1
|
Whitbread AL, Mittelmeier L, Rao RP, Mittelmeier W, Osmanski-Zenk K. Menstrual Blood as a Non-Invasive Alternative for Monitoring Vitamin Levels. J Clin Med 2024; 13:7212. [PMID: 39685671 DOI: 10.3390/jcm13237212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Menstrual blood has recently emerged as a novel specimen for diagnostics, offering a non-invasive alternative to traditional blood testing methods. Despite the importance of vitamins and monitoring their levels in preventative healthcare measures, the feasibility of measuring them in menstrual blood has yet to be explored. In this study, we aimed to assess the potential of using menstrual blood for determining vitamin levels by comparing their levels in menstrual blood to those in matched capillary blood samples. Methods: A prospective, monocentric, observational study was conducted with healthy, reproductive-aged voluntary participants. Menstrual blood was collected from 30 participants using a menstrual cup, and the corresponding capillary blood samples were obtained using a finger prick. The samples were transferred to dried blood spot (DBS) cards and analyzed using mass spectrometry to determine vitamin levels. Statistical analyses were performed to compare menstrual blood vitamin A and D levels, and hemoglobin, to those in capillary blood. Results: The vitamin levels could be ascertained from the menstrual blood, and were observed to significantly correlate with those from the capillary blood for both vitamin A (r = 0.77, p < 0.001) and vitamin D (r = 0.66, p < 0.001), despite being statistically different. Conclusions: The results of this pilot study demonstrate the potential utility of menstrual blood in estimating vitamin A and D levels, illustrating the prospect of a non-invasive menstrual blood-based vitamin test following larger clinical and analytical validation studies.
Collapse
Affiliation(s)
| | - Lucas Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Rajnish P Rao
- The smart period blood GmbH, D-10119 Berlin, Germany
| | - Wolfram Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Katrin Osmanski-Zenk
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
2
|
Wilczyńska A, Żak N. Polyphenols as the Main Compounds Influencing the Antioxidant Effect of Honey-A Review. Int J Mol Sci 2024; 25:10606. [PMID: 39408935 PMCID: PMC11477350 DOI: 10.3390/ijms251910606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Honey is one of the most valuable components of the human diet. It is considered to be a functional food with health-promoting properties. Honey has bactericidal and bacteriostatic effects; is used to treat wounds and ulcers; relieves stress; supports the treatment of diseases of the digestive and respiratory systems; improves kidney function; and aids in convalescence. The healing and prophylactic effects of honey are closely related to its chemical composition. According to the literature, honey contains over 300 substances belonging to various groups of chemical compounds, some with antioxidant activity, including vitamins and phenolic compounds, mainly flavonoids and phenolic acids. This article provides insight into honey's chemical composition and its pro-health activities. The antioxidant properties of honey were prioritized.
