1
|
Ambrose A, McCabe M, Hung C, Sosova I, Seres P, Mercimek-Andrews S. Outcome of creatine supplementation therapy in phosphoglucomutase-1 deficiency associated congenital disorders of glycosylation: Novel insights. Mol Genet Metab Rep 2025; 43:101212. [PMID: 40242152 PMCID: PMC12002938 DOI: 10.1016/j.ymgmr.2025.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Background Biallelic pathogenic variants in PGM1 result in phosphoglucomutase 1 (PGM1) deficiency that is one of the congenital disorders of glycosylation (CDG) (PGM1-CDG). Phenotypic spectrum includes congenital malformations, and muscular, cardiac, hepatic, endocrine and hematologic phenotypes. Current treatment consists of D-galactose therapy that results in clinical and biochemical improvements. To improve fatigue, and exercise intolerance, we started creatine supplementation therapy. Material and methods We reviewed electronic patient chart. We applied Nijmegen Pediatric CDG Rating Scale (NPCRS) and The Functional Assessment of Chronic Illness Therapy Fatigue scale (FACIT-F). We measured creatine metabolism biomarkers. Results This is a 29-year-old female with PGM1-CDG, confirmed diagnosis by clinical exome sequencing. She has been treated with D-galactose therapy which did not improve her fatigue and exercise intolerance. She was started on creatine supplementation therapy at the age of 27 years which led to decreased daytime sleeping, increased exercise capacity and improvements in her NPCRS, and FACIT-F. Her plasma guanidinoacetate was low. She had elevated urine galactitol on D-galactose therapy. Discussion PGM1-CDG associated myopathy is likely due to combination of several factors including abnormal muscle carbohydrate metabolism, abnormal N-glycosylation of proteins involved in the muscle functions and creatine transport and altered muscle energy homeostasis. It was previously shown that creatine supplementation therapy improves myopathy in patients with mitochondrial cytopathies. We think that the use of creatine supplementation therapy coincided with improvements in fatigue and exercise intolerance subjectively and objectively in our patient.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Morganne McCabe
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Iveta Sosova
- Alberta Newborn Screening and Biochemical Genetics Laboratory, University of Alberta Hospital, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton Zone, Alberta, Canada
| |
Collapse
|
2
|
Radenkovic S, Adant I, Bird MJ, Swinnen JV, Cassiman D, Kozicz T, Gruenert SC, Ghesquière B, Morava E. Complex Metabolomic Changes in a Combined Defect of Glycosylation and Oxidative Phosphorylation in a Patient with Pathogenic Variants in PGM1 and NDUFA13. Cells 2025; 14:638. [PMID: 40358162 PMCID: PMC12071635 DOI: 10.3390/cells14090638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation changes and deficient energy metabolism, and its potential effect on outcomes, we evaluated patient fibroblasts with likely pathogenic variants in PGM1 and pathogenic variants in NDUFA13 derived from a patient who passed away at 16 years of age. The patient presented with characteristic of PGM1-CDG including bifid uvula, muscle involvement, abnormal glycosylation in blood, and elevated liver transaminases. In addition, hearing loss, seizures, elevated plasma and CSF lactate and a Leigh-like MRI brain pattern were present, which are commonly associated with Leigh syndrome. PGM1-CDG has been reported in about 70 individuals, while NDUFA13 deficiency has so far only been reported in 13 patients. As abundant energy is essential for glycosylation, and both PGM1 and NDUFA13 are linked to energy metabolism, we sought to better understand the underlying biochemical cause of the patient's clinical presentation. To do so, we performed extensive investigations including tracer metabolomics, lipidomics and enzymatic studies on the patient's fibroblasts. We found a profound depletion of UDP-hexoses, consistent with PGM1-CDG. Complex I enzyme activity and mitochondrial function were also impaired, corroborating complex I deficiency and Leigh syndrome. Further, lipidomics analysis showed similarities with both PGM1-CDG and OXPHOS-deficient patients. Based on our results, the patient was diagnosed with both PGM1-CDG and Leigh syndrome. In summary, we present the first case of combined CDG and Leigh syndrome, caused by (likely) pathogenic variants in PGM1 and NDUFA13, and underline the importance of considering the synergistic effects of multiple disease-causing variants in patients with complex clinical presentation, leading to the patient's early demise.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Laboratory of Applied Mass Spectrometry, Department of Molecular and Cellular Medicine, KU Leuven, 3000 Leuven, Belgium; (S.R.)
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55901, USA
- Section Metabolic Diagnostics, Department of Genetics, UMC Utrecht, 3584 Utrecht, The Netherlands
| | - Isabelle Adant
- Laboratory of Applied Mass Spectrometry, Department of Molecular and Cellular Medicine, KU Leuven, 3000 Leuven, Belgium; (S.R.)
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Matthew J. Bird
- Laboratory of Applied Mass Spectrometry, Department of Molecular and Cellular Medicine, KU Leuven, 3000 Leuven, Belgium; (S.R.)
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute and Leuven Institute for Single Cell Omics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55901, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah C. Gruenert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Molecular and Cellular Medicine, KU Leuven, 3000 Leuven, Belgium; (S.R.)
- Metabolomics Core Facility, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55901, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Hall PL, Lam C, Wolfe L, Edmondson A, Acmg Laboratory Quality Assurance Committee. Biochemical testing for congenital disorders of glycosylation: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2025; 27:101328. [PMID: 39945761 DOI: 10.1016/j.gim.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 04/11/2025] Open
Abstract
Congenital disorders of glycosylation (CDG) are a large and continually expanding group of disorders that present with a variety of clinical findings and have been linked to over 170 genes. Individually, CDGs are rare; however, the true incidence may be underestimated because of the variability of the clinical findings, and the multiple testing strategies needed to diagnosis them across multiple pathways. Testing for CDGs has evolved over recent years with the availability of high-throughput molecular testing and improved gene discovery techniques. Biochemical testing to detect defects in glycosylated proteins or enzymatic deficiency still plays a critical role in the diagnosis of affected individuals, and both testing modalities are often required to finalize a diagnosis. Emerging therapeutic approaches targeting improvements in glycosylation require reliable and reproducible biochemical testing for therapeutic monitoring, dose adjustment, and avoidance of dose-related side effects. To maintain clinical sensitivity and specificity and to ensure reproducibility across laboratories performing complex biochemical testing, the American College of Medical Genetics and Genomics has developed the following technical standard.
Collapse
Affiliation(s)
- Patricia L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Christina Lam
- Department of Pediatrics, University of Washington, Seattle, WA; Biochemical Genetics Program, Seattle Children's Hospital, Seattle, WA
| | | | - Andrew Edmondson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | |
Collapse
|
4
|
Raynor A, Lebredonchel É, Foulquier F, Fenaille F, Bruneel A. Diagnostic and Therapeutic Approaches in Congenital Disorders of Glycosylation. Handb Exp Pharmacol 2025. [PMID: 40119203 DOI: 10.1007/164_2025_745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Congenital disorders of glycosylation (CDG) constitute an increasing group of inborn metabolic disorders, with more than 170 described diseases to date. A disturbed glycosylation process characterizes them, with molecular defects localized in distinct cell compartments. In CDG, N-glycosylation, O-glycosylation, glycosylation of lipids (including phosphatidylinositol) as well as the glycosaminoglycan synthesis can be affected. Owing to the importance of glycosylation for the function of concerned proteins and lipids, glycosylation defects have diverse clinical consequences. CDG affected individuals often present with a non-specific multivisceral syndrome including neurological involvement, intellectual disability, dysmorphia, and hepatopathy. As CDG are rare diseases frequently lacking distinctive symptoms, biochemical and genetic testing bear important and complementary diagnostic roles.After an introduction on glycosylation and CDG, we review current biomarkers and analytical techniques in the field. Furthermore, we illustrate their interests in the follow-up of proven therapeutic approaches including D-mannose in MPI-CDG, D-galactose in PGM1-CDG, and manganese (MnSO4) in TMEM165-CDG.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France.
