1
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Singh MT, Thaggikuppe Krishnamurthy P, Magham SV. Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells. J Drug Target 2024; 32:258-269. [PMID: 38252517 DOI: 10.1080/1061186x.2024.2309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.
Collapse
Affiliation(s)
- Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
3
|
Mao RT, Guo SQ, Zhang G, Li YD, Xu JP, Wang HY, Fu P, Liu CP, Wu SQ, Chen P, Mei YS, Jin QC, Liu CY, Zhang YCF, Ding XY, Liu WJ, Romanova EV, Zhou HB, Cropper EC, Checco JW, Sweedler JV, Jing J. Two C-terminal isoforms of Aplysia tachykinin-related peptide receptors exhibit phosphorylation-dependent and phosphorylation-independent desensitization mechanisms. J Biol Chem 2024; 300:107556. [PMID: 39002683 PMCID: PMC11365428 DOI: 10.1016/j.jbc.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Collapse
Affiliation(s)
- Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Ya-Dong Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Qian Wu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Chun Jin
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Yang Y, Cao X, Wang Y, Wu X, Zhou P, Miao L, Deng X. Neurokinin-1 receptor antagonist aprepitant regulates autophagy and apoptosis via ROS/JNK in intrahepatic cholangiocarcinoma. Liver Int 2024; 44:1651-1667. [PMID: 38554043 DOI: 10.1111/liv.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis and limited treatment options. Aprepitant, a selective NK-1R antagonist, can inhibit the growth of various tumours in vitro and in vivo. However, it remains unclear whether aprepitant has cytotoxic effects on iCCA. METHODS We measured the expression of SP/NK-1R in clinical samples of iCCA by immunohistochemistry. Then, we detected the cytotoxic effects of aprepitant on iCCA cells via MTT, EdU and colony formation assay. We constructed a subcutaneous xenograft model of BALB/c nude mice by using HCCC-9810 and RBE cell lines to explore the effects of aprepitant in vivo. To elucidate the potential mechanisms, we explored the pro-apoptotic effect of aprepitant by flow cytometric, western blotting, ROS detection and JC-1 staining. Furthermore, we detected the autophagic level of HCCC-9810 and RBE by western blotting, mRFP-eGFP-LC3 adenovirus transfection and electron microscope. RESULTS SP/NK-1R is significantly expressed in iCCA. Aprepitant inhibited human iCCA xenograft growth and dose-dependently decreased the viability of RBE and HCCC-9810 cells. Aprepitant-induced mitochondria-dependent apoptosis through ROS/JNK pathway. Additionally, pretreatment with z-VAD-fmk partly reversed the effect of aprepitant on cell viability, while NAC completely attenuated the cytotoxic effects of aprepitant in vitro. Furthermore, we observed the dynamic changes of autophagosome in RBE and HCCC-9810 cells treated with aprepitant. CONCLUSION SP/NK-1R signalling is significantly activated in iCCA and promotes the proliferation of iCCA cells. By contrast, aprepitant can induce autophagy and apoptosis in iCCA cells via ROS accumulation and subsequent activation of JNK.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueyan Cao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Wu
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhou
- Lab Center, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Martín-García D, Téllez T, Redondo M, García-Aranda M. The use of SP/Neurokinin-1 as a Therapeutic Target in Colon and Rectal Cancer. Curr Med Chem 2024; 31:6487-6509. [PMID: 37861026 DOI: 10.2174/0109298673261625230924114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
Different studies have highlighted the role of Substance P / Neurokinin 1 Receptor (SP/NK-1R) axis in multiple hallmarks of cancer including cell transformation, proliferation, and migration as well as angiogenesis and metastasis of a wide range of solid tumors including colorectal cancer. Until now, the selective high-affinity antagonist of human SP/NK1-R aprepitant (Emend) has been authorized by the Food and Drug Administration as a low dosage medication to manage and treat chemotherapy-induced nausea. However, increasing evidence in recent years support the potential utility of high doses of aprepitant as an antitumor agent and thus, opening the possibility to the pharmacological repositioning of SP/NK1-R antagonists as an adjuvant therapy to conventional cancer treatments. In this review, we summarize current knowledge on the molecular basis of colorectal cancer as well as the pathophysiological importance of SP/NK1-R and the potential utility of SP/NK-1R axis as a therapeutic target in this malignancy.
