1
|
Magarlamov TY, Chernyshev AV. Proboscis sensory cells in Nemertea: comparative morphology and phylogenetic implications. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Analyses of molecular data have clarified the phylogenetic relations between classes and orders of the phylum Nemertea as a whole, but the ‘deficit’ of morphological synapomorphies characterizing main clades remains problematic. Characters identified with classic histological studies of nemerteans reveal a high level of homoplasy, thus complicating the search for synapomorphies. To identify more potential synapomorphies, sensory cells of the proboscis epithelium of 39 nemertean species were studied with electron and confocal laser-scanning microscopes. Three types of sensory cells were described: monociliated (found in nemerteans from all orders), multiciliated (found only in polystiliferous hoplonemerteans) and nonciliated (found in two species of monostiliferous hoplonemerteans) sensory cells. Monociliated sensory cells of the proboscis have a common structure, differing from monociliated sensory cells of the epidermis and cerebral organ canals. Each monociliated cell consists of a cilium with a bulb-like expanded tip surrounded by a cone-like collar of microvilli, an intra-epithelially located body (perikaryon) and a single basal process (axon). Some features of the monociliated sensory cell structure are thought to provide solid mechanical support. Specific features in the structure of the axial rootlets, cilia, microvillus collars and their microfilaments, considered synapomorphies/autapomorphies, were revealed in the representatives of some nemertean taxa.
Collapse
Affiliation(s)
- Timur Yu Magarlamov
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexei V Chernyshev
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Razzauti A, Laurent P. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 2021; 10:67670. [PMID: 34533135 PMCID: PMC8492061 DOI: 10.7554/elife.67670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs' budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.
Collapse
Affiliation(s)
- Adria Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| |
Collapse
|
3
|
Klann M, Schacht MI, Benton MA, Stollewerk A. Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects. BMC Biol 2021; 19:22. [PMID: 33546687 PMCID: PMC7866635 DOI: 10.1186/s12915-021-00948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. Results We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. Conclusions Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00948-y.
Collapse
Affiliation(s)
- Marleen Klann
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Marine Eco-Evo-Devo Unit, Okinawa Institute for Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Magdalena Ines Schacht
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Alan Benton
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
4
|
Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections. Neuromolecular Med 2015; 17:211-40. [PMID: 26007200 DOI: 10.1007/s12017-015-8358-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These "invaginating projections" can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called "spinules" that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease.
Collapse
|
5
|
Yuan J, Zhu Q, Liu B. Phylogenetic and biological significance of evolutionary elements from metazoan mitochondrial genomes. PLoS One 2014; 9:e84330. [PMID: 24465405 PMCID: PMC3896360 DOI: 10.1371/journal.pone.0084330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022] Open
Abstract
The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between evolution and processes of speciation.
Collapse
Affiliation(s)
- Jianbo Yuan
- Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | | | - Bin Liu
- Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Abstract
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.
Collapse
Affiliation(s)
- Patricia G Wilson
- Regenerative Bioscience Center, Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
7
|
Todt C, Tyler S. Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. ACTA ZOOL-STOCKHOLM 2006. [DOI: 10.1111/j.1463-6395.2007.00246.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Lai EC, Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 2004; 269:1-17. [PMID: 15081353 DOI: 10.1016/j.ydbio.2004.01.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 01/22/2004] [Accepted: 01/26/2004] [Indexed: 11/19/2022]
Abstract
How is cell fate diversity reliably achieved during development? Insect sensory organs have been a favorable model system for investigating this question for over 100 years. They are constructed using defined cell lineages that generate a maximum of cell diversity with a minimum number of cell divisions, and display tremendous variety in their morphologies, constituent cell types, and functions. An unexpected realization of the past 5 years is that very diverse sensory organs in Drosophila are produced by astonishingly similar cell lineages, and that their diversity can be largely attributed to only a small repertoire of developmental processes. These include changes in terminal cell differentiation, cell death, cell proliferation, cell recruitment, cell-cell interactions, and asymmetric segregation of cell fate determinants during mitosis. We propose that most Drosophila sensory organs are built from an archetypal lineage, and we speculate about how this stereotyped pattern of cell divisions may have been built during evolution.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, 545 Life Sciences Addition, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
9
|
Cribb B, Chisholm L, Gould R, Whittington I. Morphology, ultrastructure, and implied function of ciliated sensory structures on the developmental stages of Merizocotyle icopae (Monogenea: Monocotylidae). Microsc Res Tech 2003; 62:267-76. [PMID: 14506693 DOI: 10.1002/jemt.10387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental infections were used to track the fate of the dorsal sensilla of Merizocotyle icopae (Monogenea: Monocotylidae) from nasal tissue of the shovelnose ray, Rhinobatos typus (Rhinobatidae). Scanning and transmission electron microscopy revealed that 3 types of uniciliate dorsal sensilla exist at different times in the development of the monogenean. Type 1 sensilla have little or no invagination where the cilium exits the distal end of the dendrite and possess a ring of epidermis surrounding the cilium distal to the invagination. Type 2 sensilla have a deep invagination where the cilium exits the dendrite. Type 3 sensilla can be distinguished from the other types by the shape of the dendrite. The larvae have predominantly Type 1 dorsal sensilla, most of which are lost approximately 24 h after infection and a few Type 2 sensilla, which are retained. Additional Type 2 sensilla (termed Adult Type 2 sensilla), which are slightly different morphologically from the Type 2 sensilla of the larvae, form in later stages of development. Numerous Type 3 sensilla are unique to the dorsal surface of adults. Loss of all Type 1 sensilla upon attachment to the host, R. typus, suggests that these may be chemo- or mechanoreceptors responsible for host location by the swimming infective larvae. Type 2 sensilla appear to be important in the larvae, juveniles, and adults whereas the modality mediated by Type 3 is specific to adults.