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
5
|
Alharbi H, Horikoshi S, Jenkins SM, Scaglia F, Lam C, Morava E, Larson A, Edmondson AC. Causes of mortality in the congenital disorders of glycosylation. Mol Genet Metab 2025; 144:109052. [PMID: 39923392 PMCID: PMC11892340 DOI: 10.1016/j.ymgme.2025.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Congenital Disorders of Glycosylation (CDG) are a group of some 200 genetic disorders with PMM2-CDG being the most common disease. These disorders individually remain rare with poorly understood natural history (NH) and causes of mortality. We established a NH study for CDG and collected both prospective and retrospective data on CDG outcomes. In the current data set analysis on deceased patients, we describe the clinical phenotype and causes of death for thirty-seven individuals with various genetic causes of CDG. About a third of this cohort were affected with PMM2-CDG. All of the patients presented with multisystem features with involvement of the neurological system. The majority of patients involved in this study died during the first three years of life, and only four patients lived beyond ten years. The cause of death was unavailable for two patients, and about a third died secondary to cardiopulmonary failure. Progression of neurological involvement, sepsis and respiratory infection were also among the reported causes. Pericardial effusion was the primary cause of death for three infants affected with PMM2-CDG. This study emphasizes the importance of diagnosis and supportive care following the published monitoring and management guidelines for affected patients with CDG to optimize their health and development in the early stages of the disease.
Collapse
Affiliation(s)
- Hana Alharbi
- Department of Pediatrics, Faculty of Medicine, University of Tabuk, Saudi Arabia; Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Seishu Horikoshi
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR, China
| | - Christina Lam
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Morava
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin Larson
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA.
| |
Collapse
|
6
|
Beltran-Velasco AI. Brain Glycogen-Its Metabolic Role in Neuronal Health and Neurological Disorders-An Extensive Narrative Review. Metabolites 2025; 15:128. [PMID: 39997753 PMCID: PMC11857135 DOI: 10.3390/metabo15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Brain glycogen is imperative for neuronal health, as it supports energy demands and metabolic processes. This review examines the pathways involved in glycogen storage and utilization in the central nervous system, emphasizing their role in both physiology and pathology. It explores how alterations in glycogen metabolism contribute to neurological disorders, including neurodegenerative diseases, epilepsy, and metabolic conditions while highlighting the bidirectional interaction between neurons and glia in maintaining brain homeostasis. Methods: A comprehensive search of articles published between 2015 and 2025 was conducted using the following databases: ScienceDirect, Scopus, Wiley, Web of Science, Medline, and PubMed. The selection of relevant studies was based on their focus on brain glycogen metabolism and its role in neurological conditions, with studies that did not meet the inclusion criteria being excluded. Results: The metabolic processes of brain glycogen are subject to rigorous regulation by astrocyte-neuron interactions, thereby ensuring metabolic homeostasis and energy availability. The dysregulation of glycogen storage and mobilization has been implicated in the development of synaptic dysfunction, excitotoxicity, and neurodegeneration in a variety of disorders. For instance, aberrant glycogen accumulation in diseases such as Lafora disease has been associated with severe neurodegeneration, while impaired glycogen mobilization has been shown to exacerbate energy deficits in Alzheimer's and epilepsy. Conclusions: Targeting brain glycogen metabolism represents a promising approach for therapeutic intervention in neurological disorders. However, the translation of these strategies to human models remains challenging, particularly with regard to the long-term safety and specificity of glycogen-targeted therapies.
Collapse
|
7
|
Zhang W, Chen L, Ma A, Jiang W, Xu M, Bai X, Zhou J, Tang S. Proteomic analysis illustrates the potential involvement of dysregulated ribosome-related pathways and disrupted metabolism during retinoic acid-induced cleft palate development. BMC Med Genomics 2024; 17:280. [PMID: 39614345 DOI: 10.1186/s12920-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Recent studies have unveiled disrupted metabolism in the progression of cleft palate (CP), a congenital anomaly characterized by defective fusion of facial structures. Nonetheless, the precise composition of this disrupted metabolism remains elusive, prompting us to identify these components and elucidate primary metabolic irregularities contributing to CP pathogenesis. We established a murine CP model by retinoic acid (RA) treatment and analyzed control and RA-treated embryonic palatal tissues by LC-MS-based proteomic approach. We identified 220 significantly upregulated and 224 significantly downregulated proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these differentially expressed proteins (DEPs) were involved in translation, ribosome assembly, mitochondrial function, mRNA binding, as well as key metabolic pathways like oxidative phosphorylation (OXPHOS), glycolysis/gluconeogenesis, and amino acid biosynthesis. These findings suggest that dysregulated ribosome-related pathways and disrupted metabolism play a critical role in CP development. Protein-protein interaction analysis using the STRING database revealed a tightly connected network of DEPs. Furthermore, we identified the top 10 hub proteins in CP using the Cytohubba plugin in Cytoscape. These hub proteins, including RPL8, RPS11, ALB, PA2G4, RPL23, RPS6, CCT7, EGFR, HSPD1, and RPS28, are potentially key regulators of CP pathogenesis. In conclusion, our comprehensive proteomic analysis provides insights into the molecular alterations associated with RA-induced CP in Kun Ming mice. These findings suggest potential therapeutic targets and pathways to understand and prevent congenital craniofacial anomalies.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Wenshi Jiang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Mengjing Xu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China.
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China.
- , No.69, Dongxia North Road, Jinping District, Shantou, 515000, Guangdong, China.
| |
Collapse
|
8
|
Mishra K, Kakhlon O. Mitochondrial Dysfunction in Glycogen Storage Disorders (GSDs). Biomolecules 2024; 14:1096. [PMID: 39334863 PMCID: PMC11430448 DOI: 10.3390/biom14091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Glycogen storage disorders (GSDs) are a group of inherited metabolic disorders characterized by defects in enzymes involved in glycogen metabolism. Deficiencies in enzymes responsible for glycogen breakdown and synthesis can impair mitochondrial function. For instance, in GSD type II (Pompe disease), acid alpha-glucosidase deficiency leads to lysosomal glycogen accumulation, which secondarily impacts mitochondrial function through dysfunctional mitophagy, which disrupts mitochondrial quality control, generating oxidative stress. In GSD type III (Cori disease), the lack of the debranching enzyme causes glycogen accumulation and affects mitochondrial dynamics and biogenesis by disrupting the integrity of muscle fibers. Malfunctional glycogen metabolism can disrupt various cascades, thus causing mitochondrial and cell metabolic dysfunction through various mechanisms. These dysfunctions include altered mitochondrial morphology, impaired oxidative phosphorylation, increased production of reactive oxygen species (ROS), and defective mitophagy. The oxidative burden typical of GSDs compromises mitochondrial integrity and exacerbates the metabolic derangements observed in GSDs. The intertwining of mitochondrial dysfunction and GSDs underscores the complexity of these disorders and has significant clinical implications. GSD patients often present with multisystem manifestations, including hepatomegaly, hypoglycemia, and muscle weakness, which can be exacerbated by mitochondrial impairment. Moreover, mitochondrial dysfunction may contribute to the progression of GSD-related complications, such as cardiomyopathy and neurocognitive deficits. Targeting mitochondrial dysfunction thus represents a promising therapeutic avenue in GSDs. Potential strategies include antioxidants to mitigate oxidative stress, compounds that enhance mitochondrial biogenesis, and gene therapy to correct the underlying mitochondrial enzyme deficiencies. Mitochondrial dysfunction plays a critical role in the pathophysiology of GSDs. Recognizing and addressing this aspect can lead to more comprehensive and effective treatments, improving the quality of life of GSD patients. This review aims to elaborate on the intricate relationship between mitochondrial dysfunction and various types of GSDs. The review presents challenges and treatment options for several GSDs.
