1
|
Saribas AS, Jensen LE, Safak M. Recent advances in discovery and functional analysis of the small proteins and microRNA expressed by polyomaviruses. Virology 2025; 602:110310. [PMID: 39612622 DOI: 10.1016/j.virol.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The polyomavirus family consists of a highly diverse group of small DNA viruses isolated from various species, including humans. Some family members have been used as model systems to understand the fundamentals of modern biology. After the discovery of the first two human polyomaviruses (JC virus and BK virus) during the early 1970s, their current number reached 14 today. Some family members cause considerably severe human diseases, including polyomavirus-associated nephropathy (PVAN), progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa (TS) and Merkel cell carcinoma (MCC). Polyomaviruses encode universal regulatory and structural proteins, but some members express additional virus-specific proteins and microRNA, which significantly contribute to the viral biology, cell transformation, and perhaps progression of the disease that they are associated with. In the current review, we summarized the recent advances in discovery, and functional and structural analysis of those viral proteins and microRNA.
Collapse
Affiliation(s)
- A Sami Saribas
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Liselotte E Jensen
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Pan J, Wei S, Qiu Q, Tong X, Shen Z, Zhu M, Hu X, Gong C. A novel chimeric RNA originating from BmCPV S4 and Bombyx mori HDAC11 transcripts regulates virus proliferation. PLoS Pathog 2023; 19:e1011184. [PMID: 38048361 PMCID: PMC10721177 DOI: 10.1371/journal.ppat.1011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Polymerases encoded by segmented negative-strand RNA viruses cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching") to generate chimeric RNA, and trans-splicing occurs between viral and cellular transcripts. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an RNA virus belonging to Reoviridae, is a major pathogen of silkworm (B. mori). The genome of BmCPV consists of 10 segmented double-stranded RNAs (S1-S10) from which viral RNAs encoding a protein are transcribed. In this study, chimeric silkworm-BmCPV RNAs, in which the sequence derived from the silkworm transcript could fuse with both the 5' end and the 3' end of viral RNA, were identified in the midgut of BmCPV-infected silkworms by RNA_seq and further confirmed by RT-PCR and Sanger sequencing. A novel chimeric RNA, HDAC11-S4 RNA 4, derived from silkworm histone deacetylase 11 (HDAC11) and the BmCPV S4 transcript encoding viral structural protein 4 (VP4), was selected for validation by in situ hybridization and Northern blotting. Interestingly, our results indicated that HDAC11-S4 RNA 4 was generated in a BmCPV RNA-dependent RNA polymerase (RdRp)-independent manner and could be translated into a truncated BmCPV VP4 with a silkworm HDAC11-derived N-terminal extension. Moreover, it was confirmed that HDAC11-S4 RNA 4 inhibited BmCPV proliferation, decreased the level of H3K9me3 and increased the level of H3K9ac. These results indicated that during infection with BmCPV, a novel mechanism, different from that described in previous reports, allows the genesis of chimeric silkworm-BmCPV RNAs with biological functions.
Collapse
Affiliation(s)
- Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shulin Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Qunnan Qiu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xinyu Tong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Zeen Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
3
|
Saribas AS, Bellizzi A, Wollebo HS, Beer T, Tang HY, Safak M. Human neurotropic polyomavirus, JC virus, late coding region encodes a novel nuclear protein, ORF4, which targets the promyelocytic leukemia nuclear bodies (PML-NBs) and modulates their reorganization. Virology 2023; 587:109866. [PMID: 37741199 PMCID: PMC10602023 DOI: 10.1016/j.virol.2023.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/25/2023]
Abstract
We previously reported the discovery and characterization of two novel proteins (ORF1 and ORF2) generated by the alternative splicing of the JC virus (JCV) late coding region. Here, we report the discovery and partial characterization of three additional novel ORFs from the same coding region, ORF3, ORF4 and ORF5, which potentially encode 70, 173 and 265 amino acid long proteins respectively. While ORF3 protein exhibits a uniform distribution pattern throughout the cells, we were unable to detect ORF5 expression. Surprisingly, ORF4 protein was determined to be the only JCV protein specifically targeting the promyelocytic leukemia nuclear bodies (PML-NBs) and inducing their reorganization in nucleus. Although ORF4 protein has a modest effect on JCV replication, it is implicated to play major roles during the JCV life cycle, perhaps by regulating the antiviral response of PML-NBs against JCV infections and thus facilitating the progression of the JCV-induced disease in infected individuals.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hassen S Wollebo
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Thomas Beer
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahmut Safak
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Nomburg J, Zou W, Frost TC, Datta C, Vasudevan S, Starrett GJ, Imperiale MJ, Meyerson M, DeCaprio JA. Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathog 2022; 18:e1010401. [PMID: 35363834 PMCID: PMC9007360 DOI: 10.1371/journal.ppat.1010401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.
