1
|
Yule MS, Ireland A, Laird BJA, Skipworth RJE. Cancer cachexia: exploring parallels with other paraneoplastic syndromes. Curr Opin Support Palliat Care 2025:01263393-990000000-00115. [PMID: 40279146 DOI: 10.1097/spc.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
PURPOSE OF REVIEW Cancer cachexia (CC) is a paraneoplastic syndrome (PNS) that is characterised by anorexia, weight loss, fatigue and reduced function. This review explores the molecular drivers of CC and other PNS, identifying shared pathways and highlighting unexplored gaps in research. RECENT FINDINGS Recent studies have provided further evidence of pro-inflammatory cytokines, such as interleukin-6 and tumour necrosis factor-α, as central players in both CC and PNS, emphasising their role in systemic effects like muscle wasting, lipolysis and pyrexia. Despite these overlaps between syndromes, cytokine profiles vary across different cancer types with one study highlighting that the interplay between multiple cytokines likely plays a more significant role in cancer phenotypes than individual cytokines. Mediators, such as parathyroid hormone related peptide and vascular endothelial growth factor, which are typically associated with malignant hyperkalaemia and hypertrophic osteoarthropathy respectively, have also been linked to cachexia, suggesting a shared role. SUMMARY This review highlights the overlap between CC and other PNS. Exploring these shared mechanisms can bridge research gaps and improve CC treatment strategies. Similar insights may be gained by examining other conditions which overlap with CC such as eating disorders, bariatric surgery and sepsis.
Collapse
Affiliation(s)
- Michael S Yule
- St Columba's Hospice, Boswall Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Amy Ireland
- St Columba's Hospice, Boswall Road, Edinburgh, UK
| | - Barry J A Laird
- St Columba's Hospice, Boswall Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Richard J E Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Song G, Park J, Jung Y, Park WY, Park JY, Jung SJ, Kim B, Choi M, Kim SH, Choe SK, Kwak HJ, Lee J, Lee KY, Ahn KS, Um JY. Regulating Sirtuin 3-mediated mitochondrial dynamics through vanillic acid improves muscle atrophy in cancer-induced cachexia. Commun Biol 2025; 8:585. [PMID: 40204937 PMCID: PMC11982244 DOI: 10.1038/s42003-025-07770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer cachexia is a cancer-associated disease characterized by gradual body weight loss due to pathologic muscle and fat loss, but effective treatments are still lacking. Here, we investigate the possible effect of vanillic acid (VA), known for its antioxidant, anti-inflammatory, and anti-obesity effects, on mitochondria-mediated improvement of cancer cachexia. We utilized cachexia-like models using CT26 colon cancer and dexamethasone. VA improved representative parameters of cancer cachexia including body weight loss and increased serum intereukin-6 levels. VA also attenuated muscle loss in the tibialis anterior and gastrocnemius muscles, inhibited proteolytic markers including muscle RING-finger protein-1 (MURF1) and muscle atrophy F-box (MAFbx) and improved mitochondrial function through alteration of sirtuins 3 (SIRT3) and mitofusin 1 (MFN1). Importantly, silencing the SIRT3 gene abolished the effect of VA, indicating that SIRT3 is important in the mechanism of action of VA. Overall, we suggest using VA as a novel therapeutic agent that can fundamentally treat and recover muscle atrophy in cancer cachexia patients.
Collapse
Affiliation(s)
- Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea
| | - Yunu Jung
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Beomsu Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minji Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Hee Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Junhee Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kil Yeon Lee
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea.
| |
Collapse
|
3
|
Zhang L, Li Q, Wu M, Feng X, Dai W, Chen P, Chen D, Zheng Z, Lin X, Wei G. TRIM22 governs tumorigenesis and protects against endometrial cancer-associated cachexia by inhibiting inflammatory response and adipose thermogenic activity. Cancer Metab 2025; 13:17. [PMID: 40200303 PMCID: PMC11980105 DOI: 10.1186/s40170-025-00386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common cancers in women, with a short overall survival and poor prognosis. Besides the biologically aggressive EC properties, Cancer-associated cachexia is the main factor. However, the detailed mechanism underlying EC-related cachexia and its harmful effects on EC progression and patient prognosis remains unclear. METHODS For clinical specimen and the vitro experiment, we detected TRIM22 expression level, EC patients' survival time, EC cell functional change, and adipose thermogenic changes to identify the function of TRIM22 in EC progression, EC-associated cachexia, and their molecular mechanisms. Then, for the vivo experiment, we exploited the xenografts in mice to identify the function of TRIM22 again, and to screen the drug therapeutic schedule. RESULTS Herein, we demonstrated that TRIM22 inhibited EC cell growth, invasion, and migration. Interleukin (IL)-6 mediated brown adipose tissue activation and white adipose tissue browning which induced EC-related cachexia. TRIM22 suppressed the EC cells' secretion of IL-6, and IL-6 mediated EC-related cachexia. Mechanistically, TRIM22 inhibited EC progression by suppressing the nucleotide-binding oligomerization domain 2(NOD2)/nuclear factor-kappaB (NF-κB) signaling pathway, with the purpose of impeding the production of IL-6. Moreover, we revealed that TRIM22 inhibited EC-associated cachexia by suppressing the IL-6/IL-6 receptor (IL-6R) signaling pathway. Therapeutically, we demonstrated that combination treatment with a TRIM22 inducer (progesterone) and a thermogenic inhibitor (IL-6R antibody) synergistically augmented the antitumor efficacy of carbotaxol (carboplatin and paclitaxel), in vivo. CONCLUSION Our data reveals that TRIM22-EC-IL-6-cachexia cross-communication has important clinical relevance and that the use of combined therapy holds great promise for enhancing the efficacy of anti-ECs. (Fig. graphical abstract).
Collapse
Affiliation(s)
- Liping Zhang
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Quanrong Li
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Meiting Wu
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Xiushan Feng
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Weichao Dai
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Peifang Chen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Dezhao Chen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Zhiqun Zheng
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Xiaoyan Lin
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
4
|
Fugane Y, Tanaka S, Mizuno Y, Nakajima H, Yamamoto H, Inoue T, Nagaya M, Nishida Y, Onoe S, Yamaguchi J, Mizuno T, Yokoyama Y, Ebata T. Prognostic impact of preoperative cachexia in patients undergoing major hepatopancreatobiliary surgery for malignancy. Clin Nutr 2025; 47:112-118. [PMID: 40009890 DOI: 10.1016/j.clnu.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND & AIMS Data regarding the association between cachexia and clinical outcomes in hepatopancreatobiliary (HPB) malignancies are limited. This retrospective study sought to investigate the prognostic significance of preoperative cachexia in patients undergoing major HPB surgery for malignancies. METHODS Data from patients, who underwent major open surgery for HPB malignancies between March 2014 and December 2018, were retrospectively reviewed. Cachexia was evaluated a few days before surgery, and defined according to modified Asian Working Group for Cachexia criteria: low body mass index (<21 kg/m2) and decreased handgrip strength (<28 kg [males] and <18 kg [females]) or elevated C-reactive protein level (>0.5 mg/dL). The primary endpoint was postoperative overall survival (OS); secondary endpoints included disease-free survival (DFS) and postoperative complications. RESULTS Of 332 patients (228 male; mean age, 68.8 ± 10.3 years), 93 (28 %) had preoperative cachexia. There were 154 (46 %) deaths and 181 (55 %) combined events (death or recurrence) during a five-year follow-up (mean, 3.3 ± 1.7 years), with no significant differences in major postoperative complications between the 2 groups (P = 0.329). After adjusting for covariates, cachexia (n = 93) exhibited significant associations with shorter OS (adjusted hazard ratio [HR] 1.65 [95 % confidence interval (CI) 1.18-2.30]; P = 0.004) and DFS (adjusted HR 1.39 [95 % CI 1.01-1.91; P = 0.043) compared with non-cachexia (n = 239). Cachexia significantly shortened OS only in a subset with pathological stage ≤ II disease (adjusted HR 2.45 [95 % CI 1.27-4.74]; P = 0.008) but not otherwise (P for interaction, 0.040). CONCLUSIONS Preoperative cachexia did not affect short-term surgical complications but significantly deteriorated postoperative prognosis in patients who underwent surgery for HPB malignancies.
Collapse
Affiliation(s)
- Yuki Fugane
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Shinya Tanaka
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Yota Mizuno
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Hiroki Nakajima
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Hiromasa Yamamoto
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Takayuki Inoue
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Motoki Nagaya
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Onoe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Yang Y, Meng Y, Xu Z, Zhang Q, Li M, Kong F, Zhang S, Li X, Zhu Y. Leveraging microbiome signatures to predict tumor immune microenvironment and prognosis of patients with endometrial carcinoma. Discov Oncol 2025; 16:299. [PMID: 40069468 PMCID: PMC11896907 DOI: 10.1007/s12672-025-02038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Recent studies suggest that the human microbiome influence tumor development. Endometrial carcinoma (EC) is the sixth most common malignancy in women. Recent research has demonstrated the microbes play a critical role in the development and metastasis of EC. However, it remains unclear whether intratumoral microbes are associated with tumor microenvironment (TME) and prognosis of EC. In this study, we collected the EC microbiome data from cBioPortal and constructed a prognostic model based on Resident Microbiome of Endometrium (RME). We then examined the relationship between the RME score, immune cell infiltration, immunotherapy-related signature, and prognosis. The findings demonstrated the independent prognostic value of the RME score for EC. The group with low RME scores had higher enrichment of immune cells. Drug sensitivity analysis revealed that the RME score may serve as a potential predictor of chemotherapy efficacy. In conclusion, our research offers new perspectives on the relationships between tumor immunity and microbes.
Collapse
Affiliation(s)
- Yuting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Meng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ziyang Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Qin Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Miaomiao Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fanbing Kong
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Suping Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xinling Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| | - Yihua Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Dave S, Patel B. The lipocalin saga: Insights into its role in cancer-associated cachexia. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167684. [PMID: 39837432 DOI: 10.1016/j.bbadis.2025.167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC. Anorexia is a significant contributor to worsening CAC. Anorexia can be found in the early or advanced stages of cancer. Anorexia in cancer patients arises from a confluence of factors. Tumor-related inflammatory cytokines can directly impact the gastrointestinal tract, leading to dysphagia and compromised gut function. Additionally, increased serotonin and hormonal disruptions lead to early satiety, suppressing appetite. Due to the complexities in the pathogenesis of the disease, identifying druggable targets is a challenge. Research is ongoing to identify novel targets for the treatment of this condition. Recent research suggests a potential link between elevated levels of Lipocalin 2 (LCN2) and cachexia in cancer patients. LCN2, a glycoprotein primarily released by neutrophils, is implicated in numerous illnesses, including skin disorders, cancer, atherosclerosis, and type 2 diabetes. LCN2 suppresses hunger by binding to the melanocortin-4 receptors. Several in vitro, in vivo, and clinical studies indicate the association between LCN2 levels and appetite suppression. Further research should be explored emphasizing the significance of well-crafted clinical trials to confirm LCN2's usefulness as a therapeutic target and its ability to help cancer patients who are suffering from the fatal hallmark of cachexia. This review explores LCN2's function in the multifaceted dynamics of CAC and anorexia.
Collapse
Affiliation(s)
- Srusti Dave
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | - Bhoomika Patel
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
7
|
Khan M, Butler J, Anker M. Weight Gain Among Cancer Patients Receiving Chemotherapy-Facts and Numbers. J Cachexia Sarcopenia Muscle 2025; 16:e13694. [PMID: 39972941 PMCID: PMC11839733 DOI: 10.1002/jcsm.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 02/21/2025] Open
Abstract
Cachexia affects up to 60% of patients with lung cancer, with its prevalence rising up to 80% in advanced stages of disease. In approximately 20% of cases, it is the primary cause of mortality. Five studies, including a total of 4467 patients, across range of cancer types reported data on weight gain in cancer patients undergoing chemotherapy. Across all five studies, an average of 18.3% of patients experienced weight gain > 5% (816 out of 4467 patients). The frequency of weight gain > 5% was highest among breast cancer patients, 18.9% in Pedersini et al (n = 169) and 33.0% in Sella et al (n = 687). In NSCLC patients, weight gain was reported in 18.3% in patients in Patel et al (n = 2301) and 11.7% in Roeland et al (n = 1030). In contrast, colorectal cancer patients showed only 5.7% of weight gain > 5% (Zutphen et al, n = 280). Additionally, weight loss > 5% was reported in 15.1% of breast cancer patients and 28.3% of colorectal cancer patients. Despite weight loss being quantified as a common endpoint in clinical trials focused on cancer cachexia, there is limited data on the impact of weight gain as a marker of a positive outcome among cancer patients. Studies have shown that weight gain of more than 5% within 3 months in NSCLC patients can be associated with improvement in overall survival (OS) and progression-free survival (PFS) scores. In this post hoc analysis by Roeland et al., the authors defined different percentage cut-off values for maximum weight gain among patients with non-small cell lung cancer within 3 months of starting platinum-based chemotherapy. Among all categories, namely, weight gain > 0%, > 2.5% and > 5%, a significant benefit in overall and progression-free survival was seen and was comparable among all groups. These findings highlight the clinical significance of incorporating strategies that encourage weight gain and to prevent weight loss at the least among cancer patients. Along with further delving into the prognostic value of weight gain and developing methods to encourage this response among cancer patients, future studies should use standardized assessment tools to identify weight gain that could be attributed to underlying pathologic processes such as oedema and congestion. We also suggest that monitoring and reporting of weight changes should be done in all cancer trials.