Collapse
Affiliation(s)
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
| | - Marilina García-Aranda
- Surgical Specialties, Biochemistry and Immunology, University of Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
6
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
7
|
Coveñas R, Rodríguez FD, Robinson P, Muñoz M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int J Mol Sci 2023; 24:15936. [PMID: 37958914 PMCID: PMC10650658 DOI: 10.3390/ijms242115936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
| | - Francisco D. Rodríguez
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain;
| |
Collapse
|
8
|
Hegron A, Peach CJ, Tonello R, Seemann P, Teng S, Latorre R, Huebner H, Weikert D, Rientjes J, Veldhuis NA, Poole DP, Jensen DD, Thomsen ARB, Schmidt BL, Imlach WL, Gmeiner P, Bunnett NW. Therapeutic antagonism of the neurokinin 1 receptor in endosomes provides sustained pain relief. Proc Natl Acad Sci U S A 2023; 120:e2220979120. [PMID: 37216510 PMCID: PMC10235985 DOI: 10.1073/pnas.2220979120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and βarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.
Collapse
Affiliation(s)
- Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Chloe J. Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Philipp Seemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Shavonne Teng
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Harald Huebner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jeanette Rientjes
- Gene Modification Platform, Monash University, Clayton, VIC3168, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Daniel P. Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Dane D. Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Alex R. B. Thomsen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| | - Brian L. Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
- NYU Dentistry Translational Research Center, College of Dentistry, New York University, New York, NY10010
| | - Wendy L. Imlach
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, VIC3800, Australia
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY10010
- Pain Research Center, College of Dentistry, New York University, New York, NY10010
| |
Collapse
|
9
|
Restaino AC, Walz A, Vermeer SJ, Barr J, Kovács A, Fettig RR, Vermeer DW, Reavis H, Williamson CS, Lucido CT, Eichwald T, Omran DK, Jung E, Schwartz LE, Bell M, Muirhead DM, Hooper JE, Spanos WC, Drapkin R, Talbot S, Vermeer PD. Functional neuronal circuits promote disease progression in cancer. SCIENCE ADVANCES 2023; 9:eade4443. [PMID: 37163587 PMCID: PMC10171812 DOI: 10.1126/sciadv.ade4443] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jeffrey Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Attila Kovács
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Robin R. Fettig
- Basic Biomedical Sciences Program, University of South Dakota, Vermillion, SD, USA
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Hunter Reavis
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Tuany Eichwald
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, Sioux Falls, SD, USA
| | | | - Jody E. Hooper
- Legacy Gift Rapid Autopsy Program, Johns Hopkins University, Baltimore, MD, USA
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Sanford Ear, Nose and Throat Clinic, Sioux Falls, SD, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Talbot
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| |
Collapse
|
10
|
Zhu Z, Bhatia M. Inflammation and Organ Injury the Role of Substance P and Its Receptors. Int J Mol Sci 2023; 24:6140. [PMID: 37047113 PMCID: PMC10094202 DOI: 10.3390/ijms24076140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.
