis of the noninjured horses (n = 6) showed that 13 genes were significantly correlated with increasing average weekly high-speed furlong performance. Additionally, there was a negative correlation for CXCL1, IGFBP3, and MPO with both cumulative high-speed furlongs and week of training for all horses. Comparison of both groups showed opposing correlations between the anti-inflammatory index (IL1RN, IL-10, and PTGS1) and average weekly high-speed furlong performance. Furthermore, evaluation of training effects on mRNA expression during the weeks surrounding injury, showed differences between groups in IL-13 and MMP9 at -3 and -2 weeks prior to injury. While some previously reported relationships between exercise adaptation and mRNA expression were not noted in this study, this may have been due to the small sample size. Several novel correlations, however, were identified and warrant further investigation as markers of exercise adaptation or potential risk for injury.
Collapse
Affiliation(s)
- Mackenzie G Johnson
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - Emma Adam
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | | | - Allen E Page
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY.
| |
Collapse
|
7
|
Kurosaka M, Hung YL, Machida S, Kohda K. IL-4 Signaling Promotes Myoblast Differentiation and Fusion by Enhancing the Expression of MyoD, Myogenin, and Myomerger. Cells 2023; 12:cells12091284. [PMID: 37174683 PMCID: PMC10177410 DOI: 10.3390/cells12091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yung-Li Hung
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
| | - Shuichi Machida
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| |
Collapse
|
8
|
Yue L, Yu HF, Tian XC, Guo B, Zheng LW. Egr3 as an important regulator of uterine decidualization through targeting Hand2. Cell Biol Int 2023; 47:406-416. [PMID: 36317452 DOI: 10.1002/cbin.11933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023]
Abstract
Early growth response 3 (Egr3) is required for embryogenesis, but little understanding is usable about its function in embryo implantation and decidualization. The present study exhibited an obvious localization of Egr3 in luminal epithelium and subluminal stroma at implantation sites. Administration of estrogen brought about a distinct gather of Egr3 mRNA in uterine luminal and glandular epithelia. Meanwhile, Egr3 was visualized in the decidua where it might facilitate the proliferation of stromal cells via Ccnd3 and accelerate stromal differentiation, testifying the significance of Egr3 in decidualization. In ovariectomized mice uteri or stromal cells, progesterone advanced the expression of Egr3 whose obstruction counteracted the inducement of stromal differentiation by progesterone. Consistently, Egr3 mediated the influence of cAMP and heparin-binding EGF-like growth factor (HB-EGF) on the differentiation program. Additionally, cAMP-protein kinase A (PKA) signaling mediated the adjustment of progesterone on Egr3. Impediment of HB-EGF antagonized the ascendance of Egr3 conferred by cAMP. In stromal cells, Egr3 activated the transcription of Hand2 whose promoter region exhibited the binding enrichment of Egr3. Activation of Hand2 relieved the weakness of stromal differentiation by Egr3 hinderance, whereas knockdown of Hand2 neutralized the guidance of Egr3 overexpression on the differentiation program. Collectively, Egr3 was identified as an important regulator of uterine decidualization through targeting Hand2 in response to progesterone/cAMP/HB-EGF pathway.
Collapse
Affiliation(s)
- Liang Yue
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai-Fan Yu
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xue-Chao Tian
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Guo
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
10
|
Zou H, Huang C, Zhou L, Lu R, Zhang Y, Lin D. NMR-Based Metabolomic Analysis for the Effects of Trimethylamine N-Oxide Treatment on C2C12 Myoblasts under Oxidative Stress. Biomolecules 2022; 12:biom12091288. [PMID: 36139126 PMCID: PMC9496509 DOI: 10.3390/biom12091288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) has received increased attention due to its close relationship with cardiovascular disease and type 2 diabetes. In previous studies, TMAO has shown both harmful and beneficial effects on various tissues, but the underlying molecular mechanisms remain to be clarified. Here, we explored the effects of TMAO treatment on H2O2-impaired C2C12 myoblasts, analyzed metabolic changes and identified significantly altered metabolic pathways through nuclear magnetic resonance-based (NMR-based) metabolomic profiling. The results exhibit that TMAO treatment partly alleviated the H2O2-induced oxidative stress damage of cells and protected C2C12 myoblasts by improving cell viability, increasing cellular total superoxide dismutase capacity, improving the protein expression of catalase, and reducing the level of malondialdehyde. We further showed that H2O2 treatment decreased levels of branched-chain amino acids (isoleucine, leucine and valine) and several amino acids including alanine, glycine, threonine, phenylalanine and histidine, and increased the level of phosphocholine related to cell membrane structure, while the TMAO treatment partially reversed the changing trends of these metabolite levels by improving the integrity of the cell membranes. This study indicates that the TMAO treatment may be a promising strategy to alleviate oxidative stress damage in skeletal muscle.