Collapse
Affiliation(s)
- Kumudesh Mishra
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| | - Or Kakhlon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
9
|
Rossi A, Simeoli C, Pivonello R, Salerno M, Rosano C, Brunetti B, Strisciuglio P, Colao A, Parenti G, Melis D, Derks TGJ. Endocrine involvement in hepatic glycogen storage diseases: pathophysiology and implications for care. Rev Endocr Metab Disord 2024; 25:707-725. [PMID: 38556561 PMCID: PMC11294274 DOI: 10.1007/s11154-024-09880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifestations of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic‑pituitary axis dysfunction in GSD I) can be direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.
| | - Chiara Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Rosario Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Mariacarolina Salerno
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Barbara Brunetti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Annamaria Colao
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Johnsen C, Tabatadze N, Radenkovic S, Botzo G, Kuschel B, Melikishvili G, Morava E. SSR4-CDG, an ultra-rare X-linked congenital disorder of glycosylation affecting the TRAP complex: Review of 22 affected individuals including the first adult patient. Mol Genet Metab 2024; 142:108477. [PMID: 38805916 DOI: 10.1016/j.ymgme.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare, often multi-systemic genetic disorders that result from disturbed protein and lipid glycosylation. SSR4-CDG is an ultra-rare, comparably mild subtype of CDG, presenting mostly in males. It is caused by pathogenic variants in the SSR4 gene, which is located on the X chromosome. SSR4 (signal sequence receptor protein 4) is a subunit of the translocon-associated protein (TRAP) complex, a structure that is needed for the translocation of proteins across the ER membrane. A deficiency of SSR4 leads to disturbed N-linked glycosylation of proteins in the endoplasmic reticulum. Here, we review the most common clinical, biochemical and genetic features of 18 previously published individuals and report four new cases diagnosed with SSR4-CDG, including the first adult affected by this disorder. Based on our review, developmental delay, speech delay, intellectual disability, muscular hypotonia, microcephaly and distinct facial features are key symptoms of SSR4-CDG that are present in all affected individuals. Although these symptoms overlap with many other neurodevelopmental disorders, their combination with additional clinical features, and a quite distinguishable facial appearance of affected individuals make this disorder a potentially recognizable type of CDG. Additional signs and symptoms include failure to thrive, feeding difficulties, connective tissue involvement, gastrointestinal problems, skeletal abnormalities, seizures and, in some cases, significant behavioral abnormalities. Due to lack of awareness of this rare disorder, and since biochemical testing can be normal in affected individuals, most are diagnosed through genetic studies, such as whole exome sequencing. With this article, we expand the phenotype of SSR4-CDG to include cardiac symptoms, laryngeal abnormalities, and teleangiectasia. We also provide insights into the prognosis into early adulthood and offer recommendations for adequate management and care. We emphasize the great need for causal therapies, as well as effective symptomatic therapies addressing the multitude of symptoms in this disease. In particular, behavioral problems can severely affect quality of life in individuals diagnosed with SSR4-CDG and need special attention. Finally, we aim to improve guidance and education for affected families and treating physicians and create a basis for future research in this disorder.
Collapse
Affiliation(s)
- Christin Johnsen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| | - Nazi Tabatadze
- Department of Pediatrics, Medi Club Georgia Medical Center, Tbilisi, Georgia
| | | | - Grace Botzo
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Bryce Kuschel
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Gia Melikishvili
- Department of Pediatrics, Medi Club Georgia Medical Center, Tbilisi, Georgia
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Genetic and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
11
|
Gouliaev F, Jonsson N, Gersing S, Lisby M, Lindorff-Larsen K, Hartmann-Petersen R. Destabilization and Degradation of a Disease-Linked PGM1 Protein Variant. Biochemistry 2024; 63:1423-1433. [PMID: 38743592 DOI: 10.1021/acs.biochem.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PGM1-linked congenital disorder of glycosylation (PGM1-CDG) is an autosomal recessive disease characterized by several phenotypes, some of which are life-threatening. Research focusing on the disease-related variants of the α-D-phosphoglucomutase 1 (PGM1) protein has shown that several are insoluble in vitro and expressed at low levels in patient fibroblasts. Due to these observations, we hypothesized that some disease-linked PGM1 protein variants are structurally destabilized and subject to protein quality control (PQC) and rapid intracellular degradation. Employing yeast-based assays, we show that a disease-associated human variant, PGM1 L516P, is insoluble, inactive, and highly susceptible to ubiquitylation and rapid degradation by the proteasome. In addition, we show that PGM1 L516P forms aggregates in S. cerevisiae and that both the aggregation pattern and the abundance of PGM1 L516P are chaperone-dependent. Finally, using computational methods, we perform saturation mutagenesis to assess the impact of all possible single residue substitutions in the PGM1 protein. These analyses identify numerous missense variants with predicted detrimental effects on protein function and stability. We suggest that many disease-linked PGM1 variants are subject to PQC-linked degradation and that our in silico site-saturated data set may assist in the mechanistic interpretation of PGM1 variants.
Collapse
Affiliation(s)
- Frederik Gouliaev
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| | - Nicolas Jonsson
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| | - Sarah Gersing
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maalo̷es Vej 5, DK2200N Copenhagen, Denmark
| |
Collapse
|
12
|
Almomen M, Burgon PG. Why Craniofacial Surgeons/Researchers Need to be Aware of Native American Myopathy? Neuropediatrics 2024; 55:149-155. [PMID: 38378040 DOI: 10.1055/a-2271-8619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Congenital myopathy type 13 (CMYO13), also known as Native American myopathy, is a rare muscle disease characterized by early-onset hypotonia, muscle weakness, delayed motor milestones, and susceptibility to malignant hyperthermia. The phenotypic spectrum of congenital myopathy type 13 is expanding, with milder forms reported in non-native American patients. The first description of the disease dates to 1987 when Bailey and Bloch described an infant belonging to a Native American tribe with cleft palate, micrognathia, arthrogryposis, and general-anesthesia-induced malignant hyperthermia reaction; the cause of the latter remains poorly defined in this rare disease. The pan-ethnic distribution, as well as its predisposition to malignant hyperthermia, makes the identification of CMYO13 essential to avoid life-threatening, anesthesia-related complications. In this article, we are going to review the clinical phenotype of this disease and the pathophysiology of this rare disease with a focus on two unique features of the disease, namely cleft palate and malignant hyperthermia. We also highlight the importance of recognizing this disease's expanding phenotypic spectrum-including its susceptibility to malignant hyperthermia-and providing appropriate care to affected individuals and families.