Collapse
Affiliation(s)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
11
|
Gao X, Frakich N, Filippini P, Edwards LJ, Vinkemeier U, Gran B, Tanasescu R, Bayraktutan U, Colombo S, Constantinescu CS. Effects of substance P on human cerebral microvascular endothelial cell line hCMEC/D3 are mediated exclusively through a truncated NK-1 receptor and depend on cell confluence. Neuropeptides 2022; 95:102265. [PMID: 35696961 DOI: 10.1016/j.npep.2022.102265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Abstract
The neuropeptide substance P (SP) mediates pain transmission, immune modulation, vasodilation and neurogenic inflammation. Its role in the peripheral nervous system has been well characterised. However, its actions on the blood-brain barrier (BBB) are less clear and warrant further study. The aim of this study was to characterise the effect of SP on the brain microvascular endothelial cells using the immortalized human brain microvascular endothelial cell line hCMEC/D3. As part of our studies, we have evaluated changes in expression, at mRNA and protein levels, of genes involved in the function of the blood-brain barrier such as occludin, induced by exposure to SP. We show that the effect of SP is dependent on cell confluence status. Thus, at low confluence but not at full confluence, SP treatment reduced occludin expression. The expression of the SP receptor, neurokinin-1 receptor (NK-1R) (the truncated form of the receptor expressed exclusively in this cell line) was also modulated in a similar pattern. SP treatment stimulated extracellular signal-regulated kinase (Erk2) phosphorylation which was not associated to changes in Interleukin-6 (IL-6), Interleukin-8 (IL-8), or Intercellular Adhesion Molecule 1 (ICAM-1) protein expression. In addition, SP treatment effectively recovered nitric oxide production on cells exposed to tumour necrosis factor alpha (TNF-α). SP did not trigger intracellular calcium release in hCMEC/D3 cells. We conclude that hCMEC/D3 cells are partially responsive to SP, that the effects are mediated through the truncated form of the receptor and are dependent on the confluence status of these cells.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Nanci Frakich
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Perla Filippini
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Laura J Edwards
- Division of Medical Sciences and Graduate Entry Medicine, Medical School, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3DT, University of Nottingham, UK
| | - Uwe Vinkemeier
- School of Life Science, Action Medical Research Professor of Cell Biology, University of Nottingham, Nottingham, UK
| | - Bruno Gran
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Radu Tanasescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Sergio Colombo
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Cris S Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Cooper University Hospital, Cooper Neurological Institute, Camden, NJ 08103, USA.
| |
Collapse
|
12
|
García-Aranda M, Téllez T, McKenna L, Redondo M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers (Basel) 2022; 14:cancers14092255. [PMID: 35565383 PMCID: PMC9102068 DOI: 10.3390/cancers14092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nowadays, the identification of new therapeutic targets that allow for the development of treatments, which as monotherapy, or in combination with other existing treatments can contribute to improve response rates, prognosis and survival of oncologic patients, is a priority to optimize healthcare within sustainable health systems. Recent studies have demonstrated the role of Substance P (SP) and its preferred receptor, Neurokinin 1 Receptor (NK-1R), in human cancer and the potential antitumor activity of NK-1R antagonists as an anticancer treatment. In this review, we outline the relevant studies published to date regarding the SP/NK-1R complex as a key player in human cancer and also evaluate if the repurposing of already marketed NK-1R antagonists may be useful in the development of new treatment strategies to overcome cancer resistance.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Teresa Téllez
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Lauraine McKenna
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
| | - Maximino Redondo
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
13
|
Zhang S, Li K, Yu Z, Chai J, Zhang Z, Zhang Y, Min P. Dramatic Effect of Botulinum Toxin Type A on Hypertrophic Scar: A Promising Therapeutic Drug and Its Mechanism Through the SP-NK1R Pathway in Cutaneous Neurogenic Inflammation. Front Med (Lausanne) 2022; 9:820817. [PMID: 35308522 PMCID: PMC8927735 DOI: 10.3389/fmed.2022.820817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hypertrophic scar formation may be related to cutaneous neurogenic inflammation (CNI) through the substance P-neurokinin 1 receptor (SP-NK1R) signaling pathway. As a widely used drug in aesthetic clinical work, botulinum toxin type A (BTX-A) has a therapeutic effect on scars, but the actual mechanism remains unclear. This study aimed to clarify the potential mechanism by which BTX-A inhibits CNI in hypertrophic scars both in vitro and in vivo. Methods Tissue samples were obtained from surgical excisions. Immunohistological analysis was used to locate SP in human hypertrophic scars and normal skin. RT-PCR and western blot analysis were used to evaluate the expression of collagens after SP/BTX-A treatment. A rabbit ear scar model was used to explore the in vivo effect of BTX-A on scar treatment. Results SP and NK-1R were overexpressed in hypertrophic scars compared to normal skin tissues. Collagen secretion of hypertrophic scar-derived fibroblasts increased with increasing doses of SP. However, BTX-A may downregulate collagen expression through SP-NK1R pathway with or without the presence of SP inducing agent capsaicin. Meanwhile, SP inhibited the expression of NK-1R, and this inhibition was blocked by pretreatment with BTX-A. In vivo, intralesional BTX-A injection can also reduce the volume of scars and inhibit collagen secretion. Capsaicin may cause more severe scar manifestations, while the therapeutic effect of BTX-A remains. Conclusion Our research confirms that CNI stimulates fibroblasts during scar formation, while BTX-A can reduce collagen secretion by inhibiting the SP-NK1R signaling pathway, thus identifying a novel therapeutic target for this benign solid skin tumor.