Collapse
Affiliation(s)
- Hong Zou
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Lin Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education and Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| |
Collapse
|
11
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
12
|
Kwon Y, Kim M, Kim Y, Jeong MS, Jung HS, Jeoung D. EGR3-HDAC6-IL-27 Axis Mediates Allergic Inflammation and Is Necessary for Tumorigenic Potential of Cancer Cells Enhanced by Allergic Inflammation-Promoted Cellular Interactions. Front Immunol 2021; 12:680441. [PMID: 34234781 PMCID: PMC8257050 DOI: 10.3389/fimmu.2021.680441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate mechanisms of allergic inflammation both in vitro and in vivo in details. For this, RNA sequencing was performed. Early growth response 3 gene (Egr3) was one of the most highly upregulated genes in rat basophilic leukemia (RBL2H3) cells stimulated by antigen. The role of Egr3 in allergic inflammation has not been studied extensively. Egr3 was necessary for passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Egr3 promoter sequences contained potential binding site for NF-κB p65. NF-κB p65 directly regulated Egr3 expression and mediated allergic inflammation in vitro. Histone deacetylases (HDACs) is known to be involved in allergic airway inflammation. HDAC6 promoter sequences contained potential binding site for EGR3. EGR3 showed binding to promoter sequences of HDAC6. EGR3 was necessary for increased expression of histone deacetylase 6 (HDAC6) in antigen-stimulated RBL2H3 cells. HDAC6 mediated allergic inflammation in vitro and PSA. TargetScan analysis predicted that miR-182-5p was a negative regulator of EGR3. Luciferase activity assay confirmed that miR-182-5p was a direct regulator of EGR3. MiR-182-5p mimic inhibited allergic inflammation both in vitro and in vivo. Cytokine array showed that HDAC6 was necessary for increased interleukin-27 (IL-27) expression in BALB/C mouse model of PSA. Antigen stimulation did not affect expression of EBI3, another subunit of IL-27 in RBL2H3 cells or BALB/C mouse model of PCA or PSA. IL-27 receptor alpha was shown to be able to bind to HDAC6. IL-27 p28 mediated allergic inflammation in vitro, PCA, and PSA. Mouse recombinant IL-27 protein promoted features of allergic inflammation in an antigen-independent manner. HDAC6 was necessary for tumorigenic and metastatic potential enhanced by PSA. PSA enhanced the metastatic potential of mouse melanoma B16F1 cells in an IL-27-dependent manner. Experiments employing culture medium and mouse recombinant IL-27 protein showed that IL-27 mediated and promoted cellular interactions involving B16F1 cells, lung macrophages, and mast cells during allergic inflammation. IL-27 was present in exosomes of antigen-stimulated RBL2H3 cells. Exosomes from antigen-stimulated RBL2H3 cells enhanced invasion of B16F1 melanoma cells in an IL-27-dependemt manner. These results present evidence that EGR3-HDAC6-IL-27 axis can regulate allergic inflammation by mediating cellular interactions.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
13
|
Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle 2021; 11:14. [PMID: 34051858 PMCID: PMC8164270 DOI: 10.1186/s13395-021-00271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 01/25/2023] Open
Abstract
Background The signal transducer and activator of transcription 6 (STAT6) transcription factor plays a vitally important role in immune cells, where it is activated mainly by interleukin-4 (IL-4). Because IL-4 is an essential cytokine for myotube formation, STAT6 might also be involved in myogenesis as part of IL-4 signaling. This study was conducted to elucidate the role of STAT6 in adult myogenesis in vitro and in vivo. Methods Myoblasts were isolated from male mice and were differentiated on a culture dish to evaluate the change in STAT6 during myotube formation. Then, the effects of STAT6 overexpression and inhibition on proliferation, differentiation, and fusion in those cells were studied. Additionally, to elucidate the myogenic