Collapse
Affiliation(s)
- Momen Almomen
- Department of Neurosciences, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Patrick G Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, State of Qatar
| |
Collapse
|
13
|
Starosta RT, Lee AJ, Toolan ER, He M, Wongkittichote P, Daniel EJP, Radenkovic S, Budhraja R, Pandey A, Sharma J, Morava E, Nguyen H, Dickson PI. D-mannose as a new therapy for fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG). Mol Genet Metab 2024; 142:108488. [PMID: 38735264 DOI: 10.1016/j.ymgme.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION D-mannose is a promising new treatment for FCSK-CDG.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA; Division of Clinical Genetics and Metabolism, University of Colorado Anschutz, Aurora, CO, USA; Graduate Program in Science: Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Angela J Lee
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth R Toolan
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Rohit Budhraja
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Hoanh Nguyen
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia I Dickson
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Shah R, Eklund EA, Radenkovic S, Sadek M, Shammas I, Verberkmoes S, Ng BG, Freeze HH, Edmondson AC, He M, Kozicz T, Altassan R, Morava E. ALG13-Congenital Disorder of Glycosylation (ALG13-CDG): Updated clinical and molecular review and clinical management guidelines. Mol Genet Metab 2024; 142:108472. [PMID: 38703411 PMCID: PMC11402470 DOI: 10.1016/j.ymgme.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.
Collapse
Affiliation(s)
- Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ibrahim Shammas
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanne Verberkmoes
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary
| | - Ruqaiah Altassan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Genomics, Centre for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary.
| |
Collapse
|
15
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
16
|
Xu G, Pan H, Fan L, Zhang L, Li J, Cheng S, Meng L, Shen N, Liu Y, Li Y, Huang T, Zhou L. Dietary Betaine Improves Glucose Metabolism in Obese Mice. J Nutr 2024; 154:1309-1320. [PMID: 38417550 DOI: 10.1016/j.tjnut.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Obesity caused by the overconsumption of energy-dense foods high in fat and sugar has contributed to the growing prevalence of type 2 diabetes. Betaine, found in food or supplements, has been found to lower blood glucose concentrations, but its exact mechanism of action is not well understood. OBJECTIVES A comprehensive evaluation of the potential mechanisms by which betaine supplementation improves glucose metabolism. METHODS Hyperglycemic mice were fed betaine to measure the indexes of glucose metabolism in the liver and muscle. To explore the mechanism behind the regulation of betaine on glucose metabolism, Ribonucleic Acid-Seq was used to analyze the livers of the mice. In vitro, HepG2 and C2C12 cells were treated with betaine to more comprehensively evaluate the effect of betaine on glucose metabolism. RESULTS Betaine was added to the drinking water of high-fat diet-induced mice, and it was found to reduce blood glucose concentrations and liver triglyceride concentrations without affecting body weight, confirming its hypoglycemic effect. To investigate the specific mechanism underlying its hypoglycemic effect, protein-protein interaction enrichment analysis of the liver revealed key nodes associated with glucose metabolism, including cytochrome P450 family activity, insulin sensitivity, glucose homeostasis, and triglyceride concentrations. The Kyoto Encyclopedia of Genes and Genomes and gene ontogeny enrichment analyses showed significant enrichment of the Notch signaling pathway. These results provided bioinformatic evidence for specific pathways through which betaine regulates glucose metabolism. Key enzyme activities involved in glucose uptake, glycogen synthesis, and glycogenolysis pathways of the liver and muscle were measured, and improvements were observed in these pathways. CONCLUSIONS This study provides new insight into the mechanisms by which betaine improves glucose metabolism in the liver and muscle and supports its potential as a drug for the treatment of metabolic disorders related to glucose.
Collapse
Affiliation(s)
- Gaoxiao Xu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Hongyuan Pan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liping Fan
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jian Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Shimei Cheng
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Libing Meng
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Nana Shen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, and Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tengda Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - Lei Zhou
- Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
17
|
Wolfsdorf JI, Derks TGJ, Drachmann D, Shah P, Thornton PS, Weinstein DA. Idiopathic Pathological Ketotic Hypoglycemia: Finding the Needle in a Haystack. Horm Res Paediatr 2024:1-12. [PMID: 38513624 DOI: 10.1159/000538483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 03/23/2024] Open
Abstract
Sick children often have a decreased appetite and experience vomiting and diarrhea; however, hypoglycemia (plasma glucose concentration ≤50 mg/dL or 2.8 mmol/L) is rare. Ketotic hypoglycemia (KH) is the most common cause of hypoglycemia presenting to an Emergency Department in a previously healthy child between 6 months and 6 years of age. Ketosis and hypoglycemia are now well understood to be normal physiologic responses of young children to prolonged fasting.There is now substantial evidence that the term KH describes a variety of conditions including both the lower end of the normal distribution of fasting tolerance in young children as well as numerous rare disorders that impair fasting adaptation. Recent advances in molecular genetic testing have led to the discovery of these rare disorders. Idiopathic pathological KH is a diagnosis of exclusion that describes rare children who have abnormally limited fasting tolerance, experience recurrent episodes of KH, or develop symptoms of hypoglycemia despite elevated ketone levels, and in whom an explanation cannot be found despite extensive investigation. This review provides an approach to distinguishing between physiological KH and pathological KH and includes recommendations for management.
Collapse
Affiliation(s)
- Joseph I Wolfsdorf
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Danielle Drachmann
- Ketotic Hypoglycemia International, Skanderborg, Denmark, Patient-Centered Research, Evidera, London, UK
| | - Pratik Shah
- Paediatric Endocrinology and Diabetes, The Royal London Children's Hospital, Barts Health NHS Trust and Honorary Senior Lecturer, Queen Mary University London, London, UK
| | - Paul S Thornton
- Division of Endocrinology and Diabetes and the Congenital Hyperinsulinism Center, Cook Children's Medical Center and Department of Pediatrics, Burnett School of Medicine, Texas Christian University, Fort Worth, Texas, USA
| | - David A Weinstein
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Poejo J, Gomes AI, Granjo P, Dos Reis Ferreira V. Resilience in patients and family caregivers living with congenital disorders of glycosylation (CDG): a quantitative study using the brief resilience coping scale (BRCS). Orphanet J Rare Dis 2024; 19:98. [PMID: 38439013 PMCID: PMC10913249 DOI: 10.1186/s13023-024-03043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Patients and family caregivers living with Congenital Disorders of Glycosylation (CDG) experience a heavy burden, which can impact their resiliency and quality of life. The study's purpose was to measure the resilience levels of patients and family caregivers living with CDG using the brief resilience coping scale. METHODS We conducted an observational, cross-sectional study with 23 patients and 151 family caregivers living with CDG. Descriptive analyses were performed to characterize patients with CDG and family caregivers' samples. Additionally, we assessed correlations between resilience and specific variables (e.g., age, academic degree, time until diagnosis) and examined resilience differences between groups (e.g., sex, marital status, occupation, professional and social support). RESULTS GNE myopathy was the most prevalent CDG among patients, while in family caregivers was PMM2-CDG. Both samples showed medium levels of resilience coping scores. Individuals with GNE myopathy had significantly higher scores of resilience compared to patients with other CDG. Resilience was positively correlated with educational degree in patients with CDG. Family caregivers had marginally significant higher scores of resilience coping if they received any kind of professional support or had contact with other families or people with the same or similar disease, compared with unsupported individuals. CONCLUSIONS Despite the inherited difficulties of living with a life-threatening disease like CDG, patients and family caregivers showed medium resilient coping levels. Resilience scores changed significantly considering the CDG genotype, individual's academic degree and professional and social support. These exploratory findings can empower the healthcare system and private institutions by promoting the development of targeted interventions to enhance individuals` coping skills and improve the overall well-being and mental health of the CDG community.