Collapse
|
14
|
Ebrahimi S, Alalikhan A, Aghaee-Bakhtiari SH, Hashemy SI. The redox modulatory effects of SP/NK1R system: Implications for oxidative stress-associated disorders. Life Sci 2022; 296:120448. [PMID: 35247438 DOI: 10.1016/j.lfs.2022.120448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress which refers to redox imbalance with increased generation of reactive oxygen species (ROS) has been associated with the pathophysiology of diverse disease conditions. Recently, a close, yet not fully understood, relation between oxidative stress and neuropeptides, in particular, substance P (SP), has been reported in certain conditions. SP has been shown to affect the cellular redox environment through activation of neurokinin-1receptor (NK1R). It seems that SP/NK1R system and oxidative stress can act either synergistically or antagonistically in a context-dependent manner, thereby, influencing the pathology of various clinical disorders either destructively or protectively. Importantly, the interactions between oxidative stress and SP/NK1R system can be pharmacologically targeted. Therefore, a better understanding of the redox modulatory properties of SP/NK1R signaling will pave the way for identifying new therapeutic possibilities for attenuating oxidative stress-mediated damage. Towards this end, we performed a comprehensive search through PubMed/Medline and Scopus databases and discussed all related existing literature regarding the interplay between oxidative stress and SP/NK1R system as well as their implication in various clinical disorders, to provide a clear view and hence better management of oxidative damage.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Chen Y, Liu H, Zhang Q, Luo Y, Wu L, Zhong Y, Tang Z, Pu Y, Lu C, Yin G, Xie Q. Cinacalcet Targets the Neurokinin-1 Receptor and Inhibits PKCδ/ERK/P65 Signaling to Alleviate Dextran Sulfate Sodium-Induced Colitis. Front Pharmacol 2021; 12:735194. [PMID: 34880751 PMCID: PMC8645985 DOI: 10.3389/fphar.2021.735194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Inflammatory bowel disease is an immune-mediated chronic inflammatory disease of the gastrointestinal tract for which curative drugs are currently not available. This study was performed to assess the therapeutic effects of cinacalcet on dextran sulfate sodium (DSS)-induced colitis. Methods: Primary macrophages obtained from bone marrow and the macrophage cell line RAW264.7 were used to examine the inhibitory effect of cinacalcet on cytokine production, the PKCδ/ERK/P65 signaling pathway, and NF-κB P65 translocation. Colitis was induced using DSS to assess the treatment effect of cinacalcet. Bioinformatics approaches were adopted to predict potential targets of cinacalcet, and a drug affinity responsive target stability (DARTs) assay was performed to confirm binding between cinacalcet and potential target. Results: In vivo analysis showed that cinacalcet reduced the disease activity score, prevented shortening of the colon, diminished inflammatory cell infiltration, and protected the structural integrity of the intestinal wall. Cinacalcet also reduced production of the inflammatory cytokines TNFα, IL-1β, and IL-6 in the colon and sera of mice with DSS-induced colitis. In vitro studies revealed that cinacalcet suppressed the translocation of P65 and inhibited production of the inflammatory cytokines IL-1β and IL-6. Mechanistic studies revealed that the target of cinacalcet was neurokinin-1 receptor (NK1R) and their binding was confirmed by a DARTs assay. Furthermore, the inhibition of NK-κB P65 activation was found to occur via the suppression of PKCδ/ERK/P65 signaling mediated by cinacalcet. Conclusion: Cinacalcet inhibits the activation of NF-κB and reduces the production of inflammatory cytokines by suppressing the PKCδ/ERK/P65 signaling pathway via targeting NK1R, suggesting that it can be used to treat inflammatory diseases, particularly colitis.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Shi Y, Wang X, Meng Y, Ma J, Zhang Q, Shao G, Wang L, Cheng X, Hong X, Wang Y, Yan Z, Cao Y, Kang J, Fu C. A Novel Mechanism of Endoplasmic Reticulum Stress- and c-Myc-Degradation-Mediated Therapeutic Benefits of Antineurokinin-1 Receptor Drugs in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101936. [PMID: 34605226 PMCID: PMC8564433 DOI: 10.1002/advs.202101936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The neurokinin-1 receptor (NK-1R) antagonists are approved as treatment for chemotherapy-associated nausea and vomiting in cancer patients. The emerging role of the substance P-NK-1R system in oncogenesis raises the possibility of repurposing well-tolerated NK-1R