Collapse
Affiliation(s)
- Muhammad Shahzeb Khan
- Department of MedicineBaylor College of MedicineTempleTexasUSA
- Division of CardiologyThe Heart Hospital PlanoPlanoTexasUSA
- Baylor Scott and White Research InstituteDallasTexasUSA
| | - Javed Butler
- Baylor Scott and White Research InstituteDallasTexasUSA
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMichiganUSA
| | - Markus Anker
- Department of Cardiology, Angiology and Intensive Care Medicine CBFDeutsches Herzzentrum der CharitéBerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinCharité – University Medicine BerlinBerlinGermany
- Partner Site BerlinGerman Centre for Cardiovascular Research (DZHK)BerlinGermany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT)BerlinGermany
| |
Collapse
|
8
|
Katsushima U, Kurose S, Fukushima T, Nakano J, Ogushi N, Fujii K, Nagata Y, Kamisako K, Okuno Y, Okazaki Y, Nakanishi K, Yoshida K, Ikoma T, Takeyasu Y, Yamanaka Y, Yoshioka H, Hase K, Kurata T. Impact of time to treatment initiation on the development of cachexia and clinical outcomes in lung cancer. Jpn J Clin Oncol 2025:hyaf009. [PMID: 39825794 DOI: 10.1093/jjco/hyaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Pre-cancer onset of cachexia raises uncertainties regarding the optimal timing for early intervention in lung cancer patients. We aimed to examine changes in physical function, nutritional status, and cachexia incidence in patients with lung cancer from the initial visit to treatment initiation and determine the effect of these changes on lung cancer treatment. METHODS This single-center retrospective cohort study enrolled patients suspected of having advanced lung cancer who visited Kansai Medical University Hospital between January and February 2023 and were definitely diagnosed with the disease. Patients were categorized into three groups based on their cachexia status: those with cachexia at initial diagnosis (group C), those who developed cachexia between the initial visit and treatment initiation (group OC), and those without cachexia (group NC). RESULTS Out of 61 patients, 21 had cachexia at their first outpatient visit (group C). The time between the first visit and treatment initiation was 42.5 days. The rate of cachexia in patients with stage IV lung cancer in group OC was significantly higher than that in patients with other stages (P = 0.008). Of the 33 patients with advanced lung cancer, 11 received supportive care only. The first-line treatment induction rate for the OC group was low. Half of the patients declined chemotherapy and received the best supportive care; their disease control rate (37.5%) was significantly worse than that of the other groups (P = 0.007). CONCLUSIONS Cachexia negatively impacts the effectiveness of initial cancer treatment, necessitating early anti-cachexia interventions at the first clinical visit.
Collapse
Affiliation(s)
- Utae Katsushima
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Satoshi Kurose
- Health Science Center, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Takuya Fukushima
- Faculty of Rehabilitation, Kansai Medical University, Uyamahigashicho 18-89, Hirakata, Osaka 573-1136, Japan
| | - Jiro Nakano
- Faculty of Rehabilitation, Kansai Medical University, Uyamahigashicho 18-89, Hirakata, Osaka 573-1136, Japan
| | - Naoya Ogushi
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Kazuki Fujii
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Yutaro Nagata
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Keisuke Kamisako
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Yukiko Okuno
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Yuta Okazaki
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Kentaro Nakanishi
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Kiyori Yoshida
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Tatsuki Ikoma
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Yuki Takeyasu
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Yuta Yamanaka
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Kimitaka Hase
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University, 2-3-1 Shinmachi, Hirakata city, Osaka 573-1191, Japan
| |
Collapse
|
9
|
Chen LN, Ma X, Herzberg B, Henick BS, Biswas AK, Acharyya S, Shu CA. Weight loss in patients on osimertinib for metastatic EGFR-mutant non-small cell lung cancer. Oncologist 2024:oyae315. [PMID: 39703162 DOI: 10.1093/oncolo/oyae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cachexia is characterized by weight loss and decline in muscle mass and function and is a poor prognostic factor among patients with cancer. Patients with metastatic EGFR-mutant non-small cell lung cancer (NSCLC) derive remarkable survival benefits with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. It is not known whether patients treated with osimertinib experience any weight loss or whether weight loss impacts patient outcomes. Therefore, we sought to describe the frequency and consequences of weight loss in this patient population. MATERIALS AND METHODS We conducted a single-center retrospective pilot study of 56 patients treated with first-line osimertinib for metastatic EGFR-mutant NSCLC. We defined on-treatment weight loss as a loss of ≥5% body weight at 6 or 12 months of treatment. We described the characteristics of patients with and without on-treatment weight loss and differences in progression-free survival (PFS), time on treatment with osimertinib, and overall survival (OS). RESULTS Forty-six percent (n = 26) of patients met the criteria for on-treatment weight loss. There were no significant differences in patient or disease characteristics between patients with and without weight loss. Compared to patients without weight loss, patients with weight loss had similar PFS and time on treatment with osimertinib. Yet, patients with weight loss had significantly worse overall survival (HR 4.91, 95% CI, 1.56-15.5, P = .007). CONCLUSION Weight loss was observed in nearly half of patients with metastatic EGFR-mutant NSCLC treated with osimertinib, and patients with weight loss had significantly worse overall survival.
Collapse
Affiliation(s)
- Lanyi Nora Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Xin Ma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Department of Statistics, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Benjamin Herzberg
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Brian S Henick
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Anup K Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Swarnali Acharyya
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Catherine A Shu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| |
Collapse
|
10
|
Penna F, Rubini G, Costelli P. Immunomodulation: A new approach to cancer cachexia, potentially suitable for aging. Mol Aspects Med 2024; 100:101318. [PMID: 39260232 DOI: 10.1016/j.mam.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Cancer cachexia is the prototypical example of comorbidity, occurring in most of cancer patients. It is a direct consequence of tumor growth and of the associated inflammatory/immune response. Cachexia can be exacerbated by anti-cancer therapies, frequently resulting in dose limitation and/or treatment delay or discontinuation. The pathogenesis of cancer cachexia is still unclear and includes nutritional, metabolic, hormonal and immunological components. Tumor ability to shape the immune response to its own advantage is now well accepted, while the possibility that such an altered immune response could play a role in the onset of cachexia is still an undefined issue. Indeed, most of the immune-related research on cachexia mainly focused on pro-inflammatory mediators, almost totally disregarding the interactions among immune cells and the homeostasis of peripheral tissues. The present review provides an overview of the immune system dysregulations occurring in cancer cachexia, focusing on the possibility that immunomodulating strategies, mainly developed to stimulate the anti-cancer immune response, could be useful to counteract cachexia as well. Cancer and cachexia are frequent comorbidities of aging. Along this line, cancer- and aging-associated muscle wasting likely coexist in the same patients. Since both conditions share some of the underlying mechanisms, the potential effectiveness of immunomodulation on sarcopenia of aging is discussed.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Giacomo Rubini
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
11
|
Ferrara D, Abenavoli EM, Beyer T, Gruenert S, Hacker M, Hesse S, Hofmann L, Pusitz S, Rullmann M, Sabri O, Sciagrà R, Sundar LKS, Tönjes A, Wirtz H, Yu J, Frille A. Detection of cancer-associated cachexia in lung cancer patients using whole-body [ 18F]FDG-PET/CT imaging: A multi-centre study. J Cachexia Sarcopenia Muscle 2024; 15:2375-2386. [PMID: 39189415 PMCID: PMC11634466 DOI: 10.1002/jcsm.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non-imaging criteria. Given the metabolic underpinnings of CAC and the ability of [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole-body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. METHODS This multi-centre study included 345 LCP who underwent WB [18F]FDG-PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into 'No CAC' (WLGS-0/1 at baseline prior treatment and at first follow-up: N = 158, 51F/107M), 'Dev CAC' (WLGS-0/1 at baseline and WLGS-3/4 at follow-up: N = 90, 34F/56M), and 'CAC' (WLGS-3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake () and CT-defined volumes were extracted for abdominal and visceral organs, muscles, and adipose-tissue using automated image segmentation of baseline [18F]FDG-PET/CT images. Imaging and non-imaging parameters from laboratory tests were compared statistically. A machine-learning (ML) model was then trained to classify LCP as 'No CAC', 'Dev CAC', and 'CAC' based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. RESULTS The three CAC categories displayed multi-organ differences in . In all target organs, was higher in the 'CAC' cohort compared with 'No CAC' (P < 0.01), except for liver and kidneys, where in 'CAC' was reduced by 5%. The 'Dev CAC' cohort displayed a small but significant increase in of pancreas (+4%), skeletal-muscle (+7%), subcutaneous adipose-tissue (+11%), and visceral adipose-tissue (+15%). In 'CAC' patients, a strong negative Spearman correlation (ρ = -0.8) was identified between and volumes of adipose-tissue. The machine-learning model identified 'CAC' at baseline with 81% of accuracy, highlighting of spleen, pancreas, liver, and adipose-tissue as most relevant features. The model performance was suboptimal (54%) when classifying 'Dev CAC' versus 'No CAC'. CONCLUSIONS WB [18F]FDG-PET/CT imaging reveals groupwise differences in the multi-organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi-centre study has been initiated to address the limitations of the present retrospective analysis.
Collapse
Affiliation(s)
| | | | - Thomas Beyer
- QIMP TeamMedical University of ViennaViennaAustria
| | - Stefan Gruenert
- Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Marcus Hacker
- Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Swen Hesse
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Lukas Hofmann
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
- Department of Respiratory MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Smilla Pusitz
- Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Michael Rullmann
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Roberto Sciagrà
- Division of Nuclear MedicineAzienda Ospedaliero Universitaria CareggiFlorenceItaly
| | | | - Anke Tönjes
- Department of EndocrinologyUniversity Hospital LeipzigLeipzigGermany
| | - Hubert Wirtz
- Department of Respiratory MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Josef Yu
- QIMP TeamMedical University of ViennaViennaAustria
- Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Armin Frille
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
- Department of Respiratory MedicineUniversity Hospital LeipzigLeipzigGermany
| |
Collapse
|
12
|
Yuan N, Li M, Wang SS, Yu HX, Wang YQ, Dong FY, Chen HX, Duan SN, Luo J. Study on the disease burden of patients with mucopolysaccharidosis type II in China. Orphanet J Rare Dis 2024; 19:414. [PMID: 39501359 PMCID: PMC11539769 DOI: 10.1186/s13023-024-03432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND In this study, we investigated the patient population of Mucopolysaccharidosis type II (MPS II) in China, understood the basic situation, prevalence and diagnosis and treatment status of the patients, as well as the economic burden of the patients, and analyzed the influencing factors. METHODS A cross-sectional study focusing on patients with MPS II was conducted in China in 2023. Participants in the study were drawn from the Beijing Zhengyu Mucopolysaccharide Rare Disease Care Center, which is the only non-profit organization in mainland China registered with the civil affairs department that focuses on mucopolysaccharidosis. Data were collected through an online questionnaire, which included basic patient information, disease status, self-assessment of quality of life, diagnosis and treatment, as well as direct and indirect medical costs. The demographic and diagnosis and treatment profile of patients were analyzed by descriptive statistics. Furthermore, univariate and multiple linear regression were used to explore the economic burden and influencing factors of patients with MPS II. RESULTS The survival data of 145 patients were collected, the majority (98.62%) were male, and 78 were less than or equal to 10 years old. All patients were covered by medical insurance, mainly urban residents (135 cases). In terms of expenses, the 124 patients in the year before the survey incurred a total cost of about 14.7895 million yuan, and the direct economic burden accounted for 87.19%. Univariate analysis showed that age, number of hospitalizations, length of hospital stay, number of outpatient/emergency departments, hematopoietic stem cell transplantation (HSCT), and enzyme replacement therapy (ERT) were significantly associated with the economic burden of disease. Multiple regression analysis showed that the number of hospitalizations, days of hospitalization, number of outpatient/emergency departments and HSCT treatment were the main influencing factors. CONCLUSIONS This study found that patients with MPS II were difficult to diagnose and easily misdiagnosed, their physical functions were impaired in many aspects. The existing treatment options are not sufficient in terms of economy and effectiveness, and there is also a lack of corresponding policy guarantees and support, which makes patients and their families have to face huge financial pressure.