Collapse
Affiliation(s)
- Joana Poejo
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Ana Isabel Gomes
- Centro de Investigação Em Ciência Psicológica (CICPSI), Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisbon, Portugal
| | - Pedro Granjo
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| |
Collapse
|
19
|
Espinosa-Mojica AA, Varo Varo C. Determining the Linguistic Profile of Children With Rare Genetic Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:170-186. [PMID: 38085694 DOI: 10.1044/2023_jslhr-23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE Language studies on populations with rare genetic disorders are limited. Hence, there is little data on commonly found or expected developmental linguistic traits and cognitive mechanisms that may be impaired. Based on the hypothesis that there is a close connection between language and cognition and the relevance of specific genetic changes in the development of each, our goal was to provide linguistic data on relationships with other executive functioning mechanisms. METHOD This study assessed language skills, communicative behaviors, and executive functions in four children, aged 7-9 years, with rare genetic disorders, using standardized protocols and tests. RESULTS The findings revealed different levels of language impairment and executive functioning problems in each case. The overall executive function index performance for each of the four cases studied was clinically significantly high, indicating executive dysfunction. CONCLUSIONS The cases analyzed illustrate different types of atypical development that affect both language and other cognitive mechanisms and underscore the importance of executive skills and the various ways in which they are involved in diverse levels of language that might be affected to a greater or lesser degree in rare genetic disorders. In conclusion, we found that language dysfunction is a salient feature of the rare genetic disorders included in our study, although this is not necessarily true for all genetic disorders. Along with these conclusive results, we performed a qualitative analysis of the linguistic and cognitive components that enable functional communication in order to allow optimal interpretation of the data we have collected, laying the foundations for a more effective therapeutic approach.
Collapse
|
20
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, Dos Reis Ferreira V. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet J Rare Dis 2023; 18:329. [PMID: 37858231 PMCID: PMC10585812 DOI: 10.1186/s13023-023-02879-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a complex and heterogeneous family of rare metabolic diseases. With a clinical history that dates back over 40 years, it was the recent multi-omics advances that mainly contributed to the fast-paced and encouraging developments in the field. However, much remains to be understood, with targeted therapies' discovery and approval being the most urgent unmet need. In this paper, we present the 2022 state of the art of CDG, including glycosylation pathways, phenotypes, genotypes, inheritance patterns, biomarkers, disease models, and treatments. In light of our current knowledge, it is not always clear whether a specific disease should be classified as a CDG. This can create ambiguity among professionals leading to confusion and misguidance, consequently affecting the patients and their families. This review aims to provide the CDG community with a comprehensive overview of the recent progress made in this field.
Collapse
Affiliation(s)
- Rita Francisco
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Sandra Brasil
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Joana Poejo
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Jaak Jaeken
- Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, 3000, Louvain, Belgium
| | - Carlota Pascoal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Paula A Videira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal.
| |
Collapse
|
22
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Balakrishnan B, Altassan R, Budhraja R, Liou W, Lupo A, Bryant S, Mankouski A, Radenkovic S, Preston GJ, Pandey A, Boudina S, Kozicz T, Morava E, Lai K. AAV-based gene therapy prevents and halts the progression of dilated cardiomyopathy in a mouse model of phosphoglucomutase 1 deficiency (PGM1-CDG). Transl Res 2023; 257:1-14. [PMID: 36709920 PMCID: PMC10192047 DOI: 10.1016/j.trsl.2023.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Phosphoglucomutase 1 (PGM1) deficiency is recognized as the third most common N-linked congenital disorders of glycosylation (CDG) in humans. Affected individuals present with liver, musculoskeletal, endocrine, and coagulation symptoms; however, the most life-threatening complication is the early onset of dilated cardiomyopathy (DCM). Recently, we discovered that oral D-galactose supplementation improved liver disease, endocrine, and coagulation abnormalities, but does not alleviate the fatal cardiomyopathy and the associated myopathy. Here we report on left ventricular ejection fraction (LVEF) in 6 individuals with PGM1-CDG. LVEF was pathologically low in most of these individuals and varied between 10% and 65%. To study the pathobiology of the cardiac disease observed in PGM1-CDG, we constructed a novel cardiomyocyte-specific conditional Pgm2 gene (mouse ortholog of human PGM1) knockout (Pgm2 cKO) mouse model. Echocardiography studies corroborated a DCM phenotype with significantly reduced ejection fraction and left ventricular dilation similar to those seen in individuals with PGM1-CDG. Histological studies demonstrated excess glycogen accumulation and fibrosis, while ultrastructural analysis revealed Z-disk disarray and swollen/fragmented mitochondria, which was similar to the ultrastructural pathology in the cardiac explant of an individual with PGM1-CDG. In addition, we found decreased mitochondrial function in the heart of KO mice. Transcriptomic analysis of hearts from mutant mice demonstrated a gene signature of DCM. Although proteomics revealed only mild changes in global protein expression in left ventricular tissue of mutant mice, a glycoproteomic analysis unveiled broad glycosylation changes with significant alterations in sarcolemmal proteins including different subunits of laminin-211, which was confirmed by immunoblot analyses. Finally, augmentation of PGM1 in KO mice via AAV9-PGM1 gene replacement therapy prevented and halted the progression of the DCM phenotype.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Willisa Liou
- Electron Microscopy Core Facility, University of Utah, Salt Lake City, Utah, USA
| | - Arielle Lupo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Sarah Bryant
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Anastasiya Mankouski
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Graeme J Preston
- Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Anatomy, University of Pecs School of Medicine, Pecs, Hungary
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Medical Genetics, University of Pecs, School of Medicine, Pecs, Hungary
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
24
|
Rahman S, Patterson M, Peters V, Morava E, Zschocke J, Baumgartner M. Guidelines in the JIMD: Evidence-based practice for inherited metabolic disease. J Inherit Metab Dis 2023. [PMID: 37157107 DOI: 10.1002/jimd.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Affiliation(s)
- Shamima Rahman
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marc Patterson
- Departments of Neurology, Pediatrics, and Clinical Genomics, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Yoldas Celik M, Yazici H, Erdem F, Yuksel Yanbolu A, Aykut A, Durmaz A, Zeybek S, Canda E, Kalkan Ucar S, Coker M. Unique clinical presentations and follow-up outcomes from experience with congenital disorders of glycosylation: PMM2-PGM1-DPAGT1-MPI-POMT2-B3GALNT2-DPM1-SRD5A3-CDG. J Pediatr Endocrinol Metab 2023:jpem-2022-0641. [PMID: 37042760 DOI: 10.1515/jpem-2022-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVES Congenital Glycosylation Disorders (CDG) are a large group of inherited metabolic diseases with multi-organ involvement. Herein, we aimed to expand the clinical characteristics of patients with CDG based on our experience with diagnoses and follow-up of CDG patients from different subtypes. METHODS The clinical and laboratory findings from the last 15 years were reviewed retrospectively in Ege University Child Metabolism and Nutrition Department. RESULTS There were 8 (57.2 %) females and 6 (42.8 %) males. Diagnoses of the patients were PMM2-CDG (n=4), PGM1-CDG (n=2), DPAGT1-CDG (n=2), SRD5A3-CDG (n=2), MPI-CDG (n=1), POMT2-CDG (n=1), B3GALNT2-CDG (n=1), DPM1-CDG (n=1). The clinical findings of the patients were dysmorphia (85.7 %), developmental delay (85.7 %), intellectual disability (85.7 %), ocular abnormalities (64.2 %), skeletal malformations (64.2 %), failure to thrive (57.1 %), microcephaly (57.1 %), hepatomegaly (35.7 %), hearing loss (35.7 %), seizures (28.5 %), gastrointestinal symptoms (21.4 %), endocrine abnormalities (21.4 %), and cardiac abnormalities (7.1 %). Laboratory findings were abnormal TIEF (92.8 %), abnormal liver enzymes (64.2 %), decreased protein C (64.2 %), decreased antithrombin III (64.2 %), decreased protein S (42.8 %), hypogammaglobulinemia (35.7 %), cerebellar hypoplasia (28.5 %), CK elevation (7.1 %), and hypoglycemia (7.1 %). CONCLUSIONS This study contributes to the literature by sharing our ultra-rare DPM1-CDG case with less than 20 cases in the literature and expanding the clinical and molecular characteristics of other CDG patients. Hyperinsulinemic hypoglycemia, short stature, hypothyroidism, growth hormone deficiency, hypogammaglobulinemia, pericardial effusion, elevated CK, congenital myasthenia, and anorectal malformation were unique findings that were observed. Cerebello-ocular findings accompanying multi-organ involvement were an essential clue for a possible CDG.