Collapse
Affiliation(s)
- Aleksandra Wilczyńska
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland;
| | | |
Collapse
|
3
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Sun L, Zheng M, Gao Y, Brigstock DR, Gao R. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism. Eur J Pharmacol 2024; 967:176374. [PMID: 38309676 DOI: 10.1016/j.ejphar.2024.176374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TβRⅡ, PDGFRβ, β-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-β1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Duntas LH. Nutrition and thyroid disease. Curr Opin Endocrinol Diabetes Obes 2023; 30:324-329. [PMID: 37578378 DOI: 10.1097/med.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW The aim of this review was to determine, based on the most recent findings, the involvement of trace elements and vitamins critical for thyroid function and combating thyroid disease. RECENT FINDINGS Nutritional guidance is pivotal to reducing the risk of thyroid disease and to managing it when it arises, this meaning the prescription of diets rich in such micronutrients as iodine, selenium, iron, zinc, and vitamins B12, D3, and A. Most of the above micronutrients are good antioxidants, building up an anti-inflammatory profile, reducing thyroid autoantibodies and body fat, and improving thyroid function. Diets are increasingly being prescribed, especially for those suffering from Hashimoto's thyroiditis. Notable among prescribed diets is the Mediterranean diet. Rich in critical elements, it benefits patients at the immune endocrine and biomolecular levels. SUMMARY Importantly, it is likely that widespread adherence to the Mediterranean diet, together with a reduction of meat consumption and potential elimination of gluten and lactose may improve inflammation and have an impact on public health while possibly diminishing thyroiditis symptoms. It is hoped that this review can direct policymakers towards undertaking cost-effective interventions to minimize deficiency of essential minerals and vitamins and thus protect both general and thyroid health.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Evgenideion Hospital, Unit of Endocrinology, Diabetes and Metabolism, Thyroid Section, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
8
|
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023; 15:2190. [PMID: 37765160 PMCID: PMC10536625 DOI: 10.3390/pharmaceutics15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| |
Collapse
|
9
|
Pi Z, Liu J, Xiao Y, He X, Zhu R, Tang R, Qiu X, Zhan Y, Zeng Z, Shi Y, Xiao R. ATRA ameliorates fibrosis by suppressing the pro-fibrotic molecule Fra2/AP-1 in systemic sclerosis. Int Immunopharmacol 2023; 121:110420. [PMID: 37331293 DOI: 10.1016/j.intimp.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to irreversible fibrosis of the skin and the internal organs. The etiology of SSc is complex, its pathophysiology is poorly understood, and clinical therapeutic options are restricted. Thus, research into medications and targets for treating fibrosis is essential and urgent. Fos-related antigen 2 (Fra2) is a transcription factor that is a member of the activator protein-1 family. Fra2 transgenic mice were shown to have spontaneous fibrosis. All-trans retinoic acid (ATRA) is a vitamin A intermediate metabolite and ligand for the retinoic acid receptor (RAR), which possesses anti-inflammatory and anti-proliferative properties. Recent research has demonstrated that ATRA also has an anti-fibrotic effect. However, the exact mechanism is not fully understood. Interestingly, we identified potential binding sites for the transcription factor RARα to the promoter region of the FRA2 gene through JASPAR and PROMO databases. In this study, the pro-fibrotic effect of Fra2 in SSc is confirmed. SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc animals exhibit increased levels of Fra2. Inhibition of Fra2 expression in SSc dermal fibroblasts with Fra2 siRNA markedly decreased collagen I expression. ATRA reduced the expressions of Fra2, collagen I, and α-smooth muscle actin(α-SMA) in SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc mice. In addition, chromatin immunoprecipitation and dual-luciferase assays demonstrated that retinoic acid receptor RARα binds to the FRA2 promoter and modulates its transcriptional activity. ATRA decreases collagen I expression both in vivo and in vitro via the reduction of Fra2 expression. This work establishes the rationale for expanding the use of ATRA in the treatment of SSc and indicates that Fra2 can be used as an anti-fibrotic target.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.; Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruixuan Zhu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| |
