1
|
Wang K, Yang Z, Yang F, Li G, Sun Y, Duan G, He J, Sun W, Zhou K, Xiong Z, Dai F. Effects of Yin and Yang supplement on reproductive performance, antioxidant and immunity of dairy goats. Anim Biotechnol 2025; 36:2450349. [PMID: 39827400 DOI: 10.1080/10495398.2025.2450349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
This study aims to explore the effects of Yin and Yang Double Supplement Compound Chinese Medicine Preparations (YYSBFF) on the reproductive performance, antioxidant levels, and immunity of dairy goats. For the experiment, 36 Alps milk goats were selected and randomly divided into an experimental group and a control group, with 18 goats in each group. The ewes in the experimental group were fed with YYSBFF for 14 d prior to breeding and farrowing. The results of the experiment showed that the estrus rate, embryo acceptance rate, and lamb birth weight in the experimental group were higher than those in the control group, and the weak lamb rate was significantly lower. Moreover, the experimental group exhibited higher levels of reproductive hormones (FSH, LH), antioxidant factors (T-SOD, GSH-Px, MDA), and immunoglobulins (IgA, IgM, IgG) compared to the control group. There were no significant differences in liver and kidney function indicators (ALT, AST, TP, ALB, CREA, UREA) between the experimental and control groups (p > .05). These findings indicate that YYSBFF can enhance the reproductive performance of dairy goats by regulating the level of sex hormones, while also improving the body's antioxidant and immune abilities.
Collapse
Affiliation(s)
- Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhi Yang
- Animal Disease Prevention and Control Center of Chuxiong, Chuxiong, China
| | - Fumei Yang
- Rural Revitalization Service Center of Mengzhe Town, Menghai County, Xishuangbanna, China
| | - Guanzong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yulin Sun
- Veterinarian, Kunming Technical Contract Accreditation and Registration Station, Kunming, China
| | - Gang Duan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jun He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wang Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ke Zhou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhihao Xiong
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Kamdem SD, Kamguia LM, Oumarou A, Bitye BMZ, Lennard K, Brombacher F, Spangenberg T, Demarta-Gatsi C, Nono JK. Reduced plasma levels of GM-CSF is a common feature of Schistosoma mansoni-infected school-aged children. Front Immunol 2025; 16:1474575. [PMID: 40092989 PMCID: PMC11906694 DOI: 10.3389/fimmu.2025.1474575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Currently available schistosomiasis diagnostic and monitoring tools are limited, and the development of novel technologies is necessary to enhance disease diagnostic and surveillance by supporting elimination efforts. Novel disease-specific biomarkers can facilitate the development of these technologies. Through the comparison of parasite burden and host factors, we assessed whether host plasma cytokines could be used as robust biomarkers for intestinal schistosomiasis and associated pathology in school-aged children (SAC) living in endemic areas. Methods Levels of host plasma cytokines were measured in SAC from a low-to-moderate burden region five months deworming with praziquantel, using Luminex assay for exploration analysis and ELISA for validation. Results The concentration of GM-CSF, IL-2, and VEGF in plasma was significantly lower in schistosome-infected compared to non-infected children, as determined by Luminex assay. Further evaluation by ELISA revealed a negative correlation between GM-CSF plasma levels, but not those of IL-2 or VEGF, and S. mansoni egg burdens in infected individuals. Common coinfections in the study area such as geohelminths, hepatitis or malaria failed to alter plasma GM-CSF levels arguing in favor of a potential specific effect of S. mansoni infection on this cytokine. Receiver operating characteristic analysis confirmed GM-CSF as an acceptable predictive marker of S. mansoni infection, with an area under the curve (AUC) of 75%. Finally, the adjunct use of plasmatic GM-CSF thresholds for screening S. mansoni at-risk children and identify S. mansoni-infected ones increased the sensitivity of a single Kato-Katz test by averagely 15%. Conclusions Our findings highlight the potential of using plasma GM-CSF levels to biomark S. mansoni infection and improve the sensitivity of single Kato-Katz based diagnostic for low- to-moderate burden infections.