antagonists for cancer treatment. This study reports that human colorectal cancer (CRC) patients with high NK-1R expression have poor survival, and NK-1R antagonists SR140333 and aprepitant induce apoptotic cell death in CRC cells and inhibit CRC xenograft growth. This cytotoxicity induced by treatment with NK-1R antagonists is mediated by induction of endoplasmic reticulum (ER) stress. ER stress triggers calcium release, resulting in the suppression of prosurvival extracellular signal-regulated kinase (ERK)-c-Myc signaling. Along with ER calcium release, one ER stress pathway mediated by protein kinase RNA-like ER kinase (PERK) is specifically activated, leading to increased expression of proapoptotic C/EBP-homologous protein (CHOP). Moreover, NK-1R antagonists enhance the efficacy of chemotherapy by increasing the sensitivity and overcoming resistance to 5-fluorouracil in CRC cells through the induction of sustained ER stress and the consequent suppression of ERK-c-Myc signaling both in vitro and in vivo. Collectively, the findings provide novel mechanistic insights into the efficacy of NK-1R antagonists either as a single agent or in combination with chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Yue Shi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xi Wang
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Yueming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Junjie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Gang Shao
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Lingfei Wang
- Department of OncologyNo. 903 Hospital of PLA Joint Logistic Support ForceXi Hu Affiliated Hospital of Hangzhou Medical CollegeHangzhou310013China
| | - Xurui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiangyu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yong Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstituteStockholm171 77Sweden
| | - Jian Kang
- Oncogenic Signalling and Growth Control ProgramPeter MacCallum Cancer Centre305 Grattan StreetMelbourneVictoria3000Australia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoria3000Australia
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and BiomedicineCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhou310018China
| |
Collapse
|
17
|
Beirith I, Renz BW, Mudusetti S, Ring NS, Kolorz J, Koch D, Bazhin AV, Berger M, Wang J, Angele MK, D’Haese JG, Guba MO, Niess H, Andrassy J, Werner J, Ilmer M. Identification of the Neurokinin-1 Receptor as Targetable Stratification Factor for Drug Repurposing in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13112703. [PMID: 34070805 PMCID: PMC8198055 DOI: 10.3390/cancers13112703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
The SP/NK1R-complex plays an important role in tumor proliferation. Targeting of the neurokinin-1 receptor in previous studies with its antagonist aprepitant (AP) resulted in anti-tumoral effects in colorectal cancer and hepatoblastoma. However, there is still a lack of knowledge regarding its effects on pancreatic cancer. Therefore, we treated human pancreatic ductal adenocarcinoma (PDAC) cell lines (Capan-1, DanG, HuP-T3, Panc-1, and MIA PaCa-2) and their cancer stem cell-like cells (CSCs) with AP and analyzed functional effects by MTT-, colony, and sphere formation assays, respectively; moreover, we monitored downstream mechanisms by flow cytometry. NK1R inhibition resulted in dose-dependent growth reduction in both CSCs and non-CSCs without induction of apoptosis in most PDAC cell lines. More importantly, we identified striking AP dependent cell cycle arrest in all parental cells. Furthermore, gene expression and the importance of key genes in PDAC tumorigenesis were analyzed combining RT-qPCR in eight PDAC cell lines with publicly available datasets (TCGA, GEO, CCLE). Surprisingly, we found a better overall survival in patients with high NK1R levels, while at the same time, NK1R was significantly decreased in PDAC tissue compared to normal tissue. Interestingly, there is currently no differentiation between the isoforms of NK1R (truncated and full; NK1R-tr and -fl) in any of the indicated public transcriptomic records, although many publications already emphasize on important regulatory differences between the two isoforms of NK1R in many cancer entities. In conclusion, analysis of splice variants might potentially lead to a stratification of PDAC patients for NK1R-directed therapies. Furthermore, we presume PDAC patients with high expressions of NK1R-tr might benefit from treatment with AP to improve chemoresistance. Therefore, analysis of splice variants might potentially lead to a stratification of PDAC patients for NK1R-directed therapies.