Collapse
Affiliation(s)
- Merve Yoldas Celik
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Havva Yazici
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Fehime Erdem
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ayse Yuksel Yanbolu
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Ayca Aykut
- Department of Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Asude Durmaz
- Department of Genetics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Selcan Zeybek
- Department of Genetics, Tinaztepe University Faculty of Medicine, Izmir, Türkiye
| | - Ebru Canda
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Sema Kalkan Ucar
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Mahmut Coker
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Türkiye
| |
Collapse
|
26
|
Altassan R, Albert‐Brotons DC, Alowain M, Al‐Halees Z, Jaeken J, Morava E. Successful heart transplantation in an infant with phosphoglucomutase 1 deficiency (PGM1-CDG). JIMD Rep 2023; 64:123-128. [PMID: 36873091 PMCID: PMC9981415 DOI: 10.1002/jmd2.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
We report successful heart transplantation in a phosphoglucomutase 1 deficient (PGM1-CDG) patient. She presented with facial dysmorphism, bifid uvula and structural heart defects. Newborn screening was positive for classic galactosemia. The patient was on a galactose-free diet for 8 months. Eventually, whole exome sequencing excluded the galactosemia and revealed PGM1-CDG. Oral D-galactose therapy was started. Rapid deterioration of the progressive dilated cardiomyopathy prompted heart transplantation at the age of 12 months. Cardiac function was stable in the first 18 months of follow-up, and hematologic, hepatic, and endocrine laboratory findings improved during D-galactose therapy. The latter therapy improves several systemic symptoms and biochemical abnormalities in PGM1-CDG but does not correct the heart failure related to cardiomyopathy. Heart transplantation has so far only been described in DOLK-CDG.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- College of MedicineAlfasial UniversityRiyadhSaudi Arabia
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Dimpna C. Albert‐Brotons
- Department of Cardiology, Heart CentreKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Mohammad Alowain
- Department of Medical Genomics, Centre for Genomic MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- College of MedicineAlfasial UniversityRiyadhSaudi Arabia
| | - Zohair Al‐Halees
- Department of Cardiology, Heart CentreKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Jaak Jaeken
- Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium
| | - Eva Morava
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
27
|
Radenkovic S, Laerdahl JK, Backe PH, Morava E. The role of PGM1isoform 2 in PGM1-CDG: One step closer to genotype-phenotype correlation? J Inherit Metab Dis 2023; 46:159-160. [PMID: 36843136 DOI: 10.1002/jimd.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Paul H Backe
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Genetics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
28
|
Radenkovic S, Johnsen C, Schulze A, Lail G, Guilder L, Schwartz K, Schultz M, Mercimek-Andrews S, Boyer S, Morava E. Novel insights into the phenotype and long-term D-gal treatment in PGM1-CDG: a case series. THERAPEUTIC ADVANCES IN RARE DISEASE 2023; 4:26330040221150269. [PMID: 37181075 PMCID: PMC10032428 DOI: 10.1177/26330040221150269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/20/2022] [Indexed: 05/16/2023]
Abstract
Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) (OMIM: 614921) is a rare autosomal recessive inherited metabolic disease caused by the deficiency of the PGM1 enzyme. Like other CDGs, PGM1-CDG has a multisystemic presentation. The most common clinical findings include liver involvement, rhabdomyolysis, hypoglycemia, and cardiac involvement. Phenotypic severity can vary, though cardiac presentation is usually part of the most severe phenotype, often resulting in early death. Unlike the majority of CDGs, PGM1-CDG has a treatment: oral D-galactose (D-gal) supplementation, which significantly improves many aspects of the disorder. Here, we describe five PGM1-CDG patients treated with D-gal and report both on novel clinical symptoms in PGM1-CDG as well as the effects of the D-gal treatment. D-gal resulted in notable clinical improvement in four patients, though the efficacy of treatment varied between the patients. Furthermore, there was a significant improvement or normalization in transferrin glycosylation, liver transaminases and coagulation factors in three patients, creatine kinase (CK) levels in two, while hypoglycemia resolved in two patients. One patient discontinued the treatment due to urinary frequency and lack of clinical improvement. Furthermore, one patient experienced recurrent episodes of rhabdomyolysis and tachycardia even on higher doses of therapy. D-gal also failed to improve the cardiac function, which was initially abnormal in three patients, and remains the biggest challenge in treating PGM1-CDG. Together, our findings expand the phenotype of PGM1-CDG and underline the importance of developing novel therapies that would specifically treat the cardiac phenotype in PGM1-CDG.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic,
55905 Rochester, MN, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic,
Rochester, MN, USA
| | - Andreas Schulze
- Department of Biochemistry, University of
Toronto, Toronto, ON, Canada
- Hospital for Sick Children and Department of
Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Gurnoor Lail
- Hospital for Sick Children and Department of
Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Laura Guilder
- Hospital for Sick Children and Department of
Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Kaitlin Schwartz
- Department of Clinical Genomics, Mayo Clinic,
Rochester, MN, USA
| | - Matthew Schultz
- Biochemical Genetics Laboratory, Department of
Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | | | - Suzanne Boyer
- Department of Clinical Genomics, Mayo Clinic,
Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic,
Rochester, MN, USA
| |
Collapse
|
29
|
Francisco R, Alves S, Gomes C, Granjo P, Pascoal C, Brasil S, Neves A, Santos I, Miller A, Krasnewich D, Morava E, Lam C, Jaeken J, Videira PA, dos Reis Ferreira V. A Participatory Framework for Plain Language Clinical Management Guideline Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13506. [PMID: 36294089 PMCID: PMC9603256 DOI: 10.3390/ijerph192013506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Clinical management guidelines (CMGs) are decision support tools for patient care used by professionals, patients, and family caregivers. Since clinical experts develop numerous CMGs, their technical language hinders comprehension and access by nonmedical stakeholders. Additionally, the views of affected individuals and their families are often not incorporated into treatment guidelines. We developed an adequate methodology for addressing the needs and preferences of family and professional stakeholders regarding CMGs, a recently developed protocol for managing congenital disorders of glycosylation (CDG), a family of rare metabolic diseases. We used the CDG community and phosphomannomutase 2 (PMM2)-CDG CMGs as a pilot to test and implement our methodology. RESULTS We listened to 89 PMM2-CDG families and 35 professional stakeholders and quantified their CMG-related needs and preferences through an electronic questionnaire. Most families and professionals rated CMGs as relevant (86.5% and 94.3%, respectively), and valuable (84.3% and 94.3%, respectively) in CDG management. The most identified challenges were the lack of CMG awareness (50.6% of families) and the lack of plain language CMG (39.3% of professionals). Concordantly, among families, the most suggested solution was involving them in CMG development (55.1%), while professionals proposed adapting CMGs to include plain language (71.4%). Based on these results, a participatory framework built upon health literacy principles was created to improve CMG comprehension and accessibility. The outputs are six complementary CMG-related resources differentially adapted to the CDG community's needs and preferences, with a plain language PMM2-CDG CMG as the primary outcome. Additionally, the participants established a distribution plan to ensure wider access to all resources. CONCLUSIONS This empowering, people-centric methodology accelerates CMG development and accessibility to all stakeholders, ultimately improving the quality of life of individuals living with a specific condition and raising the possibility of application to other clinical guidelines.