Collapse
Affiliation(s)
- Severin Donald Kamdem
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Faculty of Health Sciences, Protestant University Institute of Yaoundé, Yaoundé, Cameroon
- Ecole Doctorale Regionale (EDR) d'Afrique Centrale en Infectiologie Tropicale, Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
| | - Alim Oumarou
- District Hospital of Mfou, Ministry of Public Health, Yaoundé, Cameroon
| | - Bernard Marie Zambo Bitye
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Katie Lennard
- Department of Integrated Biomedical Sciences, Division of Chemical and Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Thomas Spangenberg
- Global Health R&D of Merck Healthcare, Ares Trading S.A., (a subsidiary of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Claudia Demarta-Gatsi
- Global Health R&D of Merck Healthcare, Ares Trading S.A., (a subsidiary of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Justin Komguep Nono
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Rowe T, Fletcher A, Lange M, Hatta Y, Jasso G, Wentworth DE, Ross TM. Delay of innate immune responses following influenza B virus infection affects the development of a robust antibody response in ferrets. mBio 2025; 16:e0236124. [PMID: 39772665 PMCID: PMC11796412 DOI: 10.1128/mbio.02361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Due to its natural influenza susceptibility, clinical signs, transmission, and similar sialic acid residue distribution, the ferret is the primary animal model for human influenza research. Antibodies generated following infection of ferrets with human influenza viruses are used in surveillance to detect antigenic drift and cross-reactivity with vaccine viruses and circulating strains. Inoculation of ferrets, with over 1,500 human clinical influenza isolates (1998-2019) resulted in lower antibody responses (HI <1:160) to 86% (387 out of 448) influenza B viruses (IBVs) compared to 2.7% (30 out of 1,094) influenza A viruses (IAVs). Here, we show that the immune responses in ferrets inoculated with IBV were delayed and reduced compared to IAV. Innate gene expression in the upper respiratory tract and blood indicated that IAV generated a strong inflammatory response, including an early activation of the interferon (IFN), whereas IBV elicited a delayed and reduced response. Serum levels of cytokines and IFNs were all much higher following IAV infection than IBV infection. Pro-inflammatory, IFN, TH1/TH2, and T-effector proteins were significantly higher in sera of IAV-infected than IBV-infected ferrets over 28 days following the challenge. Serum levels of Type-I/II/III IFNs were detected following IAV infection throughout this period, whereas Type-III IFN was only late for IBV. An early increase in IFN-lambda corresponded to gene expression following IAV infection. Reduced innate immune responses following IBV infection reflected the subsequent delayed and reduced serum antibodies. These findings may help in understanding the antibody responses in humans following influenza vaccination or infection and consideration of potential addition of innate immunomodulators to overcome low responses. IMPORTANCE The ferret is the primary animal model for human influenza research. Using a ferret model, we studied the differences in both innate and adaptive immune responses following infection with influenza A and B viruses (IAV and IBV). Antibodies generated following infection of ferrets is used for surveillance assays to detect antigenic drift and cross-reactivity with vaccine viruses and circulating influenza strains. IAV infection of ferrets to generate these reagents resulted in a strong antibody response, but IBV infection generated weak antibody responses. In this study using influenza-infected ferrets, we found that IAV resulted in an early activation of the interferon (IFN) and pro-inflammatory response, whereas IBV showed a delay and reduction in these responses. Serum levels of IFNs and other cytokines or chemokines were much higher in ferrets following IAV infection. These reduced innate responses were reflected the subsequent delayed and reduced antibody responses to IBV in the sera. These findings may help in understanding low antibody responses in humans following influenza B vaccination and infection and may warrant the use of innate immunomodulators to overcome these weak responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Lange
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yasuko Hatta
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gabriela Jasso
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ted M. Ross
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| |
Collapse
|
4