Collapse
Affiliation(s)
- Iris Beirith
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Shristee Mudusetti
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Natalja Sergejewna Ring
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Julian Kolorz
- Department of Pediatric Surgery, Research Laboratories, von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, 80337 Munich, Germany; (J.K.); (M.B.)
| | - Dominik Koch
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Michael Berger
- Department of Pediatric Surgery, Research Laboratories, von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, 80337 Munich, Germany; (J.K.); (M.B.)
- Department of General, Abdominal and Transplant Surgery, Essen University Hospital, 45417 Essen, Germany
| | - Jing Wang
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Martin K. Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Jan G. D’Haese
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Markus O. Guba
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Joachim Andrassy
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (I.B.); (B.W.R.); (S.M.); (N.S.R.); (D.K.); (A.V.B.); (J.W.); (M.K.A.); (J.G.D.); (M.O.G.); (H.N.); (J.A.); (J.W.)
- German Center for Translations Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-089-4400-711218
| |
Collapse
|
18
|
Morelli AE, Sumpter TL, Rojas-Canales DM, Bandyopadhyay M, Chen Z, Tkacheva O, Shufesky WJ, Wallace CT, Watkins SC, Berger A, Paige CJ, Falo LD, Larregina AT. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca 2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep 2021; 30:3448-3465.e8. [PMID: 32160549 PMCID: PMC7169378 DOI: 10.1016/j.celrep.2020.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA
| | - Tina L Sumpter
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Zhizhao Chen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Alexandra Berger
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, PA, USA; The UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Neurokinin-1 receptor signaling induces a pro-inflammatory transcriptomic profile in CD16+ monocytes. J Neuroimmunol 2021; 353:577524. [PMID: 33640716 DOI: 10.1016/j.jneuroim.2021.577524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023]
Abstract
Neurokinin-1 receptor (NK1R) signaling can be immunomodulatory and it can lead to preferential transmigration of CD14+CD16+ monocytes across the blood brain barrier, potentially promoting the development of inflammatory neurological diseases, such as neuroHIV. To evaluate how NK1R signaling alters monocyte biology, RNA sequencing was used to define NK1R-mediated transcriptional changes in different monocyte subsets. The data show that NK1R activation induces a greater number of changes in CD14+CD16+ monocytes (152 differentially expressed genes), than in CD14+CD16- monocytes (36 genes), including increases in the expression of NF-κB and components of the NLRP3 inflammasome pathway. These results suggest that NK1R may alter the inflammatory state of CD14+CD16+ monocytes, influencing the development of neuroinflammation.
