1
|
Yin L, Qi XW, Liu XZ, Yang ZY, Cai RL, Cui HJ, Chen L, Yu SC. Icaritin enhances the efficacy of cetuximab against triple-negative breast cancer cells. Oncol Lett 2020; 19:3950-3958. [PMID: 32382339 PMCID: PMC7202296 DOI: 10.3892/ol.2020.11496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a greater risk of recurrence and metastasis along with a worse prognosis compared with other subtypes of breast cancer. Studies have revealed that mitogenic estrogen signaling is involved in the malignant proliferation of TNBC cells through a novel variant of the estrogen receptor, estrogen receptor α-36 (ER-α36). The results of the present study demonstrated that knockdown of ER-α36 expression in TNBC cells using short hairpin RNA inhibited rapid estrogen signaling bypass activation of the PI3K/AKT signaling pathway. Moreover, the ER-α36 modulator icaritin inhibited the proliferation of TNBC cells both in vitro and in vivo. Here, it was revealed that the combination of icaritin and cetuximab, a therapeutic epidermal growth factor receptor (EGFR) neutralizing antibody, induced apoptosis and inhibited cell proliferation synergistically in TNBC cells. The results of the present study improved the understanding of the underlying mechanisms of TNBC progression and supported the therapeutic potential of combined treatment targeting the ER-α36 and EGFR.
Collapse
Affiliation(s)
- Li Yin
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Xiao-Wei Qi
- Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xun-Zhou Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Rui-Li Cai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Hong-Juan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
2
|
Ribeiro EB, de Marchi PGF, Honorio-França AC, França EL, Soler MAG. Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities. J Biomed Mater Res A 2019; 108:234-245. [PMID: 31587469 DOI: 10.1002/jbm.a.36808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The therapeutic administration of cytokines has been introduced aiming to modulate the immune response system, seeking for different approaches to face pathologies such as cancer, auto immune and infectious diseases. The objective of this study was to investigate the effects of a stable oil-in-water (O/W) nanoemulsion system carrying the cytokine Interferon gamma (IFN-γ) on the activity of phagocytes and MCF-7 human breast cancer cells. Nanoemulsions were prepared through ultra-homogenization, and they consisted of distilled water, triglycerides of capric acid/caprylic, sorbitan-oleate, polysorbate 80, and 1-butanol. IFN-γ (100 ng ml-1 ) was incorporated into two O/W nanoemulsion formulations, and these formulations were characterized in terms of their preliminary and accelerated physicochemical stability, rheological properties, droplet size, polydispersity and surface charge. We identified the most optimal IFN-γ nanoemulsion (IFN-γNE2), which remained stable under extreme temperature variations for 90 days, contained an average dose of 97 ng ml-1 of IFN-γ and exhibited a biocompatible pH and a relative stable rheological profile. Cell viability and intracellular Ca2+ release assays conducted showed that IFN-γNE2 reduced the cell viability of MCF-7 cells without affecting the cell viability of phagocytes. Furthermore, IFN-γNE2 was able to induce cellular activity of phagocytes as evidenced by increased intracellular Ca2+ release in these cells. Our findings on this IFN-γ nanoemulsion suggest that it can be a promising therapeutic agent for immunostimulation and cancer treatment.
Collapse
Affiliation(s)
- Elton B Ribeiro
- Institute of Physics, University of Brasilia, Brasilia-DF, Brazil.,Institute of Health Science, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Patricia G F de Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Adenilda C Honorio-França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Eduardo L França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Maria A G Soler
- Institute of Physics, University of Brasilia, Brasilia-DF, Brazil
| |
Collapse
|
3
|
Sapi E. The Role of CSF-1 in Normal Physiology of Mammary Gland and Breast Cancer: An Update. Exp Biol Med (Maywood) 2016; 229:1-11. [PMID: 14709771 DOI: 10.1177/153537020422900101] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colony stimulating factor (CSF-1) and its receptor (CSF-1R, product of c-fms proto-oncogene) were initially implicated as essential for normal monocyte development as well as for trophoblastic implantation. However, studies have demonstrated that CSF-1 and CSF-1R have additional roles in mammary gland development during pregnancy and lactation. This apparent role for CSF-1/CSF-1R in normal mammary gland development is very intriguing because this receptor/ligand pair has also been found to be important in the biology of breast cancer in which abnormal expression of CSF-1 and its receptor correlates with tumor cell invasiveness and adverse clinical prognosis. Recent findings also implicate tumor-produced CSF-1 in promotion of bone metastasis in breast cancer, and a certain membrane-associated form of CSF-1 appears to induce immunity against tumors. This review aims to summarize recent findings on the role of CSF-1 and its receptor in normal and neoplastic mammary development that may elucidate potential relationships of growth factor–induced biological changes in the breast during pregnancy and tumor progression.