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
5
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. A novel immunomodulating peptide with potential to complement oligodeoxynucleotide-mediated adjuvanticity in vaccination strategies. Sci Rep 2024; 14:26737. [PMID: 39501043 PMCID: PMC11538426 DOI: 10.1038/s41598-024-78150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The identification of adjuvants to improve vaccination efficacy is a major unmet need. One approach is to augment the functionality of dendritic cells (DCs) by using Toll-like receptor-9 (TLR9) agonists such as cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) as adjuvants. Another approach is adjuvant selection based on production of bioactive interleukin-12 (IL-12). We report a D-peptide isomer, designated D-15800, that induces monocyte differentiation to the DC phenotype in vitro and more effectively stimulates IL-12p70 production upon T cell receptor (TCR) activation than the L-isomer. In the absence of TCR activation and either IL-12p70 or interleukin-2 production, only D-15800 activates CD4+ T and natural killer cells. In the presence of CpG ODN, D-15800 synergistically enhances production of interferon-alpha (IFN-α). Taken together with its biostability in human serum and depot retention upon injection, co-delivery of D-15800 with TLR9 agonists could serve to improve vaccine efficacy.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
6
|
Adu F, Aniakwaa-Bonsu E, Badu Nyarko S, Obeng AS, Ateko RO, Anyanful A, Thomford NE. Host cytokine genetic polymorphisms in a selected population of persons living with hepatitis B virus infection in the central region of Ghana. BMC Gastroenterol 2024; 24:374. [PMID: 39434005 PMCID: PMC11494869 DOI: 10.1186/s12876-024-03456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a public health concern in resource limited settings like Ghana. Over the past decades, it is noted that the natural course of HBV in persons infected are taking a worse turn leading to liver cirrhosis and cancer. The outcome of HBV infection is influenced by viral and host factors including genetics. Cytokine variations affect virus survival and progression and may even influence associated complications. Cytokines such as tumor necrosis factor alpha (TNF-α), interleukins (IL-4, IL-6, IL-8, IL-10, IL-18), interferon gamma (IFN)-γ, and tumor growth factor-beta (TGF-β) have key roles in HBV infection and modulation. In this study, polymorphisms occurring in five cytokines were analysed to understand how they can influence prognosis of HBV infection. METHODS The study is a single centre cross-sectional study involving 227 participants made up of HBV infected participants and HBV-negative controls. Recruitment was from March 2021 to April 2022. Blood samples were taken for full blood count, HBV antigen profile, liver function tests, HBV DNA quantification and cytokine genotyping. FIB score was calculated using available tools. Statistical analysis was undertaken with p < 0.05 set as statistically significant. RESULTS The 20-39-year-old group formed majority of the HBV infected participants with 60% of all participants being classified as healthy HBsAg carriers. IL2 rs1479920 GG carriers ((1258.93; 0.00-5011.87) IU/mL had reduced HBV DNA in comparison to IL2 rs1479920 AA ((5011.87; 2113.49-5956.62) /AG (3548.13; 0.00-6309.57) IU/mL carriers. TNF-α rs1800629 AA carriers (1258.93; 0.00-3981.07) IU/mL had a reduction in HBV DNA levels in comparison to TNF-α rs1800629 GG carriers (1584.89; 0.00-5011.87) IU/mL. The results of univariate (OR = 0.08, 0.00-0.93; p = 0.043) and multivariate (OR = 0.02, 0.00-0.67; p = 0.029) analysis, showed that carrying TNF-α rs1800629 AA genotype reduce susceptibility to high FIB score compared with GG genotypes. In univariate analysis, subjects aged 20-39 years (OR = 5.00, 1.13-6.10; p = 0.034) and 40-59 years (OR = 41.99, 3.74-47.21; p = 0.0002) were more susceptible to high FIB score compared to subjects aged 1-19 years. Being female (OR = 2.42, 1.03-5.71; p = 0.043) in the univariate models showed higher odds of having high levels of HBV DNA in the multivariate model. There was a reduced likelihood of herbal medicine usage influencing HBV DNA levels significantly (OR = 0.29, 0.10-0.86; p = 0.025). CONCLUSION In conclusion, variations in IL2 rs1479920 GG and IL2 rs1479921 AA could offer protective effects by reducing HBV DNA. TNF-α rs179924CT may also cause elevation in HBV DNA levels whiles TNF-α -308A/G, showed a potential protective effect on liver scarring in HBV infected participants. It is therefore important to take a further look at such variations for understanding of HBV modulation in the Ghanaian population.