Collapse
|
20
|
Zhang J, Ma C, Wang R, He C, Li H, Dong S. Endokinin A/B stimulates rat gastric motility through myogenic NK1 receptors located in the fundus. Can J Physiol Pharmacol 2020; 98:691-699. [PMID: 32365302 DOI: 10.1139/cjpp-2019-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endokinin A/B (EKA/B), the common C-terminal decapeptide in endokinins A and B, is a preferred ligand of the NK1 receptor and regulates pain and itch. The study focused on the effects of EKA/B on rat gastric motility in vivo and in vitro. Gastric emptying was measured to evaluate gastric motility in vivo. Intragastric pressure and the contraction of gastric muscle strips were measured to evaluate gastric motility in vitro. Moreover, various neural blocking agents and neurokinin receptor antagonists were applied to explore the mechanisms. TAC4 and TACR1 mRNAs were expressed throughout rat stomach. EKA/B promoted gastric emptying by intraperitoneal injection in vivo. Correspondingly, EKA/B also increased intragastric pressure in vitro. Additionally, EKA/B contracted the gastric muscle strips from the fundus but not from the corpus or antrum. Further studies revealed that the contraction induced by EKA/B on muscle strips from the fundus could be significantly reduced by NK1 receptor antagonist SR140333 but not by NK2 receptor antagonist, NK3 receptor antagonist, or the neural blocking agents used. Our results suggested that EKA/B might stimulate gastric motility mainly through the direct activation of myogenic NK1 receptors located in the fundus.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chan Ma
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Ruijia Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Hailan Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Nizam E, Köksoy S, Erin N. NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences. Cancer Immunol Immunother 2020; 69:1639-1650. [PMID: 32322911 DOI: 10.1007/s00262-020-02574-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Substance P a neuro-immune mediator acts on Neurokinin-1 and -2 receptors (NK1R and NK2R). Inhibitors of NK1R are considered to be safe and effective approaches for cancer treatment since Aprepitant, a non-peptide antagonist of NK1R is widely used for chemotherapy-induced emesis and has cytotoxic and antitumor effects in various models for cancer. On the other hand, our previous findings demonstrated that systemic inhibition of NK1R may decrease cytotoxic anti-tumoral immune response. Hence, actual consequences of inhibition of neurokinin receptors under in vivo conditions in a syngeneic model of carcinoma should be determined. The effects of highly potent and selective non-peptide mouse NK1R and NK2R antagonists RP 67580 and GR 159897, respectively, on metastatic breast carcinoma were evaluated. Specifically, 4T1 breast cancer cells metastasized to brain (denoted as 4TBM) and liver (denoted as 4TLM) were used to induce tumors in Balb-c mice. Changes in tumor growth, metastasis and immune response to cancer cells were determined. We here observed differential effects of NK1R antagonist depended on the subset of metastatic cells. Specifically, inhibition of NK1R markedly increased liver metastasis of tumors formed by 4TBM but not 4TLM cells. On the contrary, NK1R antagonist decreased inflammatory response and liver metastasis in 4TLM-injected mice. 4TLM tumors act more aggressively inducing more inflammatory response compared to 4TBM tumors. Hence, differential effects of NK1R antagonist are at least partly due to extend and type of the inflammatory response evoked by specific subset metastatic cells. These findings demonstrate the necessity for understanding the immunological consequences of tumor-microenvironment interactions.
Collapse
Affiliation(s)
- Esra Nizam
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1 Immunoloji, 07070, Antalya, Turkey
| | - Sadi Köksoy
- Medical Microbiology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1 Immunoloji, 07070, Antalya, Turkey.
| |
Collapse
|
22
|
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disease characterized by pruritus, inflammatory erythematous skin lesions, and skin-barrier defect. Current mainstay treatments of emollients, steroids, calcineurin inhibitors, and immunosuppressants have limited efficacy and potentially serious side effects. Recent advances and understanding of the pathogenesis of AD have resulted in new therapies that target specific pathways with increased efficacy and the potential for less systemic side effects. New FDA-approved therapies for AD are crisaborole and dupilumab. The JAK-STAT inhibitors (baricitinib, upadacitinib, PF-04965842, ASN002, tofacitinib, ruxolitinib, and delgocitinib) have the most promising results of the emerging therapies. Other drugs with potential include the aryl hydrocarbon receptor modulating agent tapinarof, the IL-4/IL-13 antagonists lebrikizumab and tralokinumab, and the IL-31Rα antagonist nemolizumab. In this review, new and emerging AD therapies will be discussed along with their mechanisms of action and their potential based on clinical study data.