Collapse
Affiliation(s)
- Jason Nomburg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas C. Frost
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gabriel J. Starrett
- Laboratory of Cellular Oncology, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Agostini S, Mancuso R, Costa AS, Caputo D, Clerici M. JCPyV miR-J1-5p in Urine of Natalizumab-Treated Multiple Sclerosis Patients. Viruses 2021; 13:v13030468. [PMID: 33809082 PMCID: PMC8000901 DOI: 10.3390/v13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
The use of Natalizumab in Multiple Sclerosis (MS) can cause the reactivation of the polyomavirus JC (JCPyV); this may result in the development of progressive multifocal leukoencephalopathy (PML), a rare and usually lethal disease. JCPyV infection is highly prevalent in worldwide population, but the detection of anti-JCPyV antibodies is not sufficient to identify JCPyV infection, as PML can develop even in patients with negative JCPyV serology. Better comprehension of the JCPyV biology could allow a better understanding of JCPyV infection and reactivation, possibly reducing the risk of developing PML. Here, we investigated whether JCPyV miR-J1-5p—a miRNA that down-regulates the early phase viral protein T-antigen and promotes viral latency—could be detected and quantified by digital droplet PCR (ddPCR) in urine of 25 Natalizumab-treated MS patients. A 24-month study was designed: baseline, before the first dose of Natalizumab, and after 1 (T1), 12 (T12) and 24 months (T24) of therapy. miR-J1-5p was detected in urine of 7/25 MS patients (28%); detection was possible in three cases at T24, in two cases at T12, in one case at T1 and T12, and in the last case at baseline and T1. Two of these patients were seronegative for JCPyV Ab, and viral DNA was never found in either urine or blood. To note, only in one case miR-J1-5p was detected before initiation of Natalizumab. These results suggest that the measurement of miR-J1-5p in urine, could be a biomarker to monitor JCPyV infection and to better identify the possible risk of developing PML in Natalizumab-treated MS patients.
Collapse
Affiliation(s)
- Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (R.M.); (A.S.C.); (D.C.); (M.C.)
- Correspondence:
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (R.M.); (A.S.C.); (D.C.); (M.C.)
| | - Andrea Saul Costa
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (R.M.); (A.S.C.); (D.C.); (M.C.)
| | - Domenico Caputo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (R.M.); (A.S.C.); (D.C.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (R.M.); (A.S.C.); (D.C.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
6
|
Saxena R, Saribas S, Jadiya P, Tomar D, Kaminski R, Elrod JW, Safak M. Human neurotropic polyomavirus, JC virus, agnoprotein targets mitochondrion and modulates its functions. Virology 2021; 553:135-153. [PMID: 33278736 PMCID: PMC7847276 DOI: 10.1016/j.virol.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.
Collapse
Affiliation(s)
- Reshu Saxena
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Rafal Kaminski
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Del Valle L, Piña-Oviedo S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front Oncol 2019; 9:711. [PMID: 31440465 PMCID: PMC6694743 DOI: 10.3389/fonc.2019.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human neurotropic virus JCPyV, a member of the Polyomaviridiae family, is the opportunistic infectious agent of Progressive Multifocal Leukoencephalopathy (PML), a fatal disease seen in severe immunosuppressive conditions and, during the last decade, in patients undergoing immunotherapy. JCPyV is a ubiquitous pathogen with up to 85% of the adult population word-wide exhibiting antibodies against it. Early experiments demonstrated that direct inoculation of JCPyV into the brain of different species resulted in the development of brain tumors and other neuroectodermal-derived neoplasias. Later, several reports showed the detection of viral sequences in medulloblastomas and glial tumors, as well as expression of the viral protein T-Antigen. Few oncogenic viruses, however, have caused so much controversy regarding their role in the pathogenesis of brain tumors, but the discovery of new Polyomaviruses that cause Merkel cell carcinomas in humans and brain tumors in racoons, in addition to the role of JCPyV in colon cancer and multiple mechanistic studies have shed much needed light on the role of JCPyV in cancer. The pathways affected by the viral protein T-Antigen include cell cycle regulators, like p53 and pRb, and transcription factors that activate pro-proliferative genes, like c-Myc. In addition, infection with JCPyV causes chromosomal damage and T-Antigen inhibits homologous recombination, and activates anti-apoptotic proteins, such as Survivin. Here we review the different aspects of the biology and physiopathology of JCPyV.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, Mohr I, Wilson AC. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 2019; 10:754. [PMID: 30765700 PMCID: PMC6376126 DOI: 10.1038/s41467-019-08734-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Characterizing complex viral transcriptomes by conventional RNA sequencing approaches is complicated by high gene density, overlapping reading frames, and complex splicing patterns. Direct RNA sequencing (direct RNA-seq) using nanopore arrays offers an exciting alternative whereby individual polyadenylated RNAs are sequenced directly, without the recoding and amplification biases inherent to other sequencing methodologies. Here we use direct RNA-seq to profile the herpes simplex virus type 1 (HSV-1) transcriptome during productive infection of primary cells. We show how direct RNA-seq data can be used to define transcription initiation and RNA cleavage sites associated with all polyadenylated viral RNAs and demonstrate that low level read-through transcription produces a novel class of chimeric HSV-1 transcripts, including a functional mRNA encoding a fusion of the viral E3 ubiquitin ligase ICP0 and viral membrane glycoprotein L. Thus, direct RNA-seq offers a powerful method to characterize the changing transcriptional landscape of viruses with complex genomes.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| | | | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Devin Bready
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Saribas AS, Coric P, Bouaziz S, Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J Cell Physiol 2018; 234:8295-8315. [PMID: 30390301 DOI: 10.1002/jcp.27715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Polyomavirus family consists of a highly diverse group of small DNA viruses. The founding family member (MPyV) was first discovered in the newborn mouse in the late 1950s, which induces solid tumors in a wide variety of tissue types that are the epithelial and mesenchymal origin. Later, other family members were also isolated from a number of mammalian, avian and fish species. Some of these viruses significantly contributed to our current understanding of the fundamentals of modern biology such as transcription, replication, splicing, RNA editing, and cell transformation. After the discovery of first two human polyomaviruses (JC virus [JCV] and BK virus [BKV]) in the early 1970s, there has been a rapid expansion in the number of human polyomaviruses in recent years due to the availability of the new technologies and brought the present number to 14. Some of the human polyomaviruses cause considerably serious human diseases, including progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy, Merkel cell carcinoma, and trichodysplasia spinulosa. Emerging evidence suggests that the expression of the polyomavirus genome is more complex than previously thought. In addition to encoding universally expressed regulatory and structural proteins (LT-Ag, Sm t-Ag, VP1, VP2, and VP3), some polyomaviruses express additional virus-specific regulatory proteins and microRNAs. This review summarizes the recent advances in polyomavirus genome expression with respect to the new viral proteins and microRNAs other than the universally expressed ones. In addition, a special emphasis is devoted to the recent structural and functional discoveries in the field of polyomavirus agnoprotein which is expressed only by JCV, BKV, and simian virus 40 genomes.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Prezioso C, Scribano D, Rodio DM, Ambrosi C, Trancassini M, Palamara AT, Pietropaolo V. COS-7-based model: methodological approach to study John Cunningham virus replication cycle. Virol J 2018; 15:29. [PMID: 29402297 PMCID: PMC5799914 DOI: 10.1186/s12985-018-0939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/23/2018] [Indexed: 11/26/2022] Open
Abstract
John Cunningham virus (JCV) is a human neurotropic polyomavirus whose replication in the Central Nervous System (SNC) induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV propagation and PML investigation have been severely hampered by the lack of an animal model and cell culture systems to propagate JCV have been very limited in their availability and robustness. We previously confirmed that JCV CY strain efficiently replicated in COS-7 cells as demonstrated by the progressive increase of viral load by quantitative PCR (Q-PCR) during the time of transfection and that archetypal regulatory structure was maintained, although two characteristic point mutations were detected during the viral cycle. This short report is an important extension of our previous efforts in defining our reliable model culture system able to support a productive JCV infection. Supernatants collected from transfected cells have been used to infect freshly seeded COS-7 cell line. An infectious viral progeny was obtained as confirmed by Western blot and immunofluorescence assay. During infection, the archetype regulatory region was conserved. Importantly, in this study we developed an improved culture system to obtain a large scale production of JC virus in order to study the genetic features, the biology and the pathogenic mechanisms of JC virus that induce PML.
Collapse
Affiliation(s)
- C Prezioso
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - D Scribano
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.,Department of Experimental and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - D M Rodio
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - C Ambrosi
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - M Trancassini
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - A T Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy.,San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - V Pietropaolo
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|