Collapse
Affiliation(s)
- Faustina Adu
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Pharmacogenomics and Genomic Medicine Group & Lab, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ebenezer Aniakwaa-Bonsu
- Department of Microbiology & Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Badu Nyarko
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Pharmacogenomics and Genomic Medicine Group & Lab, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Aikins Sarpong Obeng
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richmond Owusu Ateko
- Department of Chemical Pathology, University of Ghana Medical School University of Ghana, Legon, Accra, Ghana
- Division of Chemical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Akwasi Anyanful
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Nicholas Ekow Thomford
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
- Pharmacogenomics and Genomic Medicine Group & Lab, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
7
|
Li Q, Wang L, Wang Y, Zhao L. Transcutaneous electrical acupoint stimulation for immunologic function after surgery in patients with gastrointestinal tumor: a meta-analysis. Biotechnol Genet Eng Rev 2024; 40:1001-1023. [PMID: 36994751 DOI: 10.1080/02648725.2023.2191090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
There is no consensus on whether transcutaneous acupoint electrical stimulation can be used to improve the immune function of postoperative patients with gastrointestinal tumors. This meta-analysis aims to evaluate the effects of transcutaneous electrical acupoint stimulation (TEAS) on postoperative immune function of patients with gastrointestinal tumor and provide evidence-based basis for clinical evaluation. The method used in this study is to systematically searched English databases including PubMed, Cochrane Library (CENTRAL), Excerpta Medica Database (EMbase), Web of Science and Chinese databases including Chinese National Knowledge Infrastructure (CNKI), Wanfang Data, VIP database and China Biomedical Literature Database (SinoMed). Relevant registration platform named Chinese Clinical Trial Registry (ChiCTR) was also searched. Manual search and document tracking are also performed. The aforementioned databases were retrieved for transcutaneous electrical acupoint stimulation for immunologic function after surgery in patients with gastrointestinal tumor randomized controlled trials (RCTs) from inception to 1 November 2022. Meta-analysis was conducted by RevMan5.4.1 software, and the evidence quality was evaluated using Cochrane risk bias evaluation form. In this study, a total of 18 trials with 1618 participants were analyzed. Only two studies were shown to be low risk. The results showed that there were significant differences in cellular immune and inflammatory factors and receptors, such as CD3+, CD4+, CD4+/CD8+, NK, IL-6, TNF-α, sIL-2 R, IL-2 and CRP, had significant effects (P < 0.05) after TEAS intervention on gastrointestinal tumor; however, CD8+ (P = 0.07) and IL-10 (P = 0.26) did not. Judging from the current evidence, TEAS was found to improve the immune function of patients with gastrointestinal tumors after surgery and reduce the level of inflammatory response, worthy of clinical promotion and use.
Collapse
Affiliation(s)
- Qiuyue Li
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linjia Wang
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuhan Wang
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
9
|
Pinna A, Ragaisyte I, Morton W, Angioletti-Uberti S, Proust A, D'Antuono R, Luk CH, Gutierrez MG, Cerrone M, Wilkinson KA, Mohammed AA, McGilvery CM, Suárez-Bonnet A, Zimmerman M, Gengenbacher M, Wilkinson RJ, Porter AE. Virus-Shaped Mesoporous Silica Nanostars to Improve the Transport of Drugs across the Blood-Brain Barrier. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37623-37640. [PMID: 38988046 DOI: 10.1021/acsami.4c06726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Conditions affecting the brain are the second leading cause of death globally. One of the main challenges for drugs targeting brain diseases is passing the blood-brain barrier (BBB). Here, the effectiveness of mesoporous silica nanostars (MSiNSs) with two different spike lengths to cross an in vitro BBB multicellular model was evaluated and compared to spherical nanoparticles (MSiNP). A modified sol-gel single-micelle epitaxial growth was used to produce MSiNS, which showed no cytotoxicity or immunogenicity at concentrations of up to 1 μg mL-1 in peripheral blood mononuclear and neuronal cells. The nanostar MSiNS effectively penetrated the BBB model after 24 h, and MSiNS-1 with a shorter spike length (9 ± 2 nm) crossed the in vitro BBB model more rapidly than the MSiNS-2 with longer spikes (18 ± 4 nm) or spherical MSiNP at 96 h, which accumulated in the apical and basolateral sides, respectively. Molecular dynamic simulations illustrated an increase in configurational flexibility of the lipid bilayer during contact with the MSiNS, resulting in wrapping, whereas the MSiNP suppressed membrane fluctuations. This work advances an effective brain drug delivery system based on virus-like shaped MSiNS for the treatment of different brain diseases and a mechanism for their interaction with lipid bilayers.