Collapse
Affiliation(s)
- Rita Francisco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Susana Alves
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from NOVA School of Science and Technology/FCT NOVA, NOVA University Lisbon, Caparica, 2825-149 Setúbal, Portugal
| | - Catarina Gomes
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from NOVA School of Science and Technology/FCT NOVA, NOVA University Lisbon, Caparica, 2825-149 Setúbal, Portugal
| | - Pedro Granjo
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from NOVA School of Science and Technology/FCT NOVA, NOVA University Lisbon, Caparica, 2825-149 Setúbal, Portugal
| | - Carlota Pascoal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Sandra Brasil
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alice Neves
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from NOVA School of Science and Technology/FCT NOVA, NOVA University Lisbon, Caparica, 2825-149 Setúbal, Portugal
| | - Inês Santos
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from NOVA School of Science and Technology/FCT NOVA, NOVA University Lisbon, Caparica, 2825-149 Setúbal, Portugal
| | | | - Donna Krasnewich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Metabolic Centre, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Medical Genetics, Medical School, University of Pécs, 7622 Pecs, Hungary
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jaak Jaeken
- Centre of Metabolic Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Paula A. Videira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- CDG & Allies—Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
30
|
Zheng Z, Zhang X, Bai J, Long L, Liu D, Zhou Y. PGM1 suppresses colorectal cancer cell migration and invasion by regulating the PI3K/AKT pathway. Cancer Cell Int 2022; 22:201. [PMID: 35614441 PMCID: PMC9134613 DOI: 10.1186/s12935-022-02545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphoglucomutase 1 (PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) has remained unknown. Here, we studied the functions and mechanisms of PGM1 in CRC. METHODS We verified PGM-1 as a differentially expressed gene (DEG) by employing a comprehensive strategy of TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissues were determined by qRT-PCR, western blotting (WB), and immunohistochemical (IHC) staining in a tissue microarray. PGM1 functions were analyzed by CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated by studying tumor formation in vivo. RESULTS The levels of PGM1 mRNA and protein were both reduced in CRC tissues, and the reductions were related to CRC pathology and overall survival. PGM1 knockdown stimulated both cell proliferation and colony formation, and inhibited cell cycle arrest and apoptosis, while overexpression of PGM1 produced the opposite effects in CRC cells both in vivo and in vitro. Furthermore, the effects of PGM1 were related to the PI3K/ AKT pathway. CONCLUSION We verified that PGM1 suppresses CRC progression via the PI3K/AKT pathway. These results suggest the potential for targeting PGM1 in treatment of CRC.
Collapse
Affiliation(s)
- Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jian Bai
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Di Liu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
31
|
Boyer SW, Johnsen C, Morava E. Nutrition interventions in congenital disorders of glycosylation. Trends Mol Med 2022; 28:463-481. [PMID: 35562242 DOI: 10.1016/j.molmed.2022.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a group of more than 160 inborn errors of metabolism affecting multiple pathways of protein and lipid glycosylation. Patients present with a wide range of symptoms and therapies are only available for very few subtypes. Specific nutritional treatment options for certain CDG types include oral supplementation of monosaccharide sugars, manganese, uridine, or pyridoxine. Additional management includes specific diets (i.e., complex carbohydrate or ketogenic diet), iron supplementation, and albumin infusions. We review the dietary management in CDG with a focus on two subgroups: N-linked glycosylation defects and GPI-anchor disorders.
Collapse
Affiliation(s)
- Suzanne W Boyer
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Stiers KM, Owuocha LF, Beamer LJ. Effects of the T337M and G391V disease-related variants on human phosphoglucomutase 1: structural disruptions large and small. Acta Crystallogr F Struct Biol Commun 2022; 78:200-209. [PMID: 35506765 PMCID: PMC9067374 DOI: 10.1107/s2053230x22004174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis in human cells. Missense variants of this enzyme cause an inborn error of metabolism, which is categorized as a congenital disorder of glycosylation. Here, two disease-related variants of PGM1, T337M and G391V, which are both located in domain 3 of the four-domain protein, were characterized via X-ray crystallography and biochemical assays. The studies show multiple impacts resulting from these dysfunctional variants, including both short- and long-range structural perturbations. In the T337M variant these are limited to a small shift in an active-site loop, consistent with reduced enzyme activity. In contrast, the G391V variant produces a cascade of structural perturbations, including displacement of both the catalytic phosphoserine and metal-binding loops. This work reinforces several themes that were found in prior studies of dysfunctional PGM1 variants, including increased structural flexibility and the outsized impacts of mutations affecting interdomain interfaces. The molecular mechanisms of PGM1 variants have implications for newly described inherited disorders of related enzymes.
Collapse
Affiliation(s)
- Kyle M. Stiers
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Luckio F. Owuocha
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Lesa J. Beamer
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
34
|
Liver Involvement in Congenital Disorders of Glycosylation: A Systematic Review. J Pediatr Gastroenterol Nutr 2021; 73:444-454. [PMID: 34173795 PMCID: PMC9255677 DOI: 10.1097/mpg.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An ever-increasing number of disturbances in glycosylation have been described to underlie certain unexplained liver diseases presenting either almost isolated or in a multi-organ context. We aimed to update previous literature screenings which had identified up to 23 forms of congenital disorders of glycosylation (CDG) with associated liver disease. We conducted a comprehensive literature search of three scientific electronic databases looking at articles published during the last 20 years (January 2000-October 2020). Eligible studies were case reports/series reporting liver involvement in CDG patients. Our systematic review led us to point out 41 forms of CDG where the liver is primarily affected (n = 7) or variably involved in a multisystem disease with mandatory neurological abnormalities (n = 34). Herein we summarize individual clinical and laboratory presentation characteristics of these 41 CDG and outline their main presentation and diagnostic cornerstones with the aid of two synoptic tables. Dietary supplementation strategies have hitherto been investigated only in seven of these CDG types with liver disease, with a wide range of results. In conclusion, the systematic review recognized a liver involvement in a somewhat larger number of CDG variants corresponding to about 30% of the total of CDG so far reported, and it is likely that the number may increase further. This information could assist in an earlier correct diagnosis and a possibly proper management of these disorders.