Collapse
Affiliation(s)
- Ni Yuan
- School of Public Health, Dalian Medical University, Dalian, China.
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China.
| | - Min Li
- School of Public Health, Dalian Medical University, Dalian, China
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Shan-Shan Wang
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Hua-Xin Yu
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Ya-Qun Wang
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Fan-Yu Dong
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Han-Xiang Chen
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Sheng-Nan Duan
- School of Public Health, Dalian Medical University, Dalian, China
- Innovative Drug Policy and Medical Insurance Research Center, Dalian Medical University, Dalian, China
| | - Ji Luo
- Medical Insurance Department of The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Yule MS, Brown LR, Waller R, Wigmore SJ. Cancer cachexia. BMJ 2024; 387:e080040. [PMID: 39442934 DOI: 10.1136/bmj-2024-080040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Michael S Yule
- St Columba's Hospice, Edinburgh EH5 3RW, UK
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Leo R Brown
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen J Wigmore
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| |
Collapse
|
14
|
Li XX, Liu B, Zhao YF, Jiang Y, Cui Y, Peng XG. Functional Liver Imaging Score Derived from Gadoxetic Acid-enhanced MRI Predicts Cachexia and Prognosis in Hepatocellular Carcinoma Patients. Curr Med Sci 2024; 44:1018-1025. [PMID: 39327388 DOI: 10.1007/s11596-024-2930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Cachexia occurs in approximately half of hepatocellular carcinoma (HCC) patients as the disease progresses and is correlated with a poor prognosis. Therefore, early identification of HCC patients at risk of developing cachexia and their prognosis is crucial. This study investigated the functional liver imaging score (FLIS) derived from gadoxetic acid-enhanced magnetic resonance imaging (MRI) to identify cachexia in HCC patients and their prognosis. METHODS Pretreatment clinical and MRI data from 339 HCC patients who underwent gadoxetic acid-enhanced MRI scans were retrospectively collected. Patient weights were recorded for 6 months following the MRI scan to diagnose cachexia. The FLIS was calculated as the sum of the enhancement quality score, the excretion quality score, and the portal vein sign quality score. A Cox proportional hazards model was used to determine the significant factors affecting overall survival (OS). Multivariable logistic regression was then conducted to identify variables predicting cachexia in HCC patients, which were subsequently used to predict OS. RESULTS Cox regression analysis revealed a significant association between cachexia and worse OS. Both FLIS (0-4 vs. 5-6 points) (OR, 9.20; 95% CI: 4.68-18.10; P<0.001) and α-fetoprotein >100 ng/mL (OR, 4.08; 95% CI: 2.13-7.83; P<0.001) emerged as significant predictors of cachexia in patients with HCC. Furthermore, FLIS (0-4 vs. 5-6 points) (HR, 1.73; 95% CI: 1.19-2.51; P=0.004) was significantly associated with OS. Patients in the FLIS 0-4 points group had shorter OS than those in the FLIS 5-6 points group [20 months (95% CI, 14.7-25.3) vs. 43 months (95% CI, 27.7-58.3); P=0.001]. CONCLUSION Cachexia was associated with worse OS. The functional liver imaging score emerged as a significant predictor of cachexia in HCC patients and their prognosis.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yu-Fei Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yang Jiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ying Cui
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Gui Peng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Dunne RF, Crawford J, Smoyer KE, McRae TD, Rossulek MI, Revkin JH, Tarasenko LC, Bonomi PD. The mortality burden of cachexia or weight loss in patients with colorectal or pancreatic cancer: A systematic literature review. J Cachexia Sarcopenia Muscle 2024; 15:1628-1640. [PMID: 39095951 PMCID: PMC11446707 DOI: 10.1002/jcsm.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer-associated cachexia is a multifactorial wasting disorder characterized by anorexia, unintentional weight loss (skeletal muscle mass with or without loss of fat mass), progressive functional impairment, and poor prognosis. This systematic literature review (SLR) examined the relationship between cachexia and survival in patients with colorectal or pancreatic cancer in recent literature. The SLR was conducted following PRISMA guidelines. Embase® and PubMed were searched to identify articles published in English between 1 January 2016 and 10 October 2021 reporting survival in adults with cancer and cachexia or at risk of cachexia, defined by international consensus (IC) diagnostic criteria or a broader definition of any weight loss. Included publications were studies in ≥100 patients with colorectal or pancreatic cancer. Thirteen publications in patients with colorectal cancer and 13 with pancreatic cancer met eligibility criteria. Included studies were observational and primarily from Europe and the United States. Eleven studies (42%) reported cachexia using IC criteria and 15 (58%) reported any weight loss. An association between survival and cachexia or weight loss was assessed across studies using multivariate (n = 23) or univariate (n = 3) analyses and within each study across multiple weight loss categories. Cachexia/weight loss was associated with a statistically significantly poorer survival in at least one weight loss category in 16 of 23 studies that used multivariate analyses and in 1 of 3 studies (33%) that used univariate analyses. Of the 17 studies demonstrating a significant association, 9 were in patients with colorectal cancer and 8 were in patients with pancreatic cancer. Cachexia or weight loss was associated with significantly poorer survival in patients with colorectal or pancreatic cancer in nearly two-thirds of the studies. The classification of weight loss varied across and within studies (multiple categories were evaluated) and may have contributed to variability. Nonetheless, awareness of cachexia and routine assessment of weight change in clinical practice in patients with colorectal or pancreatic cancer could help inform prognosis and influence early disease management strategies.
Collapse
Affiliation(s)
- Richard F. Dunne
- Department of Medicine and Wilmot Cancer Institute, Division of Hematology/OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Jeffrey Crawford
- Duke Cancer InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | - Thomas D. McRae
- Department of Internal Medicine, Pfizer Research and DevelopmentPfizer IncNew YorkNew YorkUSA
| | - Michelle I. Rossulek
- Internal Medicine Research Unit, Pfizer Research and DevelopmentPfizer IncCambridgeMassachusettsUSA
| | - James H. Revkin
- Internal Medicine Research Unit, Pfizer Research and DevelopmentPfizer IncCambridgeMassachusettsUSA
| | | | - Philip D. Bonomi
- Department of Internal Medicine, Division of Hematology, Oncology and Cell TherapyRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
16
|
van de Worp WRPH, Theys J, Wolfs CJA, Verhaegen F, Schols AMWJ, van Helvoort A, Langen RCJ. Targeted nutritional intervention attenuates experimental lung cancer cachexia. J Cachexia Sarcopenia Muscle 2024; 15:1664-1676. [PMID: 38965830 PMCID: PMC11446694 DOI: 10.1002/jcsm.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cachexia, a syndrome with high prevalence in non-small cell lung cancer patients, impairs quality of life and reduces tolerance and responsiveness to cancer therapy resulting in decreased survival. Optimal nutritional care is pivotal in the treatment of cachexia and a recommended cornerstone of multimodal therapy. Here, we investigated the therapeutic effect of an intervention diet consisting of a specific combination of high protein, leucine, fish oil, vitamin D, galacto-oligosaccharides, and fructo-oligosaccharides on the development and progression of cachexia in an orthotopic lung cancer mouse model. METHODS Eleven-week-old male 129S2/Sv mice were orthotopically implanted with 344P lung epithelial tumour cells or vehicle (control). Seven days post-implantation tumour-bearing (TB) mice were allocated to either intervention- or isocaloric control diet. Cachexia was defined as 5 days of consecutive body weight loss, after which mice were euthanized for tissue analyses. RESULTS TB mice developed cachexia accompanied by significant loss of skeletal muscle mass and epididymal fat mass compared with sham operated mice. The cachectic endpoint was significantly delayed (46.0 ± 15.2 vs. 34.7 ± 11.4 days), and the amount (-1.57 ± 0.62 vs. -2.13 ± 0.57 g) and progression (-0.26 ± 0.14 vs. -0.39 ± 0.11 g/day) of body weight loss were significantly reduced by the intervention compared with control diet. Moreover, systemic inflammation (pentraxin-2 plasma levels) and alterations in molecular markers for proteolysis and protein synthesis, indicative of muscle atrophy signalling in TB-mice, were suppressed in skeletal muscle by the intervention diet. CONCLUSIONS Together, these data demonstrate the potential of this multinutrient intervention, targeting multiple components of cachexia, as integral part of lung cancer management.
Collapse
Affiliation(s)
- Wouter R. P. H. van de Worp
- Department of Respiratory Medicine, NUTRIM – Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW – Institute for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Cecile J. A. Wolfs
- Department of radiation Oncology (Maastro), GROW – Institute for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Frank Verhaegen
- Department of radiation Oncology (Maastro), GROW – Institute for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM – Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM – Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
- Danone Nutricia ResearchUtrechtThe Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM – Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
17
|
Yasu T, Iwatuki N, Gando Y, Matumoto Y, Masuo M, Shirota M, Kobayashi M. Determination of anamorelin concentration in human plasma using a simple high-performance liquid chromatography-ultraviolet detection method. Drug Discov Ther 2024; 18:260-264. [PMID: 39183042 DOI: 10.5582/ddt.2024.01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Anamorelin, a non-peptide ghrelin analog and growth hormone secretagogue, is a novel oral drug used to treat cancer cachexia. Patients with cancer cachexia frequently use several drugs and anamorelin is a substrate of cytochrome P450 (CYP) 3A4; therefore, drug-drug interactions with CYP3A4 inhibitors and inducers pose a clinical problem. In this study, we aimed to determine the concentration of anamorelin in human plasma using a simple high-performance liquid chromatography-ultraviolet (HPLC-UV)-based method. The analysis involved extracting a 200-μL plasma sample and protein precipitation using solid-phase extraction. Anamorelin was isocratically separated using a mobile phase consisting of 0.5% potassium dihydrogen phosphate (pH 4.5) and acetonitrile (61:39, v/v) on a Capcell Pack C18 MG II column (250 mm × 4.6 mm) at a flow rate of 1.0 mL/min and monitored at a detection wavelength of 220 nm. The calibration curve was linear within a plasma concentration range of 12.5-1,500 ng/mL, with a coefficient of determination of 0.9999. The intra- and inter-day coefficients of variation were 0.37-6.71% and 2.05-4.77%, respectively. The accuracy of the assay and recovery were 85.25-112.94% and > 86.58%, respectively. This proposed HPLC-UV method is simple and can be applied in clinical settings.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Education and Research Unit for Comprehensive Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| | - Nanami Iwatuki
- Department of Medicinal Therapy Research, Education and Research Unit for Comprehensive Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshito Gando
- Department of Medicinal Therapy Research, Education and Research Unit for Comprehensive Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuhiko Matumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Mikio Shirota
- Department of Pharmacy, Tokyo Metropolitan Toshima Hospital, Tokyo, Japan
| | - Masayoshi Kobayashi
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
- Bokutoh Hospital-Meiji Pharmaceutical University Joint Research Center, Tokyo, Japan
| |
Collapse
|
18
|
Takaoka T, Yaegashi A, Watanabe D. Prevalence of and Survival with Cachexia among Patients with Cancer: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100282. [PMID: 39127425 PMCID: PMC11402144 DOI: 10.1016/j.advnut.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Cachexia is associated with lower overall survival (OS) in patients with cancer; however, the relationship between the two is reported to differ according to the definitive criteria for diagnosing cachexia. We aimed to investigate 1) the difference in the prevalence of cachexia in patients with cancer and 2) the association between cachexia and OS, depending on the definitive criteria for diagnosing cachexia in patients with cancer. We searched PubMed and Web of Science from their inception until July 31, 2023, to identify eligible studies. We conducted a systematic review of the prevalence of cachexia in patients with cancer and performed a meta-analysis to investigate its relationship with OS. A total of 125 articles comprising 137,960 patients were included in the systematic review, and 26 articles consisting of 11,118 patients underwent meta-analysis. The overall prevalence of cachexia in patients with cancer was 33.0% (95% confidence interval [CI]: 32.8, 33.3); however, it varied according to the definitive criteria for diagnosing cachexia (13.9%-56.5%). According to the Fearon 2011 criteria, the prevalence of cachexia was associated with a high hazard ratio (HR) for OS compared with that of noncachexia [HR: 1.58 (95% CI: 1.45, 1.73)]; according to the other criteria, the HR was 2.78 (95% CI: 1.88, 4.11), indicating significant subgroup differences (P = 0.006). The dose-response curve indicated that the HR for OS plateaued at a cachexia prevalence range of 40%-50% (l-shaped relationship). The prevalence of cachexia in patients with cancer may vary depending on the definitive criteria used to diagnose cachexia. The HR for OS was higher for low cachexia prevalence. The definitive criteria should be carefully considered when assessing cachexia in patients with cancer. This trial was registered at the PROSPERO as CRD42023435474.