Collapse
Affiliation(s)
- Alessandra Pinna
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
- The Francis Crick Institute, NW1 1AT London, U.K
- Department of Materials, Imperial College London, SW7 2AZ London, U.K
| | - Ieva Ragaisyte
- Department of Materials, Imperial College London, SW7 2AZ London, U.K
| | - William Morton
- Department of Materials, Imperial College London, SW7 2AZ London, U.K
| | | | - Alizé Proust
- The Francis Crick Institute, NW1 1AT London, U.K
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy STP, The Francis Crick Institute, NW1 1AT London, U.K
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AY, U.K
| | - Chak Hon Luk
- The Francis Crick Institute, NW1 1AT London, U.K
| | | | | | - Katalin A Wilkinson
- The Francis Crick Institute, NW1 1AT London, U.K
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, Republic of South Africa
| | - Ali A Mohammed
- Dyson School of Design Engineering, Imperial College London, SW7 2AZ London, U.K
- School of Design, Royal College of Art, SW11 4AY London, U.K
| | | | - Alejandro Suárez-Bonnet
- The Francis Crick Institute, NW1 1AT London, U.K
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mimms, Hatfield, Hertfordshire AL9 7TA, U.K
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States
| | - Robert J Wilkinson
- The Francis Crick Institute, NW1 1AT London, U.K
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, Republic of South Africa
- Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, W12 0NN London, U.K
| | | |
Collapse
|
10
|
Sakellariou C, Roser LA, Schiffmann S, Lindstedt M. Fine tuning of the innate and adaptive immune responses by Interleukin-2. J Immunotoxicol 2024; 21:2332175. [PMID: 38526995 DOI: 10.1080/1547691x.2024.2332175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Novel immunotherapies for cancer and other diseases aim to trigger the immune system to produce durable responses, while overcoming the immunosuppression that may contribute to disease severity, and in parallel considering immunosafety aspects. Interleukin-2 (IL-2) was one of the first cytokines that the FDA approved as a cancer-targeting immunotherapy. However, in the past years, IL-2 immunotherapy is not actively offered to patients, due to limited efficacy, when compared to other novel immunotherapies, and the associated severe adverse events. In order to design improved in vitro and in vivo models, able to predict the efficacy and safety of novel IL-2 alternatives, it is important to delineate the mechanistic immunological events triggered by IL-2. Particularly, in this review we will discuss the effects IL-2 has with the bridging cell type of the innate and adaptive immune responses, dendritic cells. The pathways involved in the regulation of IL-2 by dendritic cells and T-cells in cancer and autoimmune disease will also be explored.
Collapse
Affiliation(s)
| | - Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Li X, Huntoon K, Wang Y, Lee D, Dong S, Antony A, Walkey C, Kim BYS, Jiang W. Radiation Synergizes with IL2/IL15 Stimulation to Enhance Innate Immune Activation and Antitumor Immunity. Mol Cancer Ther 2024; 23:330-342. [PMID: 37956421 DOI: 10.1158/1535-7163.mct-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Ionizing radiation is known to possess immune modulatory properties. However, how radiotherapy (RT) may complement with different types of immunotherapies to boost antitumor responses is unclear. In mice implanted with EO771 syngeneic tumors, NL-201 a stable, highly potent CD25-independent agonist to IL2 and IL15 receptors with enhanced affinity for IL2Rβγ was given with or without RT. Flow analysis and Western blot analysis was performed to determine the mechanisms involved. STING (-/-) and CD11c+ knockout mice were implanted with EO771 tumors to confirm the essential signaling and cell types required to mediate the effects seen. Combination of RT and NL-201 to enhance systemic immunotherapy with an anti-PD-1 checkpoint inhibitor was utilized to determine tumor growth inhibition and survival, along characterization of tumor microenvironment as compared with all other treatment groups. Here, we showed that RT, synergizing with NL-201 produced enhanced antitumor immune responses in murine breast cancer models. When given together, RT and NL-201 enhanced activation of the cytosolic DNA sensor cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway, resulting in increased type I IFN production in dendritic cells (DC), and consequently greater tumor infiltration and more efficient priming of antigen-specific T cells. The immune stimulatory mechanisms triggered by NL-201 and RT resulted in superior tumor growth inhibition and survival benefit in both localized and metastatic cancers. Our results support further preclinical and clinical investigation of this novel synergism regimen in locally advanced and metastatic settings.