role of STAT6 in vivo, muscle regeneration after injury was evaluated in STAT6 knockout mice. Results IL-4 can increase STAT6 phosphorylation, but STAT6 phosphorylation decreased during myotube formation in culture. STAT6 overexpression decreased, but STAT6 knockdown increased the differentiation index and the fusion index. Results indicate that STAT6 inhibited myogenin protein expression. Results of in vivo experiments show that STAT6 knockout mice exhibited better regeneration than wild-type mice 5 days after cardiotoxin-induced injury. It is particularly interesting that results obtained using cells from STAT6 knockout mice suggest that this STAT6 inhibitory action for myogenesis was not mediated by IL-4 but might instead be associated with p38 mitogen-activated protein kinase phosphorylation. However, STAT6 was not involved in the proliferation of myogenic cells in vitro and in vivo. Conclusion Results suggest that STAT6 functions as an inhibitor of adult myogenesis. Moreover, results suggest that the IL-4-STAT6 signaling axis is unlikely to be responsible for myotube formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00271-8.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Shuichi Sato
- School of Kinesiology, The University of Louisiana at Lafayette, Lafayette, LA, USA.,New Iberia Research Center, The University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
14
|
Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-Del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T. Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles. Cell Rep 2021; 31:107652. [PMID: 32433961 PMCID: PMC7242912 DOI: 10.1016/j.celrep.2020.107652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration. Necroptotic cell death of MuSCs is essential for efficient muscle regeneration Inhibition of necroptosis exacerbates adverse crosstalk among mdx muscle stem cells The CHD4/NuRD complex directly represses Ripk3-dependent necroptosis Attenuated recruitment of CHD4 to Ripk3 locus lowers necroptosis threshold in dystrophy
Collapse
Affiliation(s)
- Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; CECAD Research Center, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center (ECRC), University Clinic Charité Berlin, Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK)
| | - Pablo Gómez-Del Arco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain; Institute of Rare Diseases Research, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pura Munoz-Canoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK).
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK); German Center for Lung Research (DZL).
| |
Collapse
|
15
|
Downregulated miR-204 Promotes Skeletal Muscle Regeneration. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3183296. [PMID: 33282943 PMCID: PMC7685802 DOI: 10.1155/2020/3183296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Skeletal muscle is the most abundant and a highly plastic tissue of the mammals, especially when it comes to regenerate after trauma, but there is limited information about the mechanism of muscle repair and its regeneration. In the present study, we found that miR-204 is downregulated after skeletal muscle injury. In vitro experiments showed that over-expression of miR-204 by transfecting with miR-204 mimics suppressed C2C12 cell proliferation, migration, and blocked subsequent differentiation, whereas inhibition of miR-204 by transfecting with miR-204 inhibitor showed the converse effects. Furthermore, through the dual luciferase reporter system, we demonstrated that miR-204 can target the 3'UTR regions of Pax7, IGF1, and Mef2c and inhibit their expression. Taken together, our results suggest that Pax7, IGF1, and Mef2c are the target genes of miR-204 in the process of myoblasts proliferation, cell migration, and differentiation, respectively, and may contribute to mouse skeletal muscle regeneration. Our results may provide new ideas and references for the skeletal muscle study and may also provide therapeutic strategies of skeletal muscle injury.