Collapse
Affiliation(s)
- Eva Sapi
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA.
| |
Collapse
|
4
|
Yin L, Wang ZY. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance. Steroids 2016; 111:95-99. [PMID: 26884313 DOI: 10.1016/j.steroids.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen provided a successful treatment for ER-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to tamoxifen therapy. Extensive researches were conducted to understand the molecular mechanisms involved in tamoxifen resistance, and have revealed that multiple signaling molecules and pathways such as EGFR and HER2 are involved in tamoxifen resistance. Currently, the mechanisms by which tamoxifen sensitive breast cancer cells acquire these signaling pathways and develop tamoxifen resistance have not been elucidated. The identification of ER-α36, a variant of ER-α, that is able to mediate agonist activity of tamoxifen provided great insights into the underlying mechanisms of tamoxifen resistance. In this review, we will discuss the biological function and the possible underlying mechanisms of ER-α36 in tamoxifen resistance and specifically illustrate a novel cross-talk mechanism; positive regulatory loops between the ER-α36 and EGFR/HER2 in tamoxifen resistance. The function and the underlying mechanisms of ER-α36 in tamoxifen resistance of the breast cancer stem/progenitor cells will also be discussed. Finally, we will postulate a novel approach to restore tamoxifen sensitivity in tamoxifen resistant breast cancer cells.
Collapse
Affiliation(s)
- Li Yin
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA
| | - Zhao-Yi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
5
|
Honorio-França AC, Nunes GT, Fagundes DLG, de Marchi PGF, Fernandes RTDS, França JL, França-Botelho ADC, Moraes LCA, Varotti FDP, França EL. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol. Onco Targets Ther 2016; 9:617-26. [PMID: 26893571 PMCID: PMC4745958 DOI: 10.2147/ott.s99839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA) is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG) microspheres with adsorbed SIgA on MCF-7 human breast cancer cells. METHODS The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL), PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL). Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry. RESULTS Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca(2+) levels. In the presence of SIgA, an increase in the percentage of apoptotic cells was observed. The highest apoptosis index was observed when the cells were treated with PEG microspheres with adsorbed SIgA. CONCLUSION These data suggest that colostral SIgA adsorbed to PEG microspheres has antitumor effects on human MCF-7 breast cancer cells and that the presence of large amounts of this protein in secreted breast milk may provide protection against breast tumors in women who breastfed.
Collapse
Affiliation(s)
| | - Gabriel Triches Nunes
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Danny Laura Gomes Fagundes
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | | | - Juliana Luzia França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil; Institute of Health Sciences, University Center of Planalto de Araxá, Araxá, Minas Gerais, Brazil
| | | | | | - Fernando de Pilla Varotti
- Campus Centro Oeste Dona Lindu - Federal University of São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil; Campus Centro Oeste Dona Lindu - Federal University of São João Del Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
6
|
França EL, Honorio-França AC, Fernandes RTDS, Marins CMF, Pereira CCDS, Varotti FDP. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells. Neuroimmunomodulation 2016; 23:27-32. [PMID: 26445481 DOI: 10.1159/000439277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer.
Collapse
Affiliation(s)
- Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garx00E7;as, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
The Ron receptor tyrosine kinase negatively regulates mammary gland branching morphogenesis. Dev Biol 2009; 333:173-85. [PMID: 19576199 DOI: 10.1016/j.ydbio.2009.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/05/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
Abstract
The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK-/-). Mammary glands from RonTK-/- mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK-/- epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK-/- glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development.