Collapse
|
10
|
Ping DB, Sun X, Peng Y, Liu CH. Cyp4a12-mediated retinol metabolism in stellate cells is the antihepatic fibrosis mechanism of the Chinese medicine Fuzheng Huayu recipe. Chin Med 2023; 18:51. [PMID: 37161575 PMCID: PMC10170698 DOI: 10.1186/s13020-023-00754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs), which contain multiple retinol-containing lipid droplets, are important profibrotic cells in liver fibrosis. Under Cyp4a12a/b oxidation, HSC activation was accompanied by the downregulation of genes involved in retinol metabolism, inducing RAE-1 production. By eliminating activated HSCs, NK cells expressing the activating receptor NKG2D are recruited to alleviate fibrosis. FZHY was found to significantly reduce the severity of liver fibrosis by inhibiting the activation and proliferation of HSCs. The molecular processes that govern retinol metabolism, on the other hand, are largely unexplored. This study focused on the regulation of Cyp4a12a/b by FZHY to elucidate the antifibrotic molecular mechanisms underlying the effect of FZHY on retinol metabolism. METHODS To investigate mechanisms and altered pathways of FZHY against carbon tetrachloride (CCl4)-induced liver fibrosis based on transcriptomics data. Bioinformatics analysis was used to screen its pharmacological targets. The predicted targets were confirmed by a series of in vitro and in vivo experiments, including mass spectrometry, in situ hybridization, immunofluorescence assays and real-time PCR. Then, the results were further characterized by recombinant adenovirus vectors that were constructed and transfected into the cultured primary HSCs. RESULTS Transcriptomics revealed that Cyp4a12a/b is nearly completely lost in liver fibrosis, and these effects might be partially reversed by FZHY therapy recovery. In vitro and in vivo studies indicated that Cyp4a12a/b deletion disrupted retinol metabolism and lowered Rae-1 expression. Activated HSCs successfully escape recognition and elimination by natural killer (NK) cells as a result of reduced Rae-1. Notablely, we discovered that FZHY may restore the Cyp4a12a/b capability, allowing the recovery of the cytotoxic function of NK cells against HSCs, and thereby reducing hepatic fibrosis by suppressing HSC activation. CONCLUSION Our findings revealed a new role for Cyp4a in retinol metabolism in the development of hepatic fibrosis, and they highlight Cyp4a12/Rae-1 signals as possible therapeutic targets for antifibrotic medicines.
Collapse
Affiliation(s)
- Da-Bing Ping
- Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xin Sun
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
11
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
12
|
Sakai N, Kamimura K, Miyamoto H, Ko M, Nagoya T, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Soki H, Tokunaga A, Inamine T, Nakashima M, Enomoto H, Kousaka K, Tachiki H, Ohyama K, Terai S. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J Gastroenterol 2023; 58:53-68. [PMID: 36301364 DOI: 10.1007/s00535-022-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan.
- Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan.
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroyuki Soki
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, 852-8588, Japan
- Organization for Research Promotion, University of the Ryukyus, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Hatsune Enomoto
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kazuki Kousaka
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Nagasaki, 852-8501, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
13
|
Saleh SR, Zaki R, Hassan R, El-Kersh MA, El-Sayed MM, Abd Elmoneam AA. The impact of vitamin A supplementation on thyroid function and insulin sensitivity: implication of deiodinases and phosphoenolpyruvate carboxykinase in male Wistar rats. Eur J Nutr 2022; 61:4091-4105. [PMID: 35804266 PMCID: PMC9596568 DOI: 10.1007/s00394-022-02945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Vitamin A is an essential nutrient with vital biological functions. The present study investigated the effect of different doses of vitamin A palmitate at different time intervals on thyroid hormones and glycemic markers. METHODS Male rats were administrated vitamin A palmitate at different doses (0, 0.7, 1.5, 3, 6, and 12 mg/kg, oral) and samples were collected at different time intervals of 2, 4, and 6 weeks. The levels of vitamin A, thyroid hormones (T3, T4, and TSH), deiodinases (Dio1 and Dio3), glycemic markers (blood insulin and fasting glucose levels, HOMA IR and HOMA β), retinol-binding