Collapse
Affiliation(s)
- Xuefeng Li
- Cancer Center, the First Hospital of Jilin University, Changchun, P.R. China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Walkey
- Neoleukin Therapeutics, Inc., Seattle, Washington
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Zhang M, Wang S, Guan Q, Wang J, Yan B, Zhang L, Li D. A bidirectional Mendelian randomization study investigating the relationship between genetically predicted systemic inflammatory regulators and chronic obstructive pulmonary disease. Heliyon 2024; 10:e24109. [PMID: 38268600 PMCID: PMC10806290 DOI: 10.1016/j.heliyon.2024.e24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Research has shown a connection between inflammation and chronic obstructive pulmonary disease (COPD), however the relationship between inflammation mediators and COPD causation remains unknown. To investigate the causal relationship of mediators of inflammation and COPD, we conducted a two-sample Mendelian randomization (MR) study. In our study, we incorporated 41 regulators of inflammation from 8293 Finnish individuals from genome-wide association studies (GWASs) of COPD corresponding to GWAS summary data for 2115 cases and 454,233 healthy individuals in Europe. Our research validated that higher levels of interleukin 8 (IL-8) are related with a decrease occurrence of COPD (OR = 0.795, 95 % CI = 0.642-0.984, p = 0.035) but that elevated levels of interleukin 18(IL-18) and interleukin 2 (IL-2) may be connected to an amplified risk of COPD (OR = 1.247, 95 % CI = 1.011-1.538; p = 0.039; OR = 1.257, 95 % CI = 1.037-1.523, p = 0.020, respectively). According to our research, cytokines play a crucial role in the development of COPD, and further investigation is necessary to explore the potential of utilizing these cytokines as targets for treatment and prevention of COPD.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingtian Guan
- First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bailing Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Jacques C, Marchand F, Chatelais M, Brulefert A, Floris I. Understanding the Mode of Action of a Micro-Immunotherapy Formulation: Pre-Clinical Evidence from the Study of 2LEBV ® Active Ingredients. Life (Basel) 2024; 14:102. [PMID: 38255717 PMCID: PMC10821216 DOI: 10.3390/life14010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is often kept silent and asymptomatic; however, its reactivation induces a chronic and/or recurrent infection that is associated with numerous diseases, including cancer and inflammation-related disorders. As no specific treatment is currently available, the immune factors-based micro-immunotherapy (MI) medicine 2LEBV® could be considered a valuable therapeutic option to sustain the immune system in EBV reactivation. METHODS The present work aimed to investigate, for the first time, the effect of 2LEBV® in several in vitro models of uninfected immune-related cells. RESULTS 2LEBV® displayed phagocytosis-enhancing capabilities in granulocytes. In human peripheral blood mononuclear cells (PBMCs), it increased the intra- and extra-cellular expression of interleukin (IL)-2. Moreover, it modulated the secretion of other cytokines, increasing IL-4, IL-6, and tumor necrosis factor-α levels or lowering other cytokines levels such as IL-9. Finally, 2LEBV® reduced the expression of human leukocyte antigen (HLA)-II in endothelial cells and macrophages. CONCLUSIONS Although these data are still preliminary and the chosen models do not consider the underlying EBV-reactivation mechanisms, they still provide a better understanding of the mechanisms of action of 2LEBV®, both at functional and molecular levels. Furthermore, they open perspectives regarding the potential targets of 2LEBV® in its employment as a therapeutic intervention for EBV-associated diseases.
