1
|
Calì B, Deygas M, Munari F, Marcuzzi E, Cassará A, Toffali L, Vetralla M, Bernard M, Piel M, Gagliano O, Mastrogiovanni M, Laudanna C, Elvassore N, Molon B, Vargas P, Viola A. Atypical CXCL12 signaling enhances neutrophil migration by modulating nuclear deformability. Sci Signal 2022; 15:eabk2552. [DOI: 10.1126/scisignal.abk2552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To reach inflamed tissues from the circulation, neutrophils must overcome physical constraints imposed by the tissue architecture, such as the endothelial barrier or the three-dimensional (3D) interstitial space. In these microenvironments, neutrophils are forced to migrate through spaces smaller than their own diameter. One of the main challenges for cell passage through narrow gaps is the deformation of the nucleus, the largest and stiffest organelle in cells. Here, we showed that chemokines, the extracellular signals that guide cell migration in vivo, modulated nuclear plasticity to support neutrophil migration in restricted microenvironments. Exploiting microfabricated devices, we found that the CXC chemokine CXCL12 enhanced the nuclear pliability of mouse bone marrow–derived neutrophils to sustain their migration in 3D landscapes. This previously uncharacterized function of CXCL12 was mediated by the atypical chemokine receptor ACKR3 (also known as CXCR7), required protein kinase A (PKA) activity, and induced chromatin compaction, which resulted in enhanced cell migration in 3D. Thus, we propose that chemical cues regulate the nuclear plasticity of migrating leukocytes to optimize their motility in restricted microenvironments.
Collapse
Affiliation(s)
- Bianca Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Mathieu Deygas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisabetta Marcuzzi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Antonino Cassará
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lara Toffali
- University of Verona, Department of Medicine, Division of General Pathology, Verona, Italy
| | - Massimo Vetralla
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Mathilde Bernard
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Onelia Gagliano
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Marta Mastrogiovanni
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris. France
| | - Carlo Laudanna
- University of Verona, Department of Medicine, Division of General Pathology, Verona, Italy
| | - Nicola Elvassore
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
2
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
3
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
4
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
5
|
Liu W, Hsu AY, Wang Y, Lin T, Sun H, Pachter JS, Groisman A, Imperioli M, Yungher FW, Hu L, Wang P, Deng Q, Fan Z. Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J Leukoc Biol 2021; 111:771-791. [PMID: 34494308 DOI: 10.1002/jlb.1a0720-471r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that β2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited β2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for β2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of β2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in β2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects β2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joel S Pachter
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | | | | | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Kopf A, Kiermaier E. Dynamic Microtubule Arrays in Leukocytes and Their Role in Cell Migration and Immune Synapse Formation. Front Cell Dev Biol 2021; 9:635511. [PMID: 33634136 PMCID: PMC7900162 DOI: 10.3389/fcell.2021.635511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The organization of microtubule arrays in immune cells is critically important for a properly operating immune system. Leukocytes are white blood cells of hematopoietic origin, which exert effector functions of innate and adaptive immune responses. During these processes the microtubule cytoskeleton plays a crucial role for establishing cell polarization and directed migration, targeted secretion of vesicles for T cell activation and cellular cytotoxicity as well as the maintenance of cell integrity. Considering this large spectrum of distinct effector functions, leukocytes require flexible microtubule arrays, which timely and spatially reorganize allowing the cells to accommodate their specific tasks. In contrast to other specialized cell types, which typically nucleate microtubule filaments from non-centrosomal microtubule organizing centers (MTOCs), leukocytes mainly utilize centrosomes for sites of microtubule nucleation. Yet, MTOC localization as well as microtubule organization and dynamics are highly plastic in leukocytes thus allowing the cells to adapt to different environmental constraints. Here we summarize our current knowledge on microtubule organization and dynamics during immune processes and how these microtubule arrays affect immune cell effector functions. We particularly highlight emerging concepts of microtubule involvement during maintenance of cell shape and physical coherence.
Collapse
Affiliation(s)
- Aglaja Kopf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Polymorphonuclear Cell Chemotaxis and Suicidal NETosis: Simultaneous Observation Using fMLP, PMA, H7, and Live Cell Imaging. J Immunol Res 2020; 2020:1415947. [PMID: 32879894 PMCID: PMC7448108 DOI: 10.1155/2020/1415947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotaxis and the formation of suicidal neutrophil extracellular traps (suicidal NETosis) are key functions of polymorphonuclear cells (PMNs). Neutrophil extracellular traps in particular are known to be significantly involved in the severity of inflammatory and immunological disorders such as rheumatoid arthritis and Crohn's disease. Therefore, detailed knowledge of PMNs is essential for analyzing the mechanisms involved in, and developing new therapies for, such diseases. To date, no standard method to analyze these cell activities has been established. This study used in vitro live cell imaging to simultaneously observe and analyze PMN functions. To demonstrate this, the effects of phorbol-12-myristat-13-acetat (PMA, 0.1-10 nM), N-formylmethionine-leucyl-phenylalanine (fMLP, 10 nM), and protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) on PMN chemotaxis and suicidal NETosis were studied. PMA (1 nM-10 nM) resulted in significant concentration-dependent behavior in chemotaxis and an earlier onset of maximum oxidative burst and NET formation of up to 44%. When adding H7, PMA-triggered PMN functions were reduced, demonstrating that all three functions rely mostly on protein kinase C (PKC) activity, while PKC is not essential for fMLP-induced PMN activity. Thus, the method here described can be used to objectively quantify PMN functions and, especially through the regulation of the PKC pathway, could be useful in further clinical studies of immunological disorders.