protein 4 (RBP4) and the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were measured. RESULTS The findings demonstrated that long-term supplementation with high doses of vitamin A palmitate resulted in hypothyroidism (lower T3 and T4 levels and elevated TSH levels) as well as upregulation of Dio1 and Dio3 expression levels. This effect was associated with elevated glucose and insulin levels, enhanced HOMA IR, and decreased HOMA B index. In addition, prolonged vitamin A supplementation significantly increased RBP4 levels that upregulated the expression of PEPCK. CONCLUSION High doses of vitamin A supplementation increased the risk of hypothyroidism, modulated insulin sensitivity, and over a long period, increased the incidence of type 2 diabetes mellitus associated with oxidative stress and hepatitis.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Rania Zaki
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Radwa Hassan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A El-Kersh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed M El-Sayed
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
14
|
Xin M, Guo Q, Lu Q, Lu J, Wang PS, Dong Y, Li T, Chen Y, Gerhard GS, Yang XF, Autieri M, Yang L. Identification of Gm15441, a Txnip antisense lncRNA, as a critical regulator in liver metabolic homeostasis. Cell Biosci 2021; 11:208. [PMID: 34906243 PMCID: PMC8670210 DOI: 10.1186/s13578-021-00722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background The majority of mammalian genome is composed of non-coding regions, where numerous long non-coding RNAs (lncRNAs) are transcribed. Although lncRNAs have been identified to regulate fundamental biological processes, most of their functions remain unknown, especially in metabolic homeostasis. Analysis of our recent genome-wide screen reveals that Gm15441, a thioredoxin-interacting protein (Txnip) antisense lncRNA, is the most robustly induced lncRNA in the fasting mouse liver. Antisense lncRNAs are known to regulate their sense gene expression. Given that Txnip is a critical metabolic regulator of the liver, we aimed to investigate the role of Gm15441 in the regulation of Txnip and liver metabolism. Methods We examined the response of Gm15441 and Txnip under in vivo metabolic signals such as fasting and refeeding, and in vitro signals such as insulin and key metabolic transcription factors. We investigated the regulation of Txnip expression by Gm15441 and the underlying mechanism in mouse hepatocytes. Using adenovirus-mediated liver-specific overexpression, we determined whether Gm15441 regulates Txnip in the mouse liver and modulates key aspects of liver metabolism. Results We found that the expression levels of Gm15441 and Txnip showed a similar response pattern to metabolic signals in vivo and in vitro, but that their functions were predicted to be opposite. Furthermore, we found that Gm15441 robustly reduced Txnip protein expression in vitro through sequence-specific regulation and translational inhibition. Lastly, we confirmed the Txnip inhibition by Gm15441 in vivo (mice) and found that Gm15441 liver-specific overexpression lowered plasma triglyceride and blood glucose levels and elevated plasma ketone body levels. Conclusions Our data demonstrate that Gm15441 is a potent Txnip inhibitor and a critical metabolic regulator in the liver. This study reveals the therapeutic potential of Gm15441 in treating metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00722-1.
Collapse
Affiliation(s)
- Mingyang Xin
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Guo
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Juan Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130021, China
| | - Po-Shun Wang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yun Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Endocrinology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541001, China
| | - Tao Li
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Infectious diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagsta, AZ, 86011, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Michael Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
|
16
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar Drugs 2021; 19:md19110594. [PMID: 34822465 PMCID: PMC8625793 DOI: 10.3390/md19110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence:
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Gloria Peiró
- Department of Pathology, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
17
|