Collapse
|
8
|
Rögelsperger O, Ekmekcioglu C, Jäger W, Klimpfinger M, Königsberg R, Krenbek D, Sellner F, Thalhammer T. Coexpression of the melatonin receptor 1 and nestin in human breast cancer specimens. J Pineal Res 2009; 46:422-32. [PMID: 19552766 DOI: 10.1111/j.1600-079x.2009.00679.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the G-protein-coupled receptor (GPCR) for melatonin (MT1) suppresses breast cancer cell growth in experimental models. To elucidate whether MT1 might play a role in cancer cells positive for the stem cell marker nestin, we assessed paired carcinomatous (Ca) and adjacent noncancerous (NCa) samples from 42 patients with primary breast cancer for MT1 and nestin by double immunofluorescence staining and quantitative image analysis with Tissue-Quest software. MT1 was located in luminal and myoepithelial cells in milk ducts and in tumor cells in 40/42 and 39/42 of NCa and Ca specimens, respectively, independent of hormone receptor and HER-2 status. Nestin was located together with MT1 in myoepithelial cells in 38 NCa specimens (total n = 42) and in 18 Ca specimens with intact milk ducts. Quantitative evaluation of selected 16 NCa and Ca samples revealed that MT1 levels were higher in invasive Ca sections than in NCa specimens in eight and lower in six cases. Specimens from higher tumor stages (TII/III) with a higher risk of relapse were associated with MT1/nestin co-staining in more than 10% of tumor cells, whereas a lack of co-staining correlated with lower tumor stages. Abundant expression of MT1 and, particularly, coexpression of MT1 with nestin in invading tumor cells in more advanced tumors suggest an important role for this GPCR in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- O Rögelsperger
- Department of Pathophysiology, Center for Physiology, Parthophysiology and Immunology, Medical university of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 2008; 29:465-76. [PMID: 18313384 DOI: 10.1016/j.molcel.2007.12.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/16/2007] [Accepted: 12/15/2007] [Indexed: 11/23/2022]
Abstract
SRC-3/AIB1 is a steroid receptor coactivator with potent growth-promoting activity, and its overexpression is sufficient to induce tumorigenesis. Previous studies indicate that the cellular level of SRC-3 is tightly regulated by both ubiquitin-dependent and ubiquitin-independent proteasomal degradation pathways. Atypical protein kinase C (aPKC) is frequently overexpressed in cancers. In the present study, we show that aPKC phosphorylates and specifically stabilizes SRC-3 in a selective ER-dependent manner. We further demonstrate that an acidic residue-rich region in SRC-3 is an important determinant for aPKC-mediated phosphorylation and stabilization. The mechanism of the aPKC-mediated stabilization appears due to a decreased interaction between SRC-3 and the C8 subunit of the 20S core proteasome, thus preventing SRC-3 degradation. Our results demonstrate a potent signaling mechanism for regulating SRC-3 levels in cells by coordinate enzymatic inhibition of both ubiquitin-dependent and ubiquitin-independent proteolytic pathways.
Collapse
|
10
|
Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R. PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 2006; 25:2931-6. [PMID: 16331248 DOI: 10.1038/sj.onc.1209309] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging data suggest that p21-activated kinase 1 (Pak1), a downstream signaling molecule of the small GTPases, growth factors, and lipid signaling, is upregulated or hyperactivated in human breast cancer. Until now, however, no direct causative role had been found for Pak1 in mammary tumor formation. We therefore sought to identify the role that Pak1 plays in mammary gland tumorigenesis. Our results showed that in a transgenic mouse model, overexpression of catalytically active Pak1 leads to the development of malignant mammary tumors and to a variety of other breast lesions, including focal solid nodules, ductal hyperplasia, and mini-intraductal neoplasm and adenoma. We also found that Pak1 hyperactivation increases the stimulation of downstream proliferative signaling effectors MEK1/2 and p38-MAPK in mammary tumor epithelial cells. Moreover, in our study, we detected expression of estrogen receptor-alpha expression and progesterone receptor expression during early stages of the lesions, but their expression was lost during the cells' transition to malignant invasive tumors. Finally, we found that consistent with a role in breast tumor progression, Pak1 expression and its nuclear accumulation was increased progressively during the transition from ductal hyperplasia to ductal carcinoma in situ to adenocarcinoma in widely used multistep polyoma-middle T-antigen transgenic mice. Together, these findings provide the first direct evidence that Pak1 deregulation may be sufficient for the formation of mammary gland tumors.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/physiology
- Disease Models, Animal
- Disease Progression
- Enzyme Activation
- Estrogen Receptor alpha/metabolism
- Humans
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/metabolism
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/enzymology
- Mammary Neoplasms, Animal/etiology
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Progesterone/metabolism
- Up-Regulation
- p21-Activated Kinases
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- R-A Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | |
Collapse
|
11
|
Wang RA, Zhao M, Meistrich ML, Kumar R. Stage-specific expression of dynein light chain-1 and its interacting kinase, p21-activated kinase-1, in rodent testes: implications in spermiogenesis. J Histochem Cytochem 2005; 53:1235-43. [PMID: 15983119 DOI: 10.1369/jhc.5a6688.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian spermatogenesis is a complex process involving regulatory interactions of many gene products. In this study, we found that dynein light chain-1 (DLC1), a component of the dynein motor complex, is highly expressed in mouse and rat testes. Immunohistochemically detectable levels of DLC1 are observed specifically in spermatids in steps 9-16 in distinct subcellular compartments: in steps 9-11, DLC1 is predominantly localized in the nucleus; in steps 12 and 13, it is found in both nucleus and cytoplasm; and in step 14-16, it is present exclusively in the cytoplasm. In addition, we found p21-activated kinase 1 (Pak1), a protein kinase that activates DLC1 by phosphorylating DLC1 at Serine 88, was also expressed during these stages of spermatogenesis. Pak1 was also expressed in Leydig cells, in preleptotene primary spermatocytes, and in round spermatids. The spermiogenic stage-specific expression of DLC1 suggests a role for DLC1 in chromatin condensation, spermatid shaping, and the final release of sperm from the spermatogenic epithelium. Further, Pak1 may also play a role in spermiogenesis by regulating DLC1 phosphorylation and, consequently, its function.