Collapse
Affiliation(s)
- Henry L Nguyen
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Katelyn R Anderson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Megha M Tollefson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA.
| |
Collapse
|
23
|
An S, Zhang Y, Chen Q, Xiong B, Hao J, Zheng Y, Zhou X, Wang J. Effect of systemic delivery of Substance P on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2019; 155:642-649. [PMID: 31053279 DOI: 10.1016/j.ajodo.2018.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the effect of systemic delivery of Substance P (SP) on experimental tooth movement. METHODS Forty-eight adult Sprague-Dawley rats were randomly divided into 2 groups and their maxillary first molars were mesially moved with the use of closed-coil springs. The experiment group received systemic injection of SP and the control group received phosphate-buffered saline solution. Transportation distances of first molars were measured. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and immunohistochemistry staining were performed to evaluate alveolar bone remodeling. Then the interferon (IFN) γ and tumor necrosis factor (TNF) α concentrations in peripheral blood and local periodontal tissue were measured. Finally, the effects of SP on bone marrow-derived stem cell (BMSC) proliferation and migration were tested in vitro. RESULTS Systemic delivery of SP significantly increased the distance of tooth movement and stimulated both osteoclast and osteoblast activities. The concentrations of IFN-γ and TNF-α increased in peripheral blood at early phases of the experiment and decreased in periodontal tissue at late phases. In vitro, the proliferation and migration of BMSCs were promoted by SP. CONCLUSIONS Systemic delivery of SP can accelerate orthodontic tooth movement and promote alveolar bone remodeling potentially through immunomodulation and mobilizing endogenous mesenchymal stem cells.
Collapse
Affiliation(s)
- Shu An
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yueling Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qian Chen
- Department of Orthodontics, Hospital of Stomatology Southwest Medical University, Luzhou, People's Republic of China
| | - Bin Xiong
- Nantong Stomatological Hospital, Nantong, People's Republic of China
| | - Jin Hao
- Harvard School of Dental Medicine, Harvard University, Boston, Mass
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
24
|
Liu X, Zhang L, Tong Y, Yu M, Wang M, Dong D, Shao J, Zhang F, Niu R, Zhou Y. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα. Life Sci 2018; 217:57-69. [PMID: 30502362 DOI: 10.1016/j.lfs.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
HEADING AIMS This topic aims to clarify whether miR-22 directly targets and downregulates the expression of ERα and NK1R-Tr to inhibit the malignant behaviors of breast cancer cells. MATERIALS AND METHODS RT-PCR and Western Blotting were used to detect the expression profile of miR-22, NK1R-Tr and ERα. Luciferase reporter assay and CHIP experiment were conducted to investigate the regulation network between miR-22, NK1R-Tr and ERα. MCF-7-ERαI and MDA-MB-231-ERα cell lines were constructed to study the biological behaviors. The SP-NK1R-ERK1/2 signaling pathway was analyzed using Western Blotting. The subcutaneous and metastases tumor models were employed to study the effects of miR-22 on cell proliferation and metastasis of breast cancer cells in vivo. KEY FINDINGS MiR-22 expression level was significantly lower in breast cancerous tissues and cell lines than the adjacent normality, while that of NK1R-Tr increased. The ERα could positively regulate NK1R-Tr expression at DNA level. The descent degree of NK1R-Tr in MCF-7-ERαI cells was far less than that in wild MCF-7 cells, while the findings in MDA-MB-231-ERα cells was more apparent than wild MDA-MB-231 cells. The malignant phenotype was decreased in miR-22 overexpressing cells compared with the wild type. The peak of ERK1/2 phosphorylation was delayed and weakened in miR-22 overexpressing MCF-7 cells, which was agreed with the findings using NK1R-Tr antagonist. The size and number of metastatic tumors declined compared to the controls. SIGNIFICANCE MiR-22 downregulated the expression of NK1R-Tr and ERα to delay and weaken phosphorylation of ERK1/2 to inhibit proliferation and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Beijing Huaxin Hospital, First Hospital of TsingHua University, Beijing, China
| | - Lufang Zhang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Yingna Tong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Meng Wang
- Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dong Dong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Jie Shao
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| |
Collapse
|
25
|
Douglas SD, Leeman SE. Is substance P a nasal epithelial neuropeptide? J Allergy Clin Immunol 2018; 142:1677. [PMID: 29958676 DOI: 10.1016/j.jaci.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Steven D Douglas
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| | | |
Collapse
|