Fukushima K, Itaba N, Kono Y, Okazaki S, Enokida S, Kuranobu N, Murakami J, Enokida M, Nagashima H, Kanzaki S, Namba N, Shiota G. Secreted matrix metalloproteinase-14 is a predictor for antifibrotic effect of IC-2-engineered mesenchymal stem cell sheets on liver fibrosis in mice. Regen Ther 2021; 18:292-301. [PMID: 34504910 PMCID: PMC8399086 DOI: 10.1016/j.reth.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction Transplantation of IC-2-engineered bone marrow-derived mesenchymal stem cell (BM-MSC) sheets (IC-2 sheets) was previously reported to potentially reduce liver fibrosis. Methods This study prepared IC-2-engineered cell sheets from multiple lots of BM-MSCs and examined the therapeutic effects of these cell sheets on liver fibrosis induced by carbon tetrachloride in mice. The predictive factors for antifibrotic effect on liver fibrosis were tried to identify in advance. Results Secreted matrix metalloproteinase (MMP)-14 was found to be a useful predictive factor to reduce liver fibrosis. Moreover, the cutoff index of MMP-14 for 30% reduction of liver fibrosis was 0.918 fg/cell, judging from univariate analysis and receiver operating curve analysis. In addition, MMP-13 activity and thioredoxin contents in IC-2 sheets were also inversely correlated with hepatic hydroxyproline contents. Finally, IC-2 was also found to promote MMP-14 secretion from BM-MSCs of elderly patients. Surprisingly, the values of secreted MMP-14 from BM-MSCs of elderly patients were much higher than those of young persons. Conclusion The results of this study suggest that the IC-2 sheets would be applicable to clinical use in autologous transplantation for patients with cirrhosis regardless of the patient's age. IC-2- sheets from multiple lots of BM-MSCs ameliorate liver fibrosis in mice. Secreted MMP-14 is a useful predictive marker to reduce liver fibrosis. MMP-13 and thioredoxin in IC-2 sheets were also associated with liver fibrosis. IC-2 also promotes MMP-14 secretion from BM-MSCs of elderly patients.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BM-MSCs, bone marrow-derived mesenchymal stem cells
- C3, complement C3
- CCl4, carbon tetrachloride
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediamine tetra-acetic acid
- FACS, Fluorescence-activated cell sorter
- FALD, fontan-associated liver disease
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase
- HCC, hepatic cellular carcinoma
- HLA, human leukocyte antigen
- HSCs, hepatic stellate cells
- Hepatic cell sheets
- IgG, immunoglobulin G
- LC, liver cirrhosis
- MMP-14, matrix metalloproteinase
- MSCs, mesenchymal stem cells
- Matrix metalloproteinase-14
- Mesenchymal stem cells
- Wnt/β-catenin signal inhibitor
- chronic liver injury
- hBM-MNCs, human bone marrow mononuclear cells
- iPS cells, induced pluripotent stem cells
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Kenji Fukushima
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Noriko Itaba
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yohei Kono
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shizuma Okazaki
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shinpei Enokida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Naomi Kuranobu
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Jun Murakami
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Makoto Enokida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Hideki Nagashima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago, 683-8504, Japan
| | - Susumu Kanzaki
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8504, Japan
- Asahigawaso Rehabilitation & Medical Center, Okayama, 703-8555, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Corresponding author. Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. Fax: +81-859-38-6430.
| |
Collapse
|
18
|
Wu M, Miao H, Fu R, Zhang J, Zheng W. Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Curr Mol Pharmacol 2021; 13:261-272. [PMID: 32091349 DOI: 10.2174/1874467213666200224102820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Liver cancer is a leading cause of cancer-related death worldwide, in which hepatocellular carcinoma (HCC) accounts for the majority. Despite the progression in treatment, the prognosis remains extremely poor for HCC patients. The mechanisms of hepatocarcinogenesis are complex, of which fibrosis is acknowledged as the pre-cancerous stage of HCC. Approximately, 80-90% of HCC develops in the fibrotic or cirrhotic livers. Hepatic stellate cells (HSCs), the main effector cells of liver fibrosis, could secret various biological contents to maintain the liver inflammation. By decades, HSCs are increasingly correlated with HCC in the tumor microenvironment. In this review, we summarized the underlying mechanisms that HSCs participated in the genesis and progression of HCC. HSCs secrete various bioactive contents and regulate tumor-related pathways, subsequently contribute to metastasis, angiogenesis, immunosuppression, chemoresistance and cancer stemness. The study indicates that HSC plays vital roles in HCC progression, suggesting it as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Huajie Miao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Rong Fu