Collapse
Affiliation(s)
- Tomoya Takaoka
- Medical Science Division, Department of Medical Science, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan; Division of Clinical Nutrition, Shinshu University Hospital, Nagano, Japan
| | - Akinori Yaegashi
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, Hokkaido, Japan; Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Daiki Watanabe
- Faculty of Sport Sciences, Waseda University, Saitama, Japan; National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
19
|
VanderVeen BN, Cardaci TD, Bullard BM, Madden M, Li J, Velazquez KT, Kubinak JL, Fan D, Murphy EA. Involvement of the gut microbiota in cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C661-C670. [PMID: 38981609 PMCID: PMC11427007 DOI: 10.1152/ajpcell.00327.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Kandy T Velazquez
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
20
|
Zhang Y, Dos Santos M, Huang H, Chen K, Iyengar P, Infante R, Polanco PM, Brekken RA, Cai C, Caijgas A, Cano Hernandez K, Xu L, Bassel-Duby R, Liu N, Olson EN. A molecular pathway for cancer cachexia-induced muscle atrophy revealed at single-nucleus resolution. Cell Rep 2024; 43:114587. [PMID: 39116208 PMCID: PMC11472345 DOI: 10.1016/j.celrep.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthieu Dos Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rodney Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Patricio M Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ambar Caijgas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
De Oliveira LC, Wiegert EVM, Santos LAD, Calixto-Lima L. Nutritional status and primary tumour site in incurable cancer. BMJ Support Palliat Care 2024; 14:308-316. [PMID: 34740940 DOI: 10.1136/bmjspcare-2021-003321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES We aimed (1) to assess the nutritional status (NS) using different methods, according to the primary tumour site and (2) to evaluate the performance of these methods in patients with incurable cancer from a reference centre in Brazil. METHODS Cross-sectional analysis of data from patients admitted to the palliative care unit of a reference cancer centre in Brazil, between July 2016 and March 2020. The primary tumour site was the independent variable and the NS using different methods were the dependent variables. Logistic regressions were performed. RESULTS A total of 2,144 patients were included in the study. The most common primary tumour site was the upper gastrointestinal (GI) tract (18.0%), followed by gynaecological (17.6%) and head and neck (HN) (13.5%). Our results showed that patients with tumours of the upper GI tract followed by HN presented significantly higher risk of worse NS. In contrast, breast tumours, bone and connective tissues and melanoma presented inverse association. The gynaecological cancer was variably associated with nutritional impairment, according to the assessment method. CONCLUSIONS Patients with incurable cancer present high prevalence of NS impairment, depending on the tumour site, shown to be elevated in patients with tumour in the upper GI tract.
Collapse
Affiliation(s)
- Livia Costa De Oliveira
- Palliative Care Unit, José Alencar Gomes da Silva National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Lara Azevedo Dos Santos
- Palliative Care Unit, José Alencar Gomes da Silva National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Larissa Calixto-Lima
- Palliative Care Unit, José Alencar Gomes da Silva National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Langer HT, Ramsamooj S, Dantas E, Murthy A, Ahmed M, Ahmed T, Hwang SK, Grover R, Pozovskiy R, Liang RJ, Queiroz AL, Brown JC, White EP, Janowitz T, Goncalves MD. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiol (Oxf) 2024; 240:e14167. [PMID: 38779820 PMCID: PMC11250533 DOI: 10.1111/apha.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
AIM To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anirudh Murthy
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tanvir Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul Grover
- Weill Cornell Medical College, New York, NY, USA
| | - Rita Pozovskiy
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Roger J. Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Lima Queiroz
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin C. Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Eileen P. White
- Department of Genetics, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
23
|
Li XX, Liu B, Zhao YF, Jiang Y, Mao H, Peng XG. Predicting cachexia in hepatocellular carcinoma patients: a nomogram based on MRI features and body composition. Acta Radiol 2024; 65:898-906. [PMID: 39053020 DOI: 10.1177/02841851241261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Approximately half of all patients with hepatocellular carcinoma (HCC) develop cachexia during the course of the disease. It is important to be able to predict which patients will develop cachexia at an early stage. PURPOSE To develop and validate a nomogram based on the magnetic resonance imaging (MRI) features of HCC and body composition for potentially predicting cachexia in patients with HCC. MATERIAL AND METHODS A retrospective two-center study recruited the pretreatment clinical and MRI data of 411 patients with HCC undergoing abdominal MRI. The data were divided into three cohorts for development, internal validation, and external validation. Patients were followed up for six months after the MRI scan to record each patient's weight to diagnose cachexia. Logistic regression analyses were performed to identify independent variables associated with cachexia in the development cohort used to build the nomogram. RESULTS The multivariable analysis suggested that the MRI parameters of tumor size > 5 cm (P = 0.001), intratumoral artery (P = 0.004), skeletal muscle index (P < 0.001), and subcutaneous fat area (P = 0.004) were independent predictors of cachexia in patients with HCC. The nomogram derived from these parameters in predicting cachexia reached an area under receiver operating characteristic curve of 0.819, 0.783, and 0.814 in the development, and internal and external validation cohorts, respectively. CONCLUSION The proposed multivariable nomogram suggested good performance in predicting the risk of cachexia in HCC patients.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| | - Bing Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR, China
| | - Yu-Fei Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| | - Yang Jiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Xin-Gui Peng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, PR China
| |
Collapse
|
24
|
Bonomi PD, Crawford J, Dunne RF, Roeland EJ, Smoyer KE, Siddiqui MK, McRae TD, Rossulek MI, Revkin JH, Tarasenko LC. Mortality burden of pre-treatment weight loss in patients with non-small-cell lung cancer: A systematic literature review and meta-analysis. J Cachexia Sarcopenia Muscle 2024; 15:1226-1239. [PMID: 38650388 PMCID: PMC11294038 DOI: 10.1002/jcsm.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Cachexia, with weight loss (WL) as a major component, is highly prevalent in patients with cancer and indicates a poor prognosis. The primary objective of this study was to conduct a meta-analysis to estimate the risk of mortality associated with cachexia (using established WL criteria prior to treatment initiation) in patients with non-small-cell lung cancer (NSCLC) in studies identified through a systematic literature review. The review was conducted according to PRISMA guidelines. Embase® and PubMed were searched to identify articles on survival outcomes in adult patients with NSCLC (any stage) and cachexia published in English between 1 January 2016 and 10 October 2021. Two independent reviewers screened titles, abstracts and full texts of identified records against predefined inclusion/exclusion criteria. Following a feasibility assessment, a meta-analysis evaluating the impact of cachexia, defined per the international consensus criteria (ICC), or of pre-treatment WL ≥ 5% without a specified time interval, on overall survival in patients with NSCLC was conducted using a random-effects model that included the identified studies as the base case. The impact of heterogeneity was evaluated through sensitivity and subgroup analyses. The standard measures of statistical heterogeneity were calculated. Of the 40 NSCLC publications identified in the review, 20 studies that used the ICC for cachexia or reported WL ≥ 5% and that performed multivariate analyses with hazard ratios (HRs) or Kaplan-Meier curves were included in the feasibility assessment. Of these, 16 studies (80%; n = 6225 patients; published 2016-2021) met the criteria for inclusion in the meta-analysis: 11 studies (69%) used the ICC and 5 studies (31%) used WL ≥ 5%. Combined criteria (ICC plus WL ≥ 5%) were associated with an 82% higher mortality risk versus no cachexia or WL < 5% (pooled HR [95% confidence interval, CI]: 1.82 [1.47, 2.25]). Although statistical heterogeneity was high (I2 = 88%), individual study HRs were directionally aligned with the pooled estimate, and there was considerable overlap in CIs across included studies. A subgroup analysis of studies using the ICC (HR [95% CI]: 2.26 [1.80, 2.83]) or WL ≥ 5% (HR [95% CI]: 1.28 [1.12, 1.46]) showed consistent findings. Assessments of methodological, clinical and statistical heterogeneity indicated that the meta-analysis was robust. Overall, this analysis found that ICC-defined cachexia or WL ≥ 5% was associated with inferior survival in patients with NSCLC. Routine assessment of both weight and weight changes in the oncology clinic may help identify patients with NSCLC at risk for worse survival, better inform clinical decision-making and assess eligibility for cachexia clinical trials.
Collapse
Affiliation(s)
- Philip D. Bonomi
- Department of Internal Medicine, Division of Hematology, Oncology and Cell TherapyRush University Medical CenterChicagoILUSA
| | | | - Richard F. Dunne
- Department of Medicine and Wilmot Cancer Institute, Division of Hematology/OncologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Eric J. Roeland
- Knight Cancer InstituteOregon Health and Science UniversityPortlandORUSA
| | | | | | - Thomas D. McRae
- Internal Medicine Business Unit, Global Product DevelopmentPfizer IncNew YorkNYUSA
| | - Michelle I. Rossulek
- Internal Medicine Research Unit, Worldwide Research, Development and MedicalPfizer IncCambridgeMAUSA
| | - James H. Revkin
- Internal Medicine Research Unit, Clinical DevelopmentPfizer IncCambridgeMAUSA
| | | |
Collapse
|
25
|
Dev R, Amano K, Naito T, Del Fabbro E. Anamorelin for the Treatment of Cancer Anorexia-Cachexia Syndrome. Curr Oncol Rep 2024; 26:762-772. [PMID: 38771469 DOI: 10.1007/s11912-024-01549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE OF REVIEW The following review will highlight the development of anamorelin to treat cancer anorexia-cachexia syndrome (CACS) including the potential benefits, limitations, and future directions. RECENT FINDINGS Ghrelin, a 28-amino acid peptide hormone, is secreted by the stomach mucosa and regulates appetite, promotes lipogenesis, increases body weight, improves gastric motility, reduces catabolic wasting and inflammation. Several randomized, double-blind, placebo-controlled clinical trials evaluating anamorelin, a ghrelin agonist, for the treatment of CACS have reported improvement in appetite and body composition including both lean body and fat mass; however, most studies noted no improvement in physical function as assessed by measuring non-dominant hand-grip strength. Common adverse effects of anamorelin include the development of diabetes mellitus, hyperglycemia, and less frequently, hepatic abnormalities and cardiovascular events including conduction abnormalities, hypertension, and ischemic cardiomyopathy. Anamorelin has the potential to stimulate appetite, improve gastric movement, and may have anti-inflammatory effects on patients with CACS. In patients with cancer, studies involving anamorelin combined with other multimodal treatments including nutrition counseling (branched chain amino acids, omega 3 fatty acids, and other nutrients), exercise, treatment of hormonal abnormalities including hypogonadism and hypovitaminosis D, and anti-inflammatory agents are needed. Compliance with multimodality treatment has been a barrier and future studies may need to incorporate motivational counseling to promote adherence.