Collapse
|
16
|
Ogura Y, Kakehashi C, Yoshihara T, Kurosaka M, Kakigi R, Higashida K, Fujiwara SE, Akema T, Funabashi T. Ketogenic diet feeding improves aerobic metabolism property in extensor digitorum longus muscle of sedentary male rats. PLoS One 2020; 15:e0241382. [PMID: 33125406 PMCID: PMC7598508 DOI: 10.1371/journal.pone.0241382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022] Open
Abstract
Recent studies of the ketogenic diet, an extremely high-fat diet with extremely low carbohydrates, suggest that it changes the energy metabolism properties of skeletal muscle. However, ketogenic diet effects on muscle metabolic characteristics are diverse and sometimes countervailing. Furthermore, ketogenic diet effects on skeletal muscle performance are unknown. After male Wistar rats (8 weeks of age) were assigned randomly to a control group (CON) and a ketogenic diet group (KD), they were fed for 4 weeks respectively with a control diet (10% fat, 10% protein, 80% carbohydrate) and a ketogenic diet (90% fat, 10% protein, 0% carbohydrate). After the 4-week feeding period, the extensor digitorum longus (EDL) muscle was evaluated ex vivo for twitch force, tetanic force, and fatigue. We also analyzed the myosin heavy chain composition, protein expression of metabolic enzymes and regulatory factors, and citrate synthase activity. No significant difference was found between CON and KD in twitch or tetanic forces or muscle fatigue. However, the KD citrate synthase activity and the protein expression of Sema3A, citrate synthase, succinate dehydrogenase, cytochrome c oxidase subunit 4, and 3-hydroxyacyl-CoA dehydrogenase were significantly higher than those of CON. Moreover, a myosin heavy chain shift occurred from type IIb to IIx in KD. These results demonstrated that the 4-week ketogenic diet improves skeletal muscle aerobic capacity without obstructing muscle contractile function in sedentary male rats and suggest involvement of Sema3A in the myosin heavy chain shift of EDL muscle.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Chiaki Kakehashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Togane, Chiba, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Sei-Etsu Fujiwara
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| |
Collapse
|
17
|
Ogura Y, Sato S, Kurosaka M, Kotani T, Fujiya H, Funabashi T. Age-related decrease in muscle satellite cells is accompanied with diminished expression of early growth response 3 in mice. Mol Biol Rep 2019; 47:977-986. [PMID: 31734897 DOI: 10.1007/s11033-019-05189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle regeneration is mostly dependent on muscle satellite cells. Proper muscle regeneration requires enough number of satellite cells. Recent studies have suggested that the number of satellite cells in skeletal muscle declines as we age, leading to the impairment of muscle regeneration in older population. Our earlier study demonstrated that zinc finger transcription factor early growth response 3 (Egr3) plays an important role for maintaining the number of myoblasts, suggesting that age-related decrease in muscle satellite cell should be associated with the expression levels of Egr3. The aim of this study was to investigate whether aging would alter the Egr3 expression in satellite cells. A couple groups of male C57BL/6J mice were examined in this study: young (3 Mo) and old (17 Mo). Immunohistochemical staining showed that the satellite cell number decreased in normal and injured muscles of old mice. In fluorescence-activated cell sorting-isolated muscle satellite cells from normal and injured muscles, the mRNA expression of Egr3 was significantly decreased with age regardless of injury. In harmony with these results, Pax7 mRNA levels also decreased in the satellite cells from old mice. Alternatively, inhibition of Egr3 expression by shRNA decreased Pax7 protein expression in cultured myoblasts. These results suggest that Egr3 is associated with the age-related decline of muscle satellite cells in older population. Also, Egr3 might be implicated in the regulation of Pax7. Therefore, the loss of Egr3 expression may elucidate attenuated MSCs function and muscle regeneration in older age.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Shuichi Sato
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA, USA
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takashi Kotani
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hiroto Fujiya
- Department of Sports Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
18
|
Liu Z, Huang C, Liu Y, Lin D, Zhao Y. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation. RSC Adv 2018; 8:16114-16125. [PMID: 35542200 PMCID: PMC9080260 DOI: 10.1039/c8ra00819a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