- Department of Pathology, Affiliated Haian Hospital of Nantong University, 17 Zhongba Road, 226600, Haian, Jiangsu, China
| | - Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
19
|
Song Y, Kim S, Heo J, Shum D, Lee SY, Lee M, Kim AR, Seo HR. Identification of hepatic fibrosis inhibitors through morphometry analysis of a hepatic multicellular spheroids model. Sci Rep 2021; 11:10931. [PMID: 34035369 PMCID: PMC8149639 DOI: 10.1038/s41598-021-90263-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
A chronic, local inflammatory milieu can cause tissue fibrosis that results in epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndMT), increased abundance of fibroblasts, and further acceleration of fibrosis. In this study, we aimed to identify potential mechanisms and inhibitors of fibrosis using 3D model-based phenotypic screening. We established liver fibrosis models using multicellular tumor spheroids (MCTSs) composed of hepatocellular carcinoma (HCC) and stromal cells such as fibroblasts (WI38), hepatic stellate cells (LX2), and endothelial cells (HUVEC) seeded at constant ratios. Through high-throughput screening of FDA-approved drugs, we identified retinoic acid and forskolin as candidates to attenuate the compactness of MCTSs as well as inhibit the expression of ECM-related proteins. Additionally, retinoic acid and forskolin induced reprogramming of fibroblast and cancer stem cells in the HCC microenvironment. Of interest, retinoic acid and forskolin had anti-fibrosis effects by decreasing expression of α-SMA and F-actin in LX2 cells and HUVEC cells. Moreover, when sorafenib was added along with retinoic acid and forskolin, apoptosis was increased, suggesting that anti-fibrosis drugs may improve tissue penetration to support the efficacy of anti-cancer drugs. Collectively, these findings support the potential utility of morphometric analyses of hepatic multicellular spheroid models in the development of new drugs with novel mechanisms for the treatment of hepatic fibrosis and HCCs.
Collapse
Affiliation(s)
- Yeonhwa Song
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Sanghwa Kim
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jinyeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Su-Yeon Lee
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Minji Lee
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Deajeon, 34113, Republic of Korea
| | - A-Ram Kim
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Haeng Ran Seo
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Novel fluorinated derivative of curcumin negatively regulates thioredoxin-interacting protein expression in retinal pigment epithelial and macrophage cells. Biochem Biophys Res Commun 2020; 532:668-674. [DOI: 10.1016/j.bbrc.2020.08.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
21
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
22
|
Priyanka SH, Syam Das S, Nair SS, Rauf AA, Indira M. All trans retinoic acid modulates TNF-α and CYP2E1 pathways and enhances regression of ethanol-induced fibrosis markers in hepatocytes and HSCs in abstaining rodent model. Arch Physiol Biochem 2019; 125:302-310. [PMID: 29592769 DOI: 10.1080/13813455.2018.1455712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: Our previous studies showed that all trans retinoic acid (ATRA) ameliorates alcohol-induced toxicity. Hence, we evaluated the efficacy of ATRA and abstention in the regression of alcohol-induced hepatotoxicity. Materials and methods: After ethanol administration to rats for 90 days, the regression of alcohol-induced toxicity was studied by supplementing ATRA at a dose of 100 μg/kg body weight for 30 days. It was also compared with animals in abstention. Results and discussion: Ethanol administration enhanced oxidative stress, activated HSCs and increased collagen deposition. All these alterations were reversed to a certain extent by ATRA supplementation. Conclusions: ATRA had better efficacy than just abstention in reducing ethanol-induced toxicity. The mechanism might be downregulation of CYP2E1, leading to reduced oxidative stress in the hepatocytes and thus impeding NFκB activation, cytokine production, activation of HSC and resulting in the reduction of inflammation and remodelling of fibrosis by modulating MMP and TIMP.