Collapse
Affiliation(s)
- Rony Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 1212, Houston, TX, 77030, USA.
| | - Koji Amano
- Department of Supportive and Palliative Care, Osaka International Cancer Institute, Chuo-Ku, Osaka, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology and Cancer Supportive Cancer Center, Shizuoka Cancer Center, Nagaizumi-Cho, Shizuoka, Japan
| | - Egidio Del Fabbro
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
26
|
Shi Y, Sun Y, Shen X, Yang Z, Xu B, Bao C. Combination of handgrip strength and high-sensitivity modified Glasgow prognostic score predicts survival outcomes in patients with colon cancer. Front Nutr 2024; 11:1421560. [PMID: 39010859 PMCID: PMC11247022 DOI: 10.3389/fnut.2024.1421560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Objective Handgrip strength (HGS) and the high-sensitivity modified Glasgow prognostic score (HS-mGPS) are associated with the survival of patients with cancer. However, no studies have investigated the combined effect of HGS and HS-mGPS on the overall survival (OS) of patients with colon cancer. Methods Prospective follow-up data of colon cancer patients undergoing radical resection from April, 2016 to September, 2019 were retrospectively collected. We combined the HGS and HS-mGPS to create a new composite index, HGS-HS-mGPS. The hazard ratio (HR) and 95% confidence interval (CI) were calculated using Cox regression models to assess the association between variables and OS. Risk factors on OS rates were investigated by Cox analyses and the nomogram was constructed using significant predictors and HGS-HS-mGPS. The predictive performance of the nomogram was evaluated by receiver operating characteristic curve and calibration curve. Results This study included a total of 811 patients, of which 446 (55.0%) were male. The HGS optimal cut-off values of male and female patients were 28.8 and 19.72 kg, respectively. Multivariate analysis revealed that low HGS and high HS-mGPS were independent risk factors of colon cancer after adjusting confounders (adjusted HR = 3.20; 95% CI: 2.27-4.50; p < 0.001 and adjusted HR = 1.55; 95% CI: 1.12-2.14; p = 0.008 respectively). Patients with low HGS and high HS-mGPS had a 10.76-fold higher mortality risk than those with neither (adjusted HR = 10.76; 95% CI: 5.38-21.54; p < 0.001). A nomogram predicting 1-, 3-, and 5 year OS was constructed based on three clinicopathologic prognostic factors. Importantly, incorporating HGS-HS-mGPS into the nomogram model meaningfully improved the predictive performance. The decision curve analyses demonstrated the application value of the HGS-HS-mGPS nomogram for predicting OS of patients with colon cancer. Conclusion HGS-HS-mGPS is associated with the survival of patients with colon cancer. These findings indicate the usefulness of HGS and HS-mGPS measurements in clinical practice for improving patient assessment, cancer prognosis, and precise intervention.
Collapse
Affiliation(s)
- Yifan Shi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuting Sun
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoming Shen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zenghui Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Binghua Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chuanqing Bao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Kinkopf P, Choo HJ, Roy I, Strauss J, Sun Z, Donnelly E. Impact of cachexia on disease recurrence and survival outcomes in endometrial cancer patients. Gynecol Oncol Rep 2024; 53:101401. [PMID: 38707863 PMCID: PMC11067329 DOI: 10.1016/j.gore.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Objective Cancer cachexia is progressive weight loss due to muscle/adipose tissue wasting and inadequate intake that occurs in response to malignancy. It is an independent predictor of disease recurrence and reduced survival in several cancers. However, cachexia's relationship with gynecologic malignancy outcomes has only been examined in small studies with limited follow-up and inconsistent definitions of cachexia. This study investigated the impact of cachexia on disease recurrence and overall survival in high-risk endometrial carcinoma patients. Methods This retrospective cohort study examined data from patients with high-risk non-metastatic primary endometrial carcinoma treated at a single institution from 2015 to 2020. Treatment for all subjects included total hysterectomy, surgical staging, pelvic external beam radiotherapy with or without adjuvant chemotherapy. Radiation planning CT datasets were used to measure skeletal musculature at the L3 vertebral level. Skeletal muscle index (SMI) was defined as total L3 skeletal muscle cross sectional area (cm2)/height2 (m2), and cachexia was defined based on SMI. Results 55 patients were eligible for analysis. Several SMI thresholds were used to define cachexia, and analysis was performed for each definition. Kaplan-Meier and Cox-proportional hazards regression analysis yielded no significant reduction in overall survival (OS) or progression-free survival (PFS) in patients with cachexia, regardless of threshold chosen. However, 4 of 13 definitions of cachexia showed significantly improved OS in patients without cachexia, relative to those with cachexia. There were no significant differences in disease recurrence. Conclusions Cachexia as defined in this study was not associated with poor outcomes in endometrial carcinoma patients based on OS, PFS, or disease recurrence.
Collapse
Affiliation(s)
- Paul Kinkopf
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
| | | | - Ishan Roy
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
- Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | - Jonathan Strauss
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Care Center of Northwestern University, Chicago, IL 60611, USA
| | - Zequn Sun
- Robert H. Lurie Comprehensive Cancer Care Center of Northwestern University, Chicago, IL 60611, USA
- Department of Preventive Medicine, Northwestern Medicine, Chicago, IL 60611, USA
| | - Eric Donnelly
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Care Center of Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Roeland EJ, Fintelmann FJ, Hilton F, Yang R, Whalen E, Tarasenko L, Calle RA, Bonomi PD. The relationship between weight gain during chemotherapy and outcomes in patients with advanced non-small cell lung cancer. J Cachexia Sarcopenia Muscle 2024; 15:1030-1040. [PMID: 38468440 PMCID: PMC11154746 DOI: 10.1002/jcsm.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND This post hoc, pooled analysis examined the relationship between different weight gain categories and overall survival (OS) in patients with non-small cell lung cancer (NSCLC) receiving first-line platinum-based chemotherapy. METHODS Data were pooled from the control arms of three phase III clinical studies (NCT00596830, NCT00254891, and NCT00254904), and the maximum weight gain in the first 3 months from treatment initiation was categorised as >0%, >2.5%, and >5.0%. Cox proportional hazard modelling of OS was used to estimate hazard ratios (HRs) for each category, including baseline covariates, time to weight gain, and time to confirmed objective response (RECIST Version 1.0). RESULTS Of 1030 patients with advanced NSCLC (IIIB 11.5% and IV 88.5%), 453 (44.0%), 252 (24.5%), and 120 (11.7%) experienced weight gain from baseline of >0%, >2.5%, and >5.0%, respectively. The median time to weight gain was 23 (>0%), 43 (>2.5%), and 45 (>5.0%) days. After adjusting for a time-dependent confirmed objective response, the risk of death was reduced for patients with any weight gain (>0% vs. ≤0% [HR 0.71; 95% confidence interval-CI 0.61, 0.82], >2.5% vs. ≤2.5% [HR 0.76; 95% CI 0.64, 0.91] and >5.0% vs. ≤5.0% [HR 0.77; 95% CI 0.60, 0.99]). The median OS was 13.5 versus 8.6 months (weight gain >0% vs. ≤0%), 14.4 versus 9.4 months (weight gain >2.5% vs. ≤2.5%), and 13.4 versus 10.2 months (weight gain >5.0% vs. ≤5.0%). CONCLUSIONS Weight gain during treatment was associated with a reduced risk of death, independent of tumour response. The survival benefit was comparable for weight gain >0%, >2.5%, and >5.0%, suggesting that any weight gain may be an early predictor of survival with implications for the design of interventional cancer cachexia studies.
Collapse
Affiliation(s)
- Eric J. Roeland
- Knight Cancer InstituteOregon Health and Science UniversityPortlandORUSA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Groarke JD, Crawford J, Collins SM, Lubaczewski SL, Breen DM, Harrington MA, Jacobs I, Qiu R, Revkin J, Rossulek MI, Saxena AR. Phase 2 study of the efficacy and safety of ponsegromab in patients with cancer cachexia: PROACC-1 study design. J Cachexia Sarcopenia Muscle 2024; 15:1054-1061. [PMID: 38500292 PMCID: PMC11154777 DOI: 10.1002/jcsm.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Cancer cachexia is a multifactorial metabolic wasting syndrome characterized by anorexia, unintentional loss of weight involving both skeletal muscle and adipose tissues, progressive functional impairment and reduced survival. Therapeutic strategies for this serious condition are very limited. Growth differentiation factor 15 (GDF-15) is a cytokine that is implicated in cancer cachexia and may represent both a biomarker of cancer cachexia and a potential therapeutic target. Ponsegromab is a potent and selective humanized monoclonal antibody that inhibits GDF-15-mediated signalling. Preclinical and preliminary phase 1 data suggest that ponsegromab-mediated inactivation of circulating GDF-15 may lead to improvement in key characteristics of cachexia. The primary objective of this phase 2 study is to assess the effect of ponsegromab on body weight in patients with cancer, cachexia and elevated GDF-15 concentrations. Secondary objectives include assessing physical activity, physical function, actigraphy, appetite, nausea and vomiting, fatigue and safety. Exploratory objectives include evaluating pharmacokinetics, pharmacodynamics, immunogenicity, lumbar skeletal muscle index and Response Evaluation Criteria in Solid Tumors. METHODS Approximately 168 adults with non-small-cell lung, pancreatic or colorectal cancers who have cachexia and elevated GDF-15 concentrations will be randomized in a double-blind, placebo-controlled study (NCT05546476). Participants meeting eligibility criteria will be randomized 1:1:1:1 to one of three dose groups of ponsegromab (100, 200 or 400 mg) or matching placebo administered subcutaneously every 4 weeks for an initial 12-week treatment period. This is followed by optional open-label treatment with ponsegromab of 400 mg administered every 4 weeks for up to 1 year. The primary endpoint is mean change from baseline in body weight at Week 12. A mixed model for repeated measures followed by a Bayesian Emax model will be used for the primary analysis. Secondary endpoints include physical activity, physical function and actigraphy measured by remote digital sensors; patient-reported appetite-related symptoms assessed by Functional Assessment of Anorexia-Cachexia Therapy subscale scores; anorexia/appetite, nausea and vomiting, and fatigue evaluated according to questions from the Cancer-Related Cachexia Symptom Diary; and incidence of adverse events, safety laboratory tests, vital signs and electrocardiogram abnormalities. PERSPECTIVE Cancer-related cachexia is an area of significant unmet medical need. This study will support the clinical development of ponsegromab as a novel inhibitor of GDF-15, which may ameliorate key pathologies of cancer cachexia to improve patient symptoms, functionality and quality of life. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT05546476.
Collapse
Affiliation(s)
| | | | - Susie M. Collins
- Global Biometrics and Data ManagementPfizer R&D UK LtdSandwichKentUK
| | - Shannon L. Lubaczewski
- Early Clinical Development and Biomedicine Artificial IntelligencePfizer IncCollegevillePAUSA
| | | | | | - Ira Jacobs
- Global Product DevelopmentPfizer IncNew YorkNYUSA
| | - Ruolun Qiu
- Clinical PharmacologyPfizer IncCambridgeMAUSA
| | - James Revkin
- Internal Medicine Research UnitPfizer IncCambridgeMAUSA
| | | | | |
Collapse
|
30
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Luvián-Morales J, Delgadillo-González M, Castro-Eguiluz D, Oñate-Ocaña LF, Cetina-Pérez L. Quality of life but not cachexia definitions are associated with overall survival in women with cervical cancer: a STROBE-compliant cohort study. Jpn J Clin Oncol 2024; 54:416-423. [PMID: 38146122 DOI: 10.1093/jjco/hyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cancer-related cachexia (CRC) has a profound impact on health-related quality of life (HRQL), and both were reported to be associated with overall survival (OS). We hypothesize that HRQL and CRC are associated with OS. This study analyzed the impact of CRC on HRQL and its prognostic value in women with cervical cancer (CC). METHODS A cohort study including consecutive women with CC treated from October 2020 to October 2021 in a cancer center. Cox's model defined the associations of immune, biochemical and nutritional parameters, clinical cachexia classifications and HRQL with OS. RESULTS Two hundred forty-four consecutive women with CC were included. Cachexia classifications and several scales of the QLQ-C30 were associated with OS by bivariate but not by multivariate analysis. QLQ-CX24 scales were not associated with OS. The prognostic nutritional index (PNI) (hazard ratio (HR) 0.828; 95% confidence interval (CI) 0.766-0.896), Food aversion (HR 0.95; 95% CI 0.924-0.976), Eating difficulties (HR 1.041; 95% CI 1.013-1.071), Loss of control (HR 4.131; 95% CI 1.317-12.963), Forced self to eat (1.024; 95% CI 1.004-1.044) and Indigestion (HR 0.348; 95% CI 0.131-0.928) scales of the QLQ-CAX24 were independently associated with OS by multivariate analysis (p = 1.9×10-11). CONCLUSION This model permitted a clear stratification of prognostic subgroups. The PNI and several QLQ-CAX24 scales were associated with OS in women with CC. CRC, defined by several cachexia classifications, was not an independent prognostic factor. These findings require confirmation because of their possible diagnostic, therapeutic and prognostic implications.The prognostic nutritional index and several QLQ-CAX24 scales were associated with overall survival in women with cervical cancer. Cancer-related cachexia, defined by several cachexia classifications, was not an independent prognostic factor, neither The International Federation of Gynecology and Obstetrics (FIGO) stage classifications.