Collapse
Affiliation(s)
- Camille Jacques
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Adrien Brulefert
- QIMA Life Sciences, 1 bis rue des Plantes—CS 50011, 86160 Gençay, France;
| | - Ilaria Floris
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
14
|
Nardacchione EM, Tricarico PM, Moura R, d’Adamo AP, Thasneem A, Suleman M, Marzano AV, Crovella S, Moltrasio C. Unraveling the Epigenetic Tapestry: Decoding the Impact of Epigenetic Modifications in Hidradenitis Suppurativa Pathogenesis. Genes (Basel) 2023; 15:38. [PMID: 38254928 PMCID: PMC10815754 DOI: 10.3390/genes15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic autoinflammatory skin disorder, which typically occurs during puberty or early adulthood. The pathogenesis of HS is complex and multifactorial; a close interaction between hormonal, genetic, epigenetics factors, host-specific aspects, and environmental influences contributes to the susceptibility, onset, severity, and clinical course of this disease, although the exact molecular mechanisms are still being explored. Epigenetics is currently emerging as an interesting field of investigation that could potentially shed light on the molecular intricacies underlying HS, but there is much still to uncover on the subject. The aim of this work is to provide an overview of the epigenetic landscape involved in HS. Specifically, in this in-depth review we provide a comprehensive overview of DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs (such as microRNA-miRNA-132, miRNA-200c, miRNA-30a-3p, miRNA-100-5b, miRNA-155-5p, miRNA-338-5p) dysregulation in HS patients. An interesting element of epigenetic regulation in HS is that the persistent inflammatory milieu observed in HS lesional skin could be exacerbated by an altered methylation profile and histone acetylation pattern associated with key inflammatory genes. Deepening our knowledge on the subject could enable the development of targeted epigenetic therapies to potentially restore normal gene expression patterns, and subsequentially ameliorate, or even reverse, the progression of the disease. By deciphering the epigenetic code governing HS, we strive to usher in a new era of personalized and effective interventions for this enigmatic dermatological condition.
Collapse
Affiliation(s)
- Elena Maria Nardacchione
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Ronald Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
| | - Adamo Pio d’Adamo
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (E.M.N.); (P.M.T.); (R.M.); (A.P.d.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ayshath Thasneem
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar; (A.T.); (M.S.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
15
|
Daian E Silva DSO, Cox LJ, Rocha AS, Lopes-Ribeiro Á, Souza JPC, Franco GM, Prado JLC, Pereira-Santos TA, Martins ML, Coelho-Dos-Reis JGA, Gomes-de-Pinho TM, Da Fonseca FG, Barbosa-Stancioli EF. Preclinical assessment of an anti-HTLV-1 heterologous DNA/MVA vaccine protocol expressing a multiepitope HBZ protein. Virol J 2023; 20:304. [PMID: 38115107 PMCID: PMC10731796 DOI: 10.1186/s12985-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Collapse
Affiliation(s)
- D S O Daian E Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - L J Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - A S Rocha
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - Á Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - J P C Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - G M Franco
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - J L C Prado
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - T A Pereira-Santos
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - M L Martins
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
- Gerência de Desenvolvimento Técnico Científico, Fundação Centro de Hematologia e Hemoterapia do Estado de Minas Gerais - Hemominas, Belo Horizonte, Brazil
| | - J G A Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - T M Gomes-de-Pinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - F G Da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - E F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil.
| |
Collapse
|
16
|
Gentile A, Punziano C, Calvanese M, De Falco R, Gentile L, D’Alicandro G, Miele C, Capasso F, Pero R, Mazzaccara C, Lombardo B, Frisso G, Borrelli P, Mennitti C, Scudiero O, Faraonio R. Evaluation of Antioxidant Defence Systems and Inflammatory Status in Basketball Elite Athletes. Genes (Basel) 2023; 14:1891. [PMID: 37895240 PMCID: PMC10606456 DOI: 10.3390/genes14101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Intense physical activity can induce metabolic changes that modify specific biochemical biomarkers. In this scenario, the purpose of our study was to evaluate how intense physical activity can affect oxidative metabolism. Following this, fifteen professional basketball players and fifteen sedentary controls were recruited and subjected to two samplings of serum and urine in the pre-season (September) and two months after the start of the competitive season (November). Our results have shown an increase in athletes compared to controls in CK and LDH in September (respectively, p-value 0.003 and p-value < 0.001) and in November (both p-value < 0.001), whereas ALT is increased only in November (p-value 0.09). GGT serum levels were decreased in athletes compared to controls in both months (in September p-value 0.001 and in November p-value < 0.001). A gene expression analysis, carried out using RT-PCR, has revealed that IL-2, IL-6, IL-8, xCT and GCLM are increased in athletes in both months (p-value < 0.