The dipeptide alanyl-glutamine (Ala-Gln) is a well-known parenteral nutritional supplement. The Ala-Gln supplementation is a potential treatment for muscle-related diseases and injuries. However, molecular mechanisms underlying the polyphenic effects of Ala-Gln supplementation remain elusive. Here, we performed NMR-based metabolomic profiling to analyze the effects of Ala-Gln, and the free alanine (Ala) and glutamine (Gln) supplementations on the mouse myoblast cell line C2C12 injured by glucose and glutamine deprivation. All the three supplementations can promote the differentiation ability of the injured C2C12 cells, while only Ala-Gln supplementation can facilitate the proliferation of the injured cells. Ala-Gln supplementation can partially restore the metabolic profile of C2C12 myoblasts disturbed by glucose and glutamine deprivation, and exhibits more significant effects than Ala and Gln supplementations. Our results suggest that Ala-Gln supplementation can promote MyoD1 protein synthesis, upregulate the muscle ATP-storage phosphocreatine (PCr), maintain TCA cycle anaplerosis, enhance the antioxidant capacity through promoting GSH biosynthesis, and stabilize lipid membranes by suppressing glycerophospholipids metabolism. This work provides new insight into mechanistic understanding of the polyphenic effects of Ala-Gln supplementation on muscle cells injured by energy deprivation.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology Xiamen 361024 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Yufen Zhao
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| |
Collapse
|
19
|
Marballi KK, Gallitano AL. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Front Behav Neurosci 2018; 12:23. [PMID: 29520222 PMCID: PMC5827560 DOI: 10.3389/fnbeh.2018.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the "Index single nucleotide polymorphism (SNP)" (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in insufficient electrophysiologic, immunologic, and neuroprotective, processes that these genes normally mediate. Continued adverse environmental experiences, over time, may thereby result in neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple genes associated with schizophrenia susceptibility, in a functional cascade triggered by neuronal activity, the proposed biological pathway provides an explanation for both the polygenic and environmental influences that determine the complex etiology of this mental illness.
Collapse
Affiliation(s)
- Ketan K. Marballi
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Amelia L. Gallitano
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
20
|
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3:17071. [PMID: 29152378 PMCID: PMC5683310 DOI: 10.1038/cddiscovery.2017.71] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, Rome, Italy
| |
Collapse
|
21
|
Xu W, Lin D, Huang C. NMR-based metabolomic analysis for the effects of creatine supplementation on mouse myoblast cell line C2C12. Acta Biochim Biophys Sin (Shanghai) 2017; 49:617-627. [PMID: 28475656 DOI: 10.1093/abbs/gmx043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/25/2022] Open
Abstract
Creatine (Cr) supplementation has drawn much attention from researchers owing to its widespread efficacy in sports, and more recently, in therapeutic fields. However, the underlying molecular mechanisms remain elusive. Here, we performed nuclear magnetic resonance-based metabolomic analysis to address the metabolic profile of aqueous extracts from the mouse myoblast cell line C2C12 exposed to 2 mM Cr for 24 h (the Cr-treated group). Results showed that Cr supplementation facilitated the proliferation of C2C12 myoblasts. Both pattern recognition and hierarchical cluster analyses demonstrated that the metabolic profiles of the Cr-treated and control groups were distinctly different. We identified 13 characteristic metabolites significantly responsible for the discrimination of metabolic profiles between the two groups, through orthogonal projection to latent structures discriminant analysis and independent samples t-test. We further verified the discrimination performances of these metabolites by conducting univariate receiver operating characteristic curve analysis. Compared with the control group, the Cr-treated group exhibited increased levels of Cr, phosphocreatine (PCr), glutathione (GSH), and glucose, but decreased levels of leucine, valine, isoleucine, phenylalanine, methionine, choline, O-phosphocholine, sn-glycero-3-phosphocholine, and glycerol. Our results demonstrated that Cr supplementation upregulated PCr and glucose, promoted trichloroacetic acid cycle anaplerotic flux and GSH-mediated antioxidant capacity, and stabilized lipid membranes through suppressing glycerophospholipid metabolism. Our work provides new clues to the molecular mechanisms underlying the pleiotropic effects of Cr in muscle cells.
Collapse
Affiliation(s)
- Wenqi Xu
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology, Xiamen 361024, China
- Exercise and Rehabilitation Laboratory, Fujian Medical University, Fuzhou 350104, China
| |
Collapse
|