Collapse
Affiliation(s)
- Julissa Luvián-Morales
- Modelo Integral para la Atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA), Instituto Nacional de Cancerología (INCan), Mexico City
| | - Merari Delgadillo-González
- Modelo Integral para la Atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA), Instituto Nacional de Cancerología (INCan), Mexico City
| | - Denisse Castro-Eguiluz
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan), Mexico City
- Investigador por México, CONAHCyT, Mexico City, Mexico
| | - Luis F Oñate-Ocaña
- Modelo Integral para la Atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA), Instituto Nacional de Cancerología (INCan), Mexico City
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan), Mexico City
| | - Lucely Cetina-Pérez
- Modelo Integral para la Atención del Cáncer Cervicouterino Localmente Avanzado y Avanzado (MICAELA), Instituto Nacional de Cancerología (INCan), Mexico City
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan), Mexico City
| |
Collapse
|
32
|
Sun Y, Wei X, Zhao T, Shi H, Hao X, Wang Y, Zhang H, Yao Z, Zheng M, Ma T, Fu T, Lu J, Luo X, Yan Y, Wang H. Oleanolic acid alleviates obesity-induced skeletal muscle atrophy via the PI3K/Akt signaling pathway. FEBS Open Bio 2024; 14:584-597. [PMID: 38366735 PMCID: PMC10988678 DOI: 10.1002/2211-5463.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Yaqin Sun
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaofang Wei
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tong Zhao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hongwei Shi
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaojing Hao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yue Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Huiling Zhang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Zhichao Yao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Minxing Zheng
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tianyun Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tingting Fu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
33
|
Le Bacquer O, Sanchez P, Patrac V, Rivoirard C, Saroul N, Giraudet C, Kocer A, Walrand S. Cannabidiol protects C2C12 myotubes against cisplatin-induced atrophy by regulating oxidative stress. Am J Physiol Cell Physiol 2024; 326:C1226-C1236. [PMID: 38406827 DOI: 10.1152/ajpcell.00622.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.
Collapse
Affiliation(s)
- Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - César Rivoirard
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Nicolas Saroul
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
- Department of Head and Neck Surgery, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Christophe Giraudet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, Clermont-Ferrand, France
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service Nutrition Clinique, Clermont-Ferrand, France
| |
Collapse
|
34
|
Katsushima U, Hase K, Fukushima T, Kubo T, Nakano J, Ogushi N, Okuno Y, Kamisako K, Nakanishi K, Okazaki Y, Ikoma T, Takeyasu Y, Yamanaka Y, Yoshioka H, Imai Y, Kurata T. Investigation of a practical assessment index to capture the clinical presentation of cachexia in patients with lung cancer. Jpn J Clin Oncol 2024; 54:305-311. [PMID: 38213068 DOI: 10.1093/jjco/hyad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE Cancer cachexia constitutes a poor prognostic factor in patients with lung cancer. However, the factors associated with cancer cachexia remain unclear. This study aimed to identify factors that influence cancer cachexia in patients with lung cancer. METHODS In this retrospective observational study conducted at the Kansai Medical University, 76 patients with lung cancer were evaluated for physical function, nutritional status (Mini Nutritional Assessment-Short Form) and physical activity (International Physical Activity Questionnaire-Short Form) at the first visit to the rehabilitation outpatient clinic. The patients were divided into cachexia and noncachexia groups. The log-rank tests and Cox proportional hazards model were used to investigate the relationship between cachexia and prognosis. To examine the factors that influence cachexia, multivariate regression analysis with significant (P < 0.05) variables in the univariate logistic regression analysis was performed. Spearman's correlation analysis was performed to investigate the association between International Physical Activity Questionnaire-Short Form and performance status. RESULTS Overall, 42 patients (55.2%) had cachexia associated with survival time since their first visit to the outpatient rehabilitation clinic, even after confounders adjustment (hazard ratio: 3.24, 95% confidence interval: 1.12-9.45, P = 0.031). In the multivariate analysis, Mini Nutritional Assessment-Short Form (odds ratio: 20.34, 95% confidence interval: 4.18-99.02, P < 0.001) and International Physical Activity Questionnaire-Short Form (odds ratio: 4.63, 95% confidence interval: 1.20-17.89, P = 0.026) were identified as independent factors for cachexia. There was no correlation between International Physical Activity Questionnaire-Short Form and performance status (r = 0.155, P = 0.181). CONCLUSION Malnutrition and low physical activity were associated with cachexia in patients with lung cancer. The International Physical Activity Questionnaire-Short Form may be a useful indicator of physical activity in cachexia. Regularly assessing these factors and identifying suitable interventions for cachexia remain challenges to be addressed in the future.
Collapse
Affiliation(s)
- Utae Katsushima
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Kimitaka Hase
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Takuya Fukushima
- Department of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Takanari Kubo
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Jiro Nakano
- Department of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Naoya Ogushi
- Department of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Yukiko Okuno
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Keisuke Kamisako
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Kentaro Nakanishi
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Yuta Okazaki
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Tatsuki Ikoma
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Yuki Takeyasu
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Yuta Yamanaka
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Yoshie Imai
- Department of Cancer Nursing, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
35
|
Shang J, Dong W, Huang P, Sun Y, He Y, Li H, Liao S, Li M. Development of a nutritional screening and assessment indicator system for patients with esophageal cancer in China: Findings from the Delphi method. Cancer Med 2023; 12:21240-21255. [PMID: 37990781 PMCID: PMC10726821 DOI: 10.1002/cam4.6703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND In China, individuals diagnosed with esophageal cancer are confronted with an elevated risk of nutritional inadequacy or malnutrition throughout the course of their disease, a condition that contributes to various adverse clinical outcomes. A vast corpus of data are burgeoning at an unprecedented rate, primarily due to the revolutionary growth of digitalization technologies and artificial intelligence, notably within the domains of health care and medicine. The purpose of this investigation is to initiate the development of a nutritional screening and assessment indicator framework for patients with esophageal cancer within the Chinese context. We seek to furnish an instrumental reference to facilitate preparations for the forthcoming era of advanced, "deep," evidence-based medicine. METHODS An integrative methodology was employed to forge the preliminary draft of the nutritional screening and assessment indicator system for preoperative patients with esophageal cancer. This encompassed a rigorous literature survey, in-depth clinical practice investigation, and the facilitation of expert panel discussions. Thereafter, two iterative consultation phases were conducted using the Delphi method in China. The analytic hierarchy process was deployed to ascertain the weighting of each index within the definitive evaluation indicator system. RESULTS The effective response rates for the dual rounds of expert consultation were 91.7% and 86.4%, with commensurate authority coefficients of 0.97 and 0.91. The Kendall harmony coefficients were ascertained to be 0.19 and 0.14 (p < 0.01), respectively. The culminating nutritional screening and assessment indicator system for patients with esophageal cancer comprised 5 primary-level indicators and 38 secondary-level indicators. CONCLUSIONS The nutritional screening and assessment indicator system contrived for patients with esophageal cancer is underpinned by cogent theoretical principles, leverages an astute research methodology, and manifests dependable outcomes. This system may be appositely utilized as a meaningful reference for the nutritional screening and assessment process in patients afflicted with esophageal cancer.
Collapse
Affiliation(s)
- Jingjing Shang
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Wen Dong
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Peipei Huang
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Yidan Sun
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Yuxin He
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Hui Li
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Shengwu Liao
- Department of Health ManagementSouthern Medical University Nanfang HospitalGuangzhouChina
| | - Mei Li
- Department of Thoracic SurgerySouthern Medical University Nanfang HospitalGuangzhouChina
| |
Collapse
|
36
|
von Haehling S, Coats AJ, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: Update 2023. J Cachexia Sarcopenia Muscle 2023; 14:2981-2983. [PMID: 38148513 PMCID: PMC10751405 DOI: 10.1002/jcsm.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The Journal of Cachexia, Sarcopenia and Muscle (JCSM) aims to publish articles with relevance to wasting disorders and illnesses of the muscle in the broadest sense. In order to avoid publication of inappropriate articles and to avoid protracted disputes, the Editors have established ethical guidelines that detail a number of regulations to be fulfilled prior to submission to the journal. This article updates the principles of ethical authorship and publishing in JCSM and its daughter journal JCSM Rapid Communication. We require the corresponding author, on behalf of all co-authors, to certify adherence to the following principles: All authors listed on a manuscript considered for publication have approved its submission and (if accepted) approve publication in the journal; Each named author has made a material and independent contribution to the work submitted for publication. No person who has a right to be recognized as author has been omitted from the list of authors on the submitted manuscript; The submitted work is original and is neither under consideration elsewhere nor that it has been published previously in whole or in part other than in abstract form; All authors certify that the submitted work is original and does not contain excessive overlap with prior or contemporaneous publication elsewhere, and where the publication reports on cohorts, trials, or data that have been reported on before the facts need to be acknowledged and these other publications must be referenced; All original research work has been approved by the relevant bodies such as institutional review boards or ethics committees; All relevant conflicts of interest, financial or otherwise, that may affect the authors' ability to present data objectively, and relevant sources of funding of the research in question have been duly declared in the manuscript; All authors certify that they will submit the original source data to the editorial office upon request; Authors who have used artificial intelligence, language models, machine learning, or similar technologies need to provide a written statement - as part of the manuscript - that details the use of the respective technology; none of the aforementioned technologies can be listed as an author; The manuscript in its published form will be maintained on the servers of the journal as a valid publication only as long as all statements in these guidelines remain true. If any of the aforementioned statements ceases to be true, the authors have a duty to notify as soon as possible the Editor-in-Chief of the journal, so that the available information regarding the published article can be updated and/or the manuscript can be withdrawn.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical Center, Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) partner siteGöttingenGermany
| | - Andrew J.S. Coats
- San Raffaele Pisana Scientific Institute; 247, Via di Val CannutaRomeItaly
| | - Stefan D. Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité UniversitätsmedizinBerlinGermany
| |
Collapse
|
37
|
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology 2023; 165:bqad176. [PMID: 37980602 PMCID: PMC10699881 DOI: 10.1210/endocr/bqad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Cancer-associated cachexia occurs in 50% to 80% of cancer patients and is responsible for 20% to 30% of cancer-related deaths. Cachexia limits survival and treatment outcomes, and is a major contributor to morbidity and mortality during cancer. Ovarian cancer is one of the leading causes of cancer-related deaths in women, and recent studies have begun to highlight the prevalence and clinical impact of cachexia in this population. Here, we review the existing understanding of cachexia pathophysiology and summarize relevant studies assessing ovarian cancer-associated cachexia in clinical and preclinical studies. In clinical studies, there is increased evidence that reduced skeletal muscle mass and quality associate with worse outcomes in subjects with ovarian cancer. Mouse models of ovarian cancer display cachexia, often characterized by muscle and fat wasting alongside inflammation, although they remain underexplored relative to other cachexia-associated cancer types. Certain soluble factors have been identified and successfully targeted in these models, providing novel therapeutic targets for mitigating cachexia during ovarian cancer. However, given the relatively low number of studies, the translational relevance of these findings is yet to be determined and requires more research. Overall, our current understanding of ovarian cancer-associated cachexia is insufficient and this review highlights the need for future research specifically aimed at exploring mechanisms of ovarian cancer-associated cachexia by using unbiased approaches and animal models representative of the clinical landscape of ovarian cancer.