Collapse
|
35
|
Park JH, Marquardt T. Treatment Options in Congenital Disorders of Glycosylation. Front Genet 2021; 12:735348. [PMID: 34567084 PMCID: PMC8461064 DOI: 10.3389/fgene.2021.735348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the identification and diagnosis of congenital disorders of glycosylation (CDG), treatment options remain limited and are often constrained to symptomatic management of disease manifestations. However, recent years have seen significant advances in treatment and novel therapies aimed both at the causative defect and secondary disease manifestations have been transferred from bench to bedside. In this review, we aim to give a detailed overview of the available therapies and rising concepts to treat these ultra-rare diseases.
Collapse
Affiliation(s)
- Julien H Park
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
36
|
Johnsen C, Edmondson AC. Manifestations and Management of Hepatic Dysfunction in Congenital Disorders of Glycosylation. Clin Liver Dis (Hoboken) 2021; 18:54-66. [PMID: 34584669 PMCID: PMC8450475 DOI: 10.1002/cld.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
| | - Andrew C. Edmondson
- Division of Human GeneticsDepartment of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| |
Collapse
|
37
|
Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021; 9:715151. [PMID: 34540767 PMCID: PMC8446601 DOI: 10.3389/fped.2021.715151] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous disorders characterized by defects in the synthesis of glycans and their attachment to proteins and lipids. This manuscript aims to provide a classification of the clinical presentation, diagnostic methods, and treatment of CDG based on the literature review and our own experience (referral center in Poland). A diagnostic algorithm for CDG was also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency. Nowadays, high-performance liquid chromatography, capillary zone electrophoresis, and mass spectrometry techniques are used, although they are not routinely available. Since next-generation sequencing became more widely available, an improvement in diagnostics has been observed, with more patients and novel CDG subtypes being reported. Early and accurate diagnosis of CDG is crucial for timely implementation of appropriate therapies and improving clinical outcomes. However, causative treatment is available only for few CDG types.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | | |
Collapse
|
38
|
Perales-Clemente E, Liedtke K, Studinski A, Radenkovic S, Gavrilov D, Oglesbee D, Matern D, Rinaldo P, Tortorelli S, Morava E, Raymond K. A new D-galactose treatment monitoring index for PGM1-CDG. J Inherit Metab Dis 2021; 44:1263-1271. [PMID: 34043239 DOI: 10.1002/jimd.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
Phosphoglucomutase 1 (PGM1) catalyzes the interconversion of glucose-6-phosphate to glucose-1-phosphate and is a key enzyme of glycolysis, glycogenesis, and glycogenolysis. PGM1 deficiency (OMIM: 614921) was initially defined as a glycogen storage disorder (type XIV), and later re-classified as a PGM1-congenital disorder of glycosylation (PGM1-CDG). Serum transferrin (Tf) glycan isoform analysis by liquid chromatography-mass spectrometry (LC-MS) is used as a primary diagnostic screen tool, and reveals a very unique CDG profile described as a mixture of CDG-type I and CDG-type II patterns. Oral d-galactose supplementation shows significant clinical and metabolic improvements, which are indicated by the Tf glycan isoform normalization over time in patients with PGM1-CDG. Thus, there is a need for biomarkers to guide d-galactose dosage in patients in order to maintain effective and safe drug levels. Here, we present a simplified algorithm called PGM1-CDG Treatment Monitoring Index (PGM1-TMI) for assessing the response of PGM1-CDG patients to d-galactose supplementation. For our single-center cohort of 16 PGM1-CDG patients, the Tf glycan profile analysis provided the biochemical diagnosis in all of them. In addition, the PGM1-TMI was reduced in PGM1-CDG patients under d-galactose supplementation as compared with their corresponding values before treatment, indicating that glycosylation proceeds towards normalization. PGM1-TMI allows tracking Tf glycan isoform normalization over time when the patients are on d-galactose supplementation.
Collapse
Affiliation(s)
- Ester Perales-Clemente
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristen Liedtke
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - April Studinski
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Radenkovic
- Katholieke Universiteit Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Hepatology, Department CHROMETA, KU, Leuven, Belgium
| | - Dimitar Gavrilov
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Tortorelli
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Conte F, van Buuringen N, Voermans NC, Lefeber DJ. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj 2021; 1865:129898. [PMID: 33878388 DOI: 10.1016/j.bbagen.2021.129898] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Galactose is an essential carbohydrate for cellular metabolism, as it contributes to energy production and storage in several human tissues while also being a precursor for glycosylation. Galactosylated glycoconjugates, such as glycoproteins, keratan sulfate-containing proteoglycans and glycolipids, exert a plethora of biological functions, including structural support, cellular adhesion, intracellular signaling and many more. The biological relevance of galactose is further entailed by the number of pathogenic conditions consequent to defects in galactosylation and galactose homeostasis. The growing number of rare congenital disorders involving galactose along with its recent therapeutical applications are drawing increasing attention to galactose metabolism. In this review, we aim to draw a comprehensive overview of the biological functions of galactose in human cells, including its metabolism and its role in glycosylation, and to provide a systematic description of all known congenital metabolic disorders resulting from alterations of its homeostasis.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nicole van Buuringen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
40
|
Ferrer A, Starosta RT, Ranatunga W, Ungar D, Kozicz T, Klee E, Rust LM, Wick M, Morava E. Fetal glycosylation defect due to ALG3 and COG5 variants detected via amniocentesis: Complex glycosylation defect with embryonic lethal phenotype. Mol Genet Metab 2020; 131:424-429. [PMID: 33187827 DOI: 10.1016/j.ymgme.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Congenital disorders of glycosylation (CDG) are inborn errors of glycan metabolism with high clinical variability. Only a few antenatal cases have been described with CDG. Due to a lack of reliable biomarker, prenatal CDG diagnostics relies primarily on molecular studies. In the presence of variants of uncertain significance prenatal glycosylation studies are very challenging. CASE REPORT A consanguineous couple had a history of second-trimester fetal demise with tetralogy of Fallot and skeletal dysplasia. In the consecutive pregnancy, the second trimester ultrasonography showed skeletal dysplasia, vermian hypoplasia, congenital heart defects, omphalocele and dysmorphic features. Prenatal chromosomal microarray revealed a large region of loss of heterozygosity. Demise occurred at 30 weeks. Fetal whole exome sequencing showed a novel homozygous likely pathogenic variant in ALG3 and a variant of uncertain significance in COG5. METHODS Western blot was used to quantify ALG3, COG5, COG6, and the glycosylation markers ICAM-1 and LAMP2. RT-qPCR was used for ALG3 and COG5 expression in cultured amniocytes and compared to age matched controls. RESULTS ALG3 and COG5 mRNA levels were normal. ICAM-1, LAMP2, ALG3 and COG5 levels were decreased in cultured amniocytes, suggesting the possible involvement of both genes in the complex phenotype. CONCLUSION This is the first case of successful use of glycosylated biomarkers in amniocytes, providing further options of functional antenatal testing in CDG.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo Tzovenos Starosta
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Dani Ungar
- Department of Biology, University of York, York, UK
| | - Tamas Kozicz
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura M Rust
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Myra Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|