Collapse
Affiliation(s)
- S H Priyanka
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - S Syam Das
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - Saritha S Nair
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - Arun A Rauf
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| | - M Indira
- a Department of Biochemistry, University of Kerala , Thiruvananthapuram , India
| |
Collapse
|
23
|
Kostallari E, Shah VH. Pericytes in the Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:153-167. [PMID: 30937868 DOI: 10.1007/978-3-030-11093-2_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver pericytes, commonly named hepatic stellate cells (HSCs), reside in the space between liver sinusoidal endothelial cells (LSECs) and hepatocytes. They display important roles in health and disease. HSCs ensure the storage of the majority of vitamin A in a healthy body, and they represent the major source of fibrotic tissue in liver disease. Surrounding cells, such as LSECs, hepatocytes, and Kupffer cells, present a significant role in modulating HSC behavior. Therapeutic strategies against liver disease are being currently developed, where HSCs represent an ideal target. In this chapter, we will discuss HSC quiescence and activation in the context of healthy liver and diseases, such as fibrosis, steatohepatitis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Itaba N, Kono Y, Watanabe K, Yokobata T, Oka H, Osaki M, Kakuta H, Morimoto M, Shiota G. Reversal of established liver fibrosis by IC-2-engineered mesenchymal stem cell sheets. Sci Rep 2019; 9:6841. [PMID: 31048740 PMCID: PMC6497888 DOI: 10.1038/s41598-019-43298-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis viral infection, alcoholic intoxication, and obesity cause liver fibrosis, which progresses to decompensated liver cirrhosis, a disease for which medical demands cannot be met. Since there are currently no approved anti-fibrotic therapies for established liver fibrosis, the development of novel modalities is required to improve patient prognosis. In this study, we clarified the anti-fibrotic effects of cell sheets produced from human bone marrow-derived mesenchymal stem cells (MSCs) incubated on a temperature-sensitive culture dish with the chemical compound IC-2. Orthotopic transplantation of IC-2-engineered MSC sheets (IC-2 sheets) remarkably reduced liver fibrosis induced by chronic CCl4 administration. Further, the marked production of fibrolytic enzymes such as matrix metalloproteinase (MMP)-1 and MMP-14, as well as thioredoxin, which suppresses hepatic stellate cell activation, was observed in IC-2 sheets. Moreover, the anti-fibrotic effect of IC-2 sheets was much better than that of MSC sheets. Finally, knockdown experiments revealed that MMP-14 was primarily responsible for the reduction of liver fibrosis. Here, we show that IC-2 sheets could be a promising therapeutic option for established liver fibrosis.
Collapse
Affiliation(s)
- Noriko Itaba
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yohei Kono
- KanonCure Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kaori Watanabe
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Tsuyoshi Yokobata
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Oka
- Research Initiative Center, Tottori University, 4-101 Koyama, Tottori, 680-8550, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Minoru Morimoto
- Research Initiative Center, Tottori University, 4-101 Koyama, Tottori, 680-8550, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
25
|
Shmarakov IO, Jiang H, Liu J, Fernandez EJ, Blaner WS. Hepatic stellate cell activation: A source for bioactive lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:629-642. [PMID: 30735856 DOI: 10.1016/j.bbalip.2019.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) are non-parenchymal liver cells that characteristically contain multiple retinoid (vitamin A)-containing lipid droplets. In this study, we addressed the metabolic fate of non-retinoid lipids originating from lipid droplet loss during HSCs activation. UPLC/MS/MS and qRT-PCR were used to monitor the lipid composition and mRNA expression of selected genes regulating lipid metabolism in freshly isolated, overnight-, 3- and 7-day cultures or primary mouse HSCs. A preferential accumulation of specific C20-C24 fatty acid species, especially arachidonic (C20:4) and docosahexaenoic acids (C22:6), was revealed in culture-activated HSCs along with an upregulation of transcription of fatty acid desaturases (Scd1, Scd2) and elongases (Elovl5, Elovl6). This was accompanied with an enrichment of activated HSCs with 36:4 and 38:4 phosphatidylcholine species containing polyunsaturated fatty acids and associated accumulation of selective lipid mediators, including endocannabinoids and related N-acylethanolamides, as well as ceramides. An increase in 2-arachidonoylglycerol and N-arachydonoylethanolamide concentrations was observed along with an upregulation of Daglα mRNA expression in HSCs during culture activation. N-palmitoylethanolamide was identified as the most abundant endocannabinoid-like species in activated HSCs. An increase in total ceramide levels and enrichment with N-palmitoyl (C16:0), N-tetracosenoyl (C24:1), N-tetracosanoyl (C24:0) and N-docosanoyl (C22:0) ceramides was detected in activated HSC cultures and was preceded by increased mRNA expression of ceramide synthesizing enzymes (CerS2, CerS5 and Smpd1). Our data suggest an active redistribution of non-retinoid lipids in HSCs underlying the formation of low abundance, highly bioactive lipid species that may affect signaling during HSC activation, as well as extracellularly within the liver.