Collapse
Affiliation(s)
- Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lila M Mouchantat
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
39
|
Arai H, Maeda K, Wakabayashi H, Naito T, Konishi M, Assantachai P, Auyeung WT, Chalermsri C, Chen W, Chew J, Chou M, Hsu C, Hum A, Hwang IG, Kaido T, Kang L, Kamaruzzaman SB, Kim M, Lee JSW, Lee W, Liang C, Lim WS, Lim J, Lim YP, Lo RS, Ong T, Pan W, Peng L, Pramyothin P, Razalli NH, Saitoh M, Shahar S, Shi HP, Tung H, Uezono Y, von Haehling S, Won CW, Woo J, Chen L. Diagnosis and outcomes of cachexia in Asia: Working Consensus Report from the Asian Working Group for Cachexia. J Cachexia Sarcopenia Muscle 2023; 14:1949-1958. [PMID: 37667992 PMCID: PMC10570088 DOI: 10.1002/jcsm.13323] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023] Open
Abstract
Chronic diseases often lead to metabolic disorders, causing anabolic resistance and increased energy consumption, which result in cachexia. Cachexia, in turn, can lead to major clinical consequences such as impaired quality of life, shortened life expectancy, and increased healthcare expenditure. Existing international diagnostic criteria for cachexia employ thresholds derived from Western populations, which may not apply to Asians due to differing body compositions. To address this issue, the Asian Working Group for Cachexia (AWGC) was initiated. The AWGC comprises experts in cachexia research and clinical practice from various Asian countries and aims to develop a consensus on diagnostic criteria and significant clinical outcomes for cachexia in Asia. The AWGC, composed of experts in cachexia research and clinical practice from several Asian countries, undertook three-round Delphi surveys and five meetings to reach a consensus. Discussions were held on etiological diseases, essential diagnostic items for cachexia, including subjective and objective symptoms and biomarkers, and significant clinical outcomes. The consensus highlighted the importance of multiple diagnostic factors for cachexia, including chronic diseases, either or both weight loss or low body mass index, and at least one of the following: anorexia, decreased grip strength (<28 kg in men and <18 kg in women), or elevated C-reactive protein levels (>5 mg/L [0.5 mg/dL]). The AWGC proposed a significant weight change of 2% or more over a 3-6 month period and suggested a tentative cut-off value of 21 kg/m2 for low body mass index in diagnosing cachexia. Critical clinical outcomes were determined to be mortality, quality of life as assessed by tools such as EQ-5D or the Functional Assessment of Anorexia/Cachexia Therapy, and functional status as measured by the Clinical Frailty Scale or Barthel Index, with significant emphasis on patient-reported outcomes. The AWGC consensus offers a comprehensive definition and user-friendly diagnostic criteria for cachexia, tailored specifically for Asian populations. This consensus is set to stimulate future research and enhance the multidisciplinary approach to managing cachexia. With plans to develop further guidelines for the optimal treatment, prevention, and care of cachexia in Asians, the AWGC criteria are expected to drive research across chronic co-morbidities and cancer in Asia, leading to future refinement of diagnostic criteria.
Collapse
Affiliation(s)
- Hidenori Arai
- National Center for Geriatrics and GerontologyObuJapan
| | - Keisuke Maeda
- Nutrition Therapy Support CenterAichi Medical University HospitalNagakuteJapan
- Department of Geriatric MedicineNational Center for Geriatrics and GerontologyObuJapan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation MedicineTokyo Women's Medical University HospitalTokyoJapan
| | - Tateaki Naito
- Division of Thoracic OncologyShizuoka Cancer CenterShizuokaJapan
| | - Masaaki Konishi
- Department of CardiologyYokohama City University School of MedicineYokohamaJapan
| | | | - Wai Tung Auyeung
- Jockey Club Institute of AgeingThe Chinese University of Hong KongShatinHong KongChina
| | - Chalobol Chalermsri
- Department of Preventive and Social Medicine, Division of Geriatric Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Wei Chen
- Department of Clinical Nutrition, Department of Health MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Justin Chew
- Department of Geriatric MedicineTan Tock Seng HospitalSingapore
- Institute of Geriatrics and Active AgeingTan Tock Seng HospitalSingapore
| | - Ming‐Yueh Chou
- Center for Geriatrics and GerontologyKaohsiung Veterans General HospitalKaohsiung CityTaiwan
| | - Chih‐Cheng Hsu
- National Center for Geriatrics and Welfare ResearchMiaoli CountyTaiwan
| | - Allyn Hum
- Department of Geriatrics and Palliative CareTan Tock Seng HospitalSingapore
| | - In Gyu Hwang
- Department of Internal MedicineChung‐Ang University Hospital, Chung‐Ang University College of MedicineSeoulRepublic of Korea
| | - Toshimi Kaido
- Department of Gastroenterological and General SurgerySt. Luke's International HospitalTokyoJapan
| | - Lin Kang
- Department of Geriatric MedicinePeking Union Medical College HospitalBeijingChina
| | | | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East‐West Medical Research InstituteKyung Hee UniversitySeoulRepublic of Korea
| | - Jenny Shun Wah Lee
- Institute of AgingThe Chinese University of Hong Kong, Department of Medicine, Alice Ho Miu Ling Nethersole HospitalTai PoHong Kong
| | - Wei‐Ju Lee
- Aging and Health Research CenterNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Chih‐Kuang Liang
- Center for Geriatrics and GerontologyKaohsiung Veterans General HospitalKaohsiung CityTaiwan
- Center for Healthy Longevity and Aging SciencesNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Wee Shiong Lim
- Department of Geriatric Medicine, Institute of Geriatric MedicineTan Tock Seng HospitalSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Jae‐Young Lim
- Department of Rehabilitation MedicineSeoul National University College of Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yen Peng Lim
- Department of Nutrition and DieteticsTan Tock Seng HospitalSingapore
| | - Raymond See‐Kit Lo
- Department of Medicine and TherapeuticsChinese University of Hong Kong, Shatin HospitalMa On ShanHong Kong
| | - Terence Ong
- Department of Medicine, Faculty of MedicineUniversity MalayaKuala LumpurMalaysia
| | - Wen‐Harn Pan
- Institute of Biomedical SciencesAcademia Sinica, TaiwanTaipei CityTaiwan
| | - Li‐Ning Peng
- Aging and Health Research CenterNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Nurul Huda Razalli
- Centre for Healthy Aging and Wellness (H‐CARE), Faculty of Health SciencesUniversiti Kebangsaan Malaysia, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul AzizKuala LumpurMalaysia
| | - Masakazu Saitoh
- Department of Physical Therapy, Faculty of Health ScienceJuntendo UniversityTokyoJapan
| | - Suzana Shahar
- Center for Healthy Aging and Wellness, Faculty Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Han Ping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical University of ChinaBeijingChina
| | - Heng‐Hsin Tung
- National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Yasuhito Uezono
- Department of Pain Control ResearchThe Jikei University School of MedicineTokyoJapan
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Goettingen Medical Center, Georg‐August‐University GoettingenGoettingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Chang Won Won
- Department of Family MedicineCollege of Medicine, Kyung Hee UniversitySeoulRepublic of Korea
| | - Jean Woo
- Department of Medicine & TherapeuticsThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong SARChina
| | - Liang‐Kung Chen
- Center for Healthy Longevity and Aging SciencesNational Yang Ming Chiao Tung UniversityTaipei CityTaiwan
- Center for Geriatrics and GerontologyTaipei Veterans General Hospital; Taipei Municipal Gan‐Dau HospitalTaipei CityTaiwan
| |
Collapse
|
40
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
41
|
Nishie K, Nishie T, Sato S, Hanaoka M. Update on the treatment of cancer cachexia. Drug Discov Today 2023; 28:103689. [PMID: 37385369 DOI: 10.1016/j.drudis.2023.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Cancer cachexia is a complex multifaceted syndrome involving functional impairment and changes in body composition that cannot be reversed by nutritional support. Cancer cachexia is characterized by decreased skeletal muscle mass, increased lipolysis, and decreased food intake. Cancer cachexia decreases chemotherapy tolerance as well as quality of life. However, because no fully effective interventions are available, cancer cachexia remains an unmet need in cancer treatment. In recent years, several discoveries and treatments for cancer cachexia have been studied, and guidelines have been published. We believe that the development of effective strategies for the diagnosis and treatment of cancer cachexia will lead to breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Kenichi Nishie
- Department of Respiratory Medicine, Iida Municipal Hospital, 438 Yawatamachi Iida Nagano, 395-0814, Japan; The First Department of Internal Medicine, Shinshu University School of Medicine, Japan.
| | - Tomomi Nishie
- The Faculty of Pharmaceutical Sciences, Ritsumeikan University, Japan
| | - Seiichi Sato
- Department of Pharmaceutics, Iida Municipal Hospital, Japan
| | - Masayuki Hanaoka
- The First Department of Internal Medicine, Shinshu University School of Medicine, Japan
| |
Collapse
|
42
|
Langer HT, Ramsamooj S, Dantas E, Murthy A, Ahmed M, Hwang SK, Grover R, Pozovskiy R, Liang RJ, Queiroz AL, Brown JC, White EP, Janowitz T, Goncalves AMD. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551241. [PMID: 37577571 PMCID: PMC10418114 DOI: 10.1101/2023.07.31.551241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cancer associated cachexia syndrome (CACS) is a systemic metabolic disorder resulting in loss of body weight due to skeletal muscle and adipose tissues atrophy. CACS is particularly prominent in lung cancer patients, where it contributes to poor quality of life and excess mortality. Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anirudh Murthy
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul Grover
- Weill Cornell Medical College, New York, NY, USA
| | - Rita Pozovskiy
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Roger J Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Lima Queiroz
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Eileen P White
- Department of Genetics, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - And Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Yoon SL, Grundmann O. Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients 2023; 15:3391. [PMID: 37571328 PMCID: PMC10421404 DOI: 10.3390/nu15153391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is a multi-organ syndrome with unintentional weight loss, sarcopenia, and systemic inflammation. Gastrointestinal (GI) cancer patients are more susceptible to cachexia development due to impaired nutrient absorption and digestion. Given the widespread availability and relatively low cost of dietary supplements, we examined the evidence and effects of fish oil (omega-3 fatty acids), melatonin, probiotics, and green tea for managing symptoms of GI cancer cachexia. A literature review of four specific supplements was conducted using PubMed, Google Scholar, and CINAHL without a date restriction. Of 4621 available literature references, 26 articles were eligible for review. Fish oil decreased C-reactive protein and maintained CD4+ cell count, while melatonin indicated inconsistent findings on managing cachexia, but was well-tolerated. Probiotics decreased serum pro-inflammatory biomarkers and increased the tolerability of chemotherapy by reducing side effects. Green tea preparations and extracts showed a decreased risk of developing various cancers and did not impact tumor growth, survival, or adverse effects. Among these four supplements, probiotics are most promising for further research in preventing systemic inflammation and maintaining adequate absorption of nutrients to prevent the progression of cancer cachexia. Supplements may benefit treatment outcomes in cancer cachexia without side effects while supporting nutritional and therapeutic needs.
Collapse
Affiliation(s)
- Saunjoo L. Yoon
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
| | - Oliver Grundmann
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
44
|
Yamakawa T, Zhang G, Najjar LB, Li C, Itakura K. The uncharacterized transcript KIAA0930 confers a cachexic phenotype on cancer cells. Oncotarget 2023; 14:723-737. [PMID: 37477523 PMCID: PMC10360925 DOI: 10.18632/oncotarget.28476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Patients with cancer cachexia have a poor prognosis and impaired quality of life. Numerous studies using preclinical models have shown that inflammatory cytokines play an important role in the development of cancer cachexia; however, no clinical trial targeting cytokines has been successful. Therefore, it is essential to identify molecular mechanisms to develop anti-cachexia therapies. Here we identified the uncharacterized transcript KIAA0930 as a candidate cachexic factor based on analyses of microarray datasets and an in vitro muscle atrophy assay. While conditioned media from pancreatic, colorectal, gastric, and tongue cancer cells caused muscle atrophy in vitro, conditioned medium from KIAA0930 knockdown cells did not. The PANC-1 orthotopic xenograft study showed that the tibialis anterior muscle weight and cross-sectional area were increased in mice bearing KIAA0930 knockdown cells compared to control mice. Interestingly, KIAA0930 knockdown did not cause consistent changes in the secretion of inflammatory cytokines/chemokines from a variety of cancer cell lines. An initial characterization experiment showed that KIAA0930 is localized in the cytosol and not secreted from cells. These data suggest that the action of KIAA0930 is independent of the expression of cytokines/chemokines and that KIAA0930 could be a novel therapeutic target for cachexia.