Collapse
Affiliation(s)
- Bronwen Cribb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
10
|
Younossi-Hartenstein A, Ehlers U, Hartenstein V. Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abilgaard, 1789). J Comp Neurol 2000; 416:461-74. [PMID: 10660878 DOI: 10.1002/(sici)1096-9861(20000124)416:4<461::aid-cne4>3.0.co;2-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have analyzed the embryonic development of the Mesostoma nervous system, using a combination of histology, transmission electron microscopy, and wholemount immunohistochemistry. Neural progenitors are formed at an early stage when the Mesostoma embryo constitutes a multilayered mesenchymal mass of cells. A neurectoderm as in vertebrates or arthropods is absent. Only after neurons in the deep layers of the embryo have started differentiating do superficial cells reorganize into an epithelium that will give rise to the epidermis. Neurons are clustered in two anterior, bilaterally symmetric brain hemispheres. An antibody against acetylated beta-tubulin (anti-acTub) that labels neurotubules reveals an invariant pattern of pioneer neurons in the brain of midstage embryos. Pioneer neurons are grouped in several small clusters at characteristic positions. They pioneer several commissural tracts of the brain and two pairs of ventral and dorsal connectives, respectively.
Collapse
Affiliation(s)
- A Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles 90095, USA
| | | | | |
Collapse
|
11
|
Ashton FT, Li J, Schad GA. Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 1999; 84:297-316. [PMID: 10456420 DOI: 10.1016/s0304-4017(99)00037-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nematode parasites of warm-blooded hosts use chemical and thermal signals in host-finding and in the subsequent resumption of development. The free-living nematode Caenorhabditis elegans is a useful model for investigating the chemo- and thermosensory neurons of such parasites, because the functions of its amphidial neurons are well known from laser microbeam ablation studies. The neurons found in the amphidial channel detect aqueous chemoattractants and repellants; the wing cells-flattened amphidial neurons-detect volatile odorants. The finger cells-digitiform amphidial neurons-are the primary thermoreceptors. Two neuron classes, named ADF and ASI, control entry into the environmentally resistant resting and dispersal dauer larval stage, while the paired ASJ neurons control exit from this stage. Skin-penetrating nematode parasites, i.e. the dog hookworm Ancylostoma caninum, and the threadworm, Strongyloides stercoralis, use thermal and chemical signals for host-finding, while the passively ingested sheep stomach worm, Haemonchus contortus, uses environmental signals to position itself for ingestion. Amphidial neurons presumably recognize these signals. In all species, resumption of development, on entering a host, is probably triggered by host signals also perceived by amphidial neurons. In the amphids of the A. caninum infective larva, there are wing- and finger-cell neurons, as well as neurons ending in cilia-like dendritic processes, some of which presumably recognize a sequence of signals that stimulate these larvae to attach to suitable hosts. The functions of these neurons can be postulated, based on the known functions of their homologs in C. elegans. The threadworm, S. stercoralis, has a complex life cycle. After leaving the host, soil-dwelling larvae may develop either to infective larvae (the life-stage equivalent of dauer larvae) or to free-living adults. As with the dauer larva of C. elegans, two neuron classes control this developmental switch. Amphidial neurons control chemotaxis to a skin extract, and a highly modified amphidial neuron, the lamellar cell, appears to be the primary thermoreceptor, in addition to having chemosensory function. The stomach worm, Haemonchus contortus, depends on ingestion by a grazing host. Once ingested, the infective larva is exposed to profound environmental changes in the rumen. These changes stimulate resumption of development in this species. We hypothesize that resumption of development is under the control of the ASJ neuronal pair. Identification of the neurons that control the infective process could provide the basis for entirely new approaches to parasite control involving interference with development at the time and place of initial host-contact.
Collapse
Affiliation(s)
- F T Ashton
- Department of Pathobiology School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
12
|
Merritt DJ. Transformation of external sensilla to chordotonal sensilla in the cut mutant of Drosophila assessed by single-cell marking in the embryo and larva. Microsc Res Tech 1997; 39:492-505. [PMID: 9438250 DOI: 10.1002/(sici)1097-0029(19971215)39:6<492::aid-jemt4>3.0.co;2-g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development.
Collapse
Affiliation(s)
- D J Merritt
- Department of Zoology, University of New England, Armidale, New South Wales, Australia.
| |
Collapse
|
13
|
Ashton FT, Schad GA. Amphids in strongyloides stercoralis and other parasitic nematodes. ACTA ACUST UNITED AC 1996; 12:187-94. [PMID: 15275212 DOI: 10.1016/0169-4758(96)10012-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, Francis Ashton and Gerhard Schad examine the ultrastructure of the amphids of several animal parasitic nematodes. These structures are the main chemosensory organs of these worms and probably play an important role in host-finding behavior and the control of development. Reconstructions made from serial micrographs of the neurons in the amphids of the threadworm Strongyloides stercoralis are shown. These stereo images permit three-dimensional visualization of these complex sense organs. The association between each amphidial neuron and its cell body has not been made previously for a parasitic nematode; however, this has been done for the free-living nematode Caenorhabditis elegans, which served as a model for these studies. Recognition of the cell bodies will provide a point of departure for laser microbeam ablation studies to determine individual neuronal function.
Collapse
Affiliation(s)
- F T Ashton
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- J W Posakony
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| |
Collapse
|