Collapse
Affiliation(s)
- Rui-An Wang
- Department of Molecular and Cellular Oncology. UT-MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Qiao M, Shapiro P, Kumar R, Passaniti A. Insulin-like Growth Factor-1 Regulates Endogenous RUNX2 Activity in Endothelial Cells through a Phosphatidylinositol 3-Kinase/ERK-dependent and Akt-independent Signaling Pathway. J Biol Chem 2004; 279:42709-18. [PMID: 15304489 DOI: 10.1074/jbc.m404480200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an angiogenic and oncogenic factor that activates signal transduction pathways involved in the expression of transcriptional regulators of tumorigenesis. RUNX2, a member of the Ig-loop family of transcription factors is expressed in vascular endothelial cells (EC) and regulates EC migration, invasion, and proliferation. Here we show that IGF-1 and its receptor regulate post-translational changes in RUNX2 to activate DNA binding in proliferating EC. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduced both basal and IGF-1-stimulated RUNX2 DNA binding activity in the absence of changes in RUNX2 protein as did the overexpression of the phosphatidylinositol 3-phosphate phosphatase, confirming that PI3K signaling mediates RUNX2 activation. IGF-1 increased ERK1/2 activation, which was abrogated by the inhibition of PI3K, thus linking these two pathways in EC. Treatment with U0126, which inhibits ERK1/2 activation, reduced IGF-1-stimulated RUNX2 DNA binding without affecting RUNX2 protein levels. Overexpression of constitutively active MKK1 increased RUNX2 DNA binding and phosphorylation. No additive effects of PI3K or ERK inhibitors on DNA binding were evident. Surprisingly, these IGF-1-mediated effects on RUNX2 were not regulated by Akt phosphorylation, a common downstream target of PI3K, as determined by pharmacological or genetic inhibition. However, an inhibitor of the p21-activated protein kinase-1, glutathione S-transferase-Pak1-(83-149), inhibited both basal and IGF-1-stimulated RUNX2 DNA binding, suggesting that Pak1 mediates IGF-1 signaling to increase RUNX2 activity. These results indicate that the angiogenic growth factor, IGF-1, can regulate RUNX2 DNA binding through sequential activation of the PI3K/Pak1 and ERK1/2 signaling cascade.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
13
|
Wang RA, Vadlamudi RK, Bagheri-Yarmand R, Beuvink I, Hynes NE, Kumar R. Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. J Cell Biol 2003; 161:583-92. [PMID: 12732616 PMCID: PMC2172951 DOI: 10.1083/jcb.200212066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although growth factors have been shown to influence mammary gland development, the nature of downstream effectors remains elusive. In this study, we show that the expression of p21-activated kinase (Pak)1, a serine/threonine protein kinase, is activated in mammary glands during pregnancy and lactation. By targeting an ectopic expression of a kinase-dead Pak1 mutant under the control of ovine beta-lactoglobulin promoter, we found that the mammary glands of female mice expressing kinase-dead Pak1 transgene revealed incomplete lobuloalveolar development and impaired functional differentiation. The expression of whey acidic protein and beta-casein and the amount of activated Stat5 in the nuclei of epithelial cells in transgenic mice were drastically reduced. Further analysis of the underlying mechanisms revealed that Pak1 stimulated beta-casein promoter activity in normal mouse mammary epithelial cells and also cooperated with Stat5a. Pak1 directly interacted with and phosphorylated Stat5a at Ser 779, and both COOH-terminal deletion containing Ser 779 of Stat5a and the Ser 779 to Ala mutation completely prevented the ability of Pak1 to stimulate beta-casein promoter. Mammary glands expressing inactive Pak1 exhibited a reduction of Stat5a Ser 779 phosphorylation. These findings suggest that Pak1 is required for alveolar morphogenesis and lactation function, and thus, identify novel functions of Pak1 in the mammary gland development.
Collapse
Affiliation(s)
- Rui-An Wang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|