Collapse
Affiliation(s)
- Takahiro Yamakawa
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoxiang Zhang
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Liza Bengrine Najjar
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun Li
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
45
|
Lazar DE, Postolica R, Hanganu B, Mocanu V, Ioan BG. Web-based nutrition: a useful resource for cancer patients? Front Nutr 2023; 10:1134793. [PMID: 37457987 PMCID: PMC10348813 DOI: 10.3389/fnut.2023.1134793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction An accessible and affordable way to deliver behavior change programs to a large proportion of the growing community of cancer patients and survivors is through web-based methods of nutritional counselling. Objective The aim of this systematic review was to evaluate the effectiveness of web-based nutritional therapies targeting physical activity, diet, and/or weight control for cancer patients or survivors, primarily disseminated via modern technologies (mobile phone applications) or online. Materials and methods The authors conducted a structured search of the PubMed database. Studies that have focused on physical activity (PA) and dietary change and/or weight control in adolescent and adult cancer patients and survivors have reported outcomes conducted via a broad modality. Results Nine articles focused on web-based nutrition for patients with cancer and cancer survivors. They were conducted in the United States, Australia, Korea, China, and in the United Kingdom, and were published between 2018 and 2022 in a variety of scientific journals. The number of participants ranged from 20 to 159. Conclusion Web-based nutrition counselling helps cancer patients and survivors improve their dietary intake, impacts their weight and quality of life, and promotes a healthy lifestyle. Future research should evaluate (1) the differences in cost and coverage between face-to-face and web-based nutrition, (2) long-term outcomes, (3) cost-effectiveness, and last but not least, (4) the effectiveness of web-based nutrition in adolescents and children who suffer from cancer or who survived cancer, as nutritional status and body composition have a marked impact on clinical outcomes during and after treatment. The strength of this review lies in the large number of randomized controlled trials, which offer a guarantee of effectiveness and objectivity compared to cross-sectional studies.
Collapse
Affiliation(s)
- Diana Elena Lazar
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
- Municipal Hospital “St. Hierarch Dr. Luca”, Onesti, Romania
| | - Roxana Postolica
- Department of Psychology, Regional Institute of Oncology, Iași, Romania
| | - Bianca Hanganu
- IIIrd Medical Department, Legal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences (Pathophysiology), Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Beatrice Gabriela Ioan
- IIIrd Medical Department, Legal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| |
Collapse
|
46
|
Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023; 14:1150-1167. [PMID: 36864755 PMCID: PMC10235899 DOI: 10.1002/jcsm.13073] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 03/04/2023] Open
Abstract
Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Agnès Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| | - Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris SaclayEvryFrance
| | - Damien Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| |
Collapse
|
47
|
van de Worp WR, Theys J, González AS, van der Heyden B, Verhaegen F, Hauser D, Caiment F, Smeets HJ, Schols AM, van Helvoort A, Langen RC. A novel orthotopic mouse model replicates human lung cancer cachexia. J Cachexia Sarcopenia Muscle 2023; 14:1410-1423. [PMID: 37025071 PMCID: PMC10235890 DOI: 10.1002/jcsm.13222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Cancer cachexia, highly prevalent in lung cancer, is a debilitating syndrome characterized by involuntary loss of skeletal muscle mass and is associated with poor clinical outcome, decreased survival and negative impact on tumour therapy. Various lung tumour-bearing animal models have been used to explore underlying mechanisms of cancer cachexia. However, these models do not simulate anatomical and immunological features key to lung cancer and associated muscle wasting. Overcoming these shortcomings is essential to translate experimental findings into the clinic. We therefore evaluated whether a syngeneic, orthotopic lung cancer mouse model replicates systemic and muscle-specific alterations associated with human lung cancer cachexia. METHODS Immune competent, 11 weeks old male 129S2/Sv mice, were randomly allocated to either (1) sham control group or (2) tumour-bearing group. Syngeneic lung epithelium-derived adenocarcinoma cells (K-rasG12D ; p53R172HΔG ) were inoculated intrapulmonary into the left lung lobe of the mice. Body weight and food intake were measured daily. At baseline and weekly after surgery, grip strength was measured and tumour growth and muscle volume were assessed using micro cone beam CT imaging. After reaching predefined surrogate survival endpoint, animals were euthanized, and skeletal muscles of the lower hind limbs were collected for biochemical analysis. RESULTS Two-third of the tumour-bearing mice developed cachexia based on predefined criteria. Final body weight (-13.7 ± 5.7%; P < 0.01), muscle mass (-13.8 ± 8.1%; P < 0.01) and muscle strength (-25.5 ± 10.5%; P < 0.001) were reduced in cachectic mice compared with sham controls and median survival time post-surgery was 33.5 days until humane endpoint. Markers for proteolysis, both ubiquitin proteasome system (Fbxo32 and Trim63) and autophagy-lysosomal pathway (Gabarapl1 and Bnip3), were significantly upregulated, whereas markers for protein synthesis (relative phosphorylation of Akt, S6 and 4E-BP1) were significantly decreased in the skeletal muscle of cachectic mice compared with control. The cachectic mice exhibited increased pentraxin-2 (P < 0.001) and CXCL1/KC (P < 0.01) expression levels in blood plasma and increased mRNA expression of IκBα (P < 0.05) in skeletal muscle, indicative for the presence of systemic inflammation. Strikingly, RNA sequencing, pathway enrichment and miRNA expression analyses of mouse skeletal muscle strongly mirrored alterations observed in muscle biopsies of patients with lung cancer cachexia. CONCLUSIONS We developed an orthotopic model of lung cancer cachexia in immune competent mice. Because this model simulates key aspects specific to cachexia in lung cancer patients, it is highly suitable to further investigate the underlying mechanisms of lung cancer cachexia and to test the efficacy of novel intervention strategies.
Collapse
Affiliation(s)
- Wouter R.P.H. van de Worp
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW – School for Oncology and Developmental BiologyMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Alba Sanz González
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Brent van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Duncan Hauser
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Hubertus J.M. Smeets
- Department of Toxicogenomics, GROW – School for Oncology and Developmental Biology, MHeNs – School for Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Annemie M.W.J. Schols
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
- Danone Nutricia ResearchUtrechtThe Netherlands
| | - Ramon C.J. Langen
- Department of Respiratory Medicine, NUTRIM – School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
48
|
Peng B, Yang Y, Wu Z, Tan R, Pham TT, Yeo EYM, Pirisinu M, Jayasinghe MK, Pham TC, Liang K, Shyh-Chang N, Le MTN. Red blood cell extracellular vesicles deliver therapeutic siRNAs to skeletal muscles for treatment of cancer cachexia. Mol Ther 2023; 31:1418-1436. [PMID: 37016578 PMCID: PMC10188904 DOI: 10.1016/j.ymthe.2023.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a significant loss of skeletal muscle, which negatively affects the quality of life. Inhibition of myostatin (Mstn), a negative regulator of skeletal muscle growth and differentiation, has been proven to preserve muscle mass in muscle atrophy diseases, including cachexia. However, myostatin inhibitors have repeatedly failed clinical trials because of modest therapeutic effects and side effects due to the poor efficiency and toxicity of existing delivery methods. Here, we describe a novel method for delivering Mstn siRNA to skeletal muscles using red blood cell-derived extracellular vesicles (RBCEVs) in a cancer cachectic mouse model. Our data show that RBCEVs are taken up by myofibers via intramuscular administration. Repeated intramuscular administrations with RBCEVs allowed the delivery of siRNAs, thereby inhibiting Mstn, increasing muscle growth, and preventing cachexia in cancer-bearing mice. We observed the same therapeutic effects when delivering siRNAs against malonyl-CoA decarboxylase, an enzyme driving dysfunctional fatty acid metabolism in skeletal muscles during cancer cachexia. We demonstrate that intramuscular siRNA delivery by RBCEVs is safe and non-inflammatory. Hence, this method is useful to reduce the therapeutic dose of siRNAs, to avoid toxicity and off-target effects caused by systemic administration of naked siRNAs at high doses.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yuqi Yang
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Zhiyuan Wu
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Rachel Tan
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Eric Yew Meng Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Tin Chanh Pham
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
49
|
Kim Y, Jung S, Park G, Shin H, Heo SC, Kim Y. β-Carotene suppresses cancer cachexia by regulating the adipose tissue metabolism and gut microbiota dysregulation. J Nutr Biochem 2023; 114:109248. [PMID: 36503110 DOI: 10.1016/j.jnutbio.2022.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cancer cachexia is a metabolic disease affecting multiple organs and characterized by loss adipose and muscle tissues. Metabolic dysregulated of adipose tissue has a crucial role in cancer cachexia. β-Carotene (BC) is stored in adipose tissues and increases muscle mass and differentiation. However, its regulatory effects on adipose tissues in cancer cachexia have not been investigated yet. In this study, we found that BC supplementations could inhibit several cancer cachexia-related changes, including decreased carcass-tumor (carcass weight after tumor removal), adipose weights, and muscle weights in CT26-induced cancer cachexia mice. Moreover, BC supplementations suppressed cancer cachexia-induced lipolysis, fat browning, hepatic gluconeogenesis, and systemic inflammation. Altered diversity and composition of gut microbiota in cancer cachexia were restored by the BC supplementations. BC treatments could reverse the down-regulated adipogenesis and dysregulated mitochondrial respiration and glycolysis in adipocytes and colon cancer organoid co-culture systems. Taken together, these results suggest that BC can be a potential therapeutic strategy for cancer cachexia.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Sunil Jung
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Gwoncheol Park
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University-Seoul Metropolitan Government (SNU-SMG) Boramae Medical Center, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Purcell SA, Melanson EL, Afghahi A, Borges VF, Sinelli I, Cornier MA. The effects of resistance exercise on appetite sensations, appetite related hormones and energy intake in hormone receptor-positive breast cancer survivors. Appetite 2023; 182:106426. [PMID: 36539160 DOI: 10.1016/j.appet.2022.106426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Appetite is a determinant of dietary intake and is impacted by sex hormones, exercise, and body composition among individuals without chronic conditions. Whether appetite is altered by exercise in the context of estrogen suppression and cancer survivorship is unknown. This randomized cross-over study compared appetite and ad libitum energy intake (EI) after acute resistance exercise (REx) versus sedentary (SED) conditions and in relation to body composition and resting metabolic rate (RMR) in breast cancer survivors (BCS). Physically inactive premenopausal females with previous stage I-III estrogen receptor-positive breast cancer completed a single bout of REx or SED 35 minutes after a standardized breakfast meal. Appetite visual analog scales and hormones (total ghrelin and peptide-YY [PYY]) were measured before and 30, 90, 120, 150, and 180 minutes post-meal and expressed as area under the curve (AUC). Participants were offered a buffet-type meal 180 minutes after breakfast to assess ad libitum EI. Body composition (dual X-ray absorptiometry) and RMR (indirect calorimetry) were measured during a separate visit. Sixteen BCS were included (age: 46 ± 2 y, BMI: 24.9 ± 1.0 kg/m2). There were no differences in appetite ratings or EI between conditions. There were no differences in appetite hormone AUC, but REx resulted in lower ghrelin 120 (-85 ± 39 pg/mL, p = 0.031) and 180 (-114 ± 43 pg/mL, p = 0.018) minutes post-breakfast and higher PYY 90 (21 ± 10 pg/mL, p = 0.028) and 120 (14 ± 7 pg/mL, p = 0.041) minutes post-breakfast. Fat-free mass and RMR negatively correlated with hunger and prospective food consumption AUC after SED, but not REx. In sum, a single REx bout temporarily reduces orexigenic and increases anorexic appetite hormones, but not acute subjective appetite sensations or EI.
Collapse
Affiliation(s)
- Sarah A Purcell
- School of Medicine, Division of Endocrinology Metabolism and Diabetes, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, University of British Columbia - Okanagan, Kelowna, BC, V1V 1V7, Canada.
| | - Edward L Melanson
- School of Medicine, Division of Endocrinology Metabolism and Diabetes, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, 80045, USA; Department of Medicine, Division of Geriatric Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anosheh Afghahi
- School of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA; Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Virginia F Borges
- School of Medicine, Division of Medical Oncology, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA; Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Isabella Sinelli
- School of Medicine, Division of Endocrinology Metabolism and Diabetes, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Marc-Andre Cornier
- School of Medicine, Division of Endocrinology Metabolism and Diabetes, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Diseases, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|