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Jing Liu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Elias J Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37916, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| |
Collapse
|
26
|
Kao YH, Lee PH, Chiu TC, Lin YC, Sun CK, Chen PH, Tsai MS. Transcriptome analysis reveals a positive role for nerve growth factor in retinol metabolism in primary rat hepatocytes. Cytokine 2018; 107:74-78. [DOI: 10.1016/j.cyto.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
|
27
|
Auci DL, Egilmez NK, Dryden GW. Anti-Fibrotic Potential of All Trans Retinoic Acid in Inflammatory Bowel Disease. ACTA ACUST UNITED AC 2018; 6. [PMID: 30740522 DOI: 10.15226/2374-815x/6/3/001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Nejat K Egilmez
- University of Louisville, Department of Microbiology and Immunology, Louisville, KY, USA
| | - Gerald W Dryden
- University of Louisville, Division of Gastroenterology, Hepatology, Nutrition Louisville, KY, USA
| |
Collapse
|
28
|
Coppola N, Perna A, Lucariello A, Martini S, Macera M, Carleo MA, Guerra G, Esposito V, De Luca A. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line. J Cell Physiol 2018; 233:6224-6231. [PMID: 29336497 DOI: 10.1002/jcp.26485] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angelica Perna
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| | - Salvatore Martini
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Margherita Macera
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Maria A Carleo
- Department of Infectious Disease and Infectiuos Emergencies, Immunodepression and Systemic Infections Unit, Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Molise, Italy
| | - Vincenzo Esposito
- Department of Infectious Disease and Infectious Emergencies, General Infectious Diseases Unit, Naples, Italy
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
29
|
Petiz LL, Kunzler A, Bortolin RC, Gasparotto J, Matté C, Moreira JCF, Gelain DP. Role of vitamin A oral supplementation on oxidative stress and inflammatory response in the liver of trained rats. Appl Physiol Nutr Metab 2017; 42:1192-1200. [PMID: 28742973 DOI: 10.1139/apnm-2017-0193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of dietary supplements to enhance the benefit of exercise training is a common practice. The liver is the organ where all substances are metabolized, and certain supplements have been associated with liver injury. Vitamin A (VA), a liposoluble vitamin stored in the liver, is commonly used as an antioxidant supplement. Here, we evaluated the effect of chronic VA supplementation on oxidative damage and stress parameters in trained rats. Animals were divided into the following groups: sedentary (SE), sedentary/VA (SE+VA), exercise training (ET), and exercise training/VA (ET+VA). During 8 weeks, animals were subjected to swimming (0%, 2%, 4%, 6% body weight) for 5 days/week and a VA daily intake of 450 retinol equivalents/day. Parameters were evaluated by enzymatic activity analysis, ELISA, and Western blotting. VA caused liver lipid peroxidation and protein damage in exercised rats and inhibited the increase in HSP70 expression acquired with exercise alone. The ET group showed higher levels of antioxidant enzyme activity, and VA inhibited this adaptation. Expression of the pro-inflammatory cytokines, interleukin (IL)-1β, and tumor necrosis factor-α was reduced in the ET+VA group, while the anti-inflammatory cytokine, IL-10, was increased. Western blotting showed that both exercised groups had lower levels of the receptor for advanced glycation end products, suggesting that VA did not affect this receptor. Our study demonstrated that, although VA caused oxidative damage, a controlled administration might exert anti-inflammatory effects. Further studies with higher VA doses and longer ET interventions would elucidate more the effects of the supplementation and exercise on liver parameters.
Collapse
Affiliation(s)
- Lyvia Lintzmaier Petiz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - Alice Kunzler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - Rafael Calixto Bortolin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - Juciano Gasparotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - prédio anexo - CEP 90035-003 - Porto Alegre, RS, Brazil
| |
Collapse
|