Collapse
|
9
|
Peligero-Cruz C, Givony T, Sebé-Pedrós A, Dobeš J, Kadouri N, Nevo S, Roncato F, Alon R, Goldfarb Y, Abramson J. IL18 signaling promotes homing of mature Tregs into the thymus. eLife 2020; 9:e58213. [PMID: 32687059 PMCID: PMC7371425 DOI: 10.7554/elife.58213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating IL18R+ Tregs with molecular characteristics highly reminiscent of tissue-resident effector Tregs. Moreover, we show that IL18R+ Tregs are endowed with higher capacity to populate the thymus than their IL18R- or IL18R-/- counterparts, highlighting the key role of IL18R in this process. Finally, we demonstrate that IL18 signaling is critical for the induction of the key thymus-homing chemokine receptor - CCR6 on Tregs. Collectively, this study provides a detailed characterization of the mature Treg subsets in the mouse thymus and identifies a key role of IL18 signaling in controlling the CCR6-CCL20-dependent migration of Tregs into the thymus.
Collapse
Affiliation(s)
| | - Tal Givony
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Yael Goldfarb
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
10
|
A neutrophil-centric view of chemotaxis. Essays Biochem 2020; 63:607-618. [PMID: 31420450 DOI: 10.1042/ebc20190011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Neutrophils are key players of the innate immune system, that are involved in coordinating the initiation, propagation and resolution of inflammation. Accurate neutrophil migration (chemotaxis) to sites of inflammation in response to gradients of chemoattractants is pivotal to these roles. Binding of chemoattractants to dedicated G-protein-coupled receptors (GPCRs) initiates downstream signalling events that promote neutrophil polarisation, a prerequisite for directional migration. We provide a brief summary of some of the recent insights into signalling events and feedback loops that serve to initiate and maintain neutrophil polarisation. This is followed by a discussion of recent developments in the understanding of in vivo neutrophil chemotaxis, a process that is frequently referred to as 'recruitment' or 'trafficking'. Here, we summarise neutrophil mobilisation from and homing to the bone marrow, and briefly discuss the role of glucosaminoglycan-immobilised chemoattractants and their corresponding receptors in the regulation of neutrophil extravasation and neutrophil swarming. We furthermore touch on some of the most recent insights into the roles of atypical chemokine receptors (ACKRs) in neutrophil recruitment, and discuss neutrophil reverse (transendothelial) migration together with potential function(s) in the dissemination and/or resolution of inflammation.
Collapse
|
11
|
Zhang L, Liu X, Song L, Zhai H, Chang C. MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy. Cancer Cell Int 2020; 20:17. [PMID: 31956295 PMCID: PMC6958635 DOI: 10.1186/s12935-020-1095-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microtubule-associated proteins 7(MAP7) was reported to be engaged into the function of neuronal function. The function of MAP7 in human cervical cancer (CC) was unknown. We aimed to uncover the function and mechanism of MAP7 on CC. Methods We applied qRT-PCR, western blot and immunochemistry to detect the expression difference between normal tissue and CC. In vitro, we establish MAP7 stable knocking down and overexpression cell lines and investigated the function and underlying mechanism of MAP7 in CC. Results Both mRNA and protein of MAP7 were upregulated in CC compared with the normal tissue. MAP7 was correlated with the clinical stage and tumor size and lymph node metastasis. MAP7 promotes the invasion and migration of CC cell lines. We next detected EMT pathway and autophagy associated pathway. MAP7 promotes the EMT through modulating the autophagy. Conclusion Taken above, our results showed that MAP7 promotes the migration and invasion and EMT through modulating the autophagy.
Collapse
Affiliation(s)
- Li Zhang
- 1Department of Gynaecology and Obstetrics, Jinan Women and Children Health Hospital, No. 2 Jianguo Xiaojing 3rd Road Center Area, Jinan, Shandong 250001 China
| | - Xudong Liu
- 2Department of Pain, Qilu Hospital of Shandong University, Jinan, China
| | - Lina Song
- 1Department of Gynaecology and Obstetrics, Jinan Women and Children Health Hospital, No. 2 Jianguo Xiaojing 3rd Road Center Area, Jinan, Shandong 250001 China
| | - Hui Zhai
- 1Department of Gynaecology and Obstetrics, Jinan Women and Children Health Hospital, No. 2 Jianguo Xiaojing 3rd Road Center Area, Jinan, Shandong 250001 China
| | - Chaohua Chang
- 3Department of Anethesia, Jinan Women and Children Health Hospital, No. 2 Jianguo Xiaojing 3rd Road Center Area, Jinan, Shandong 250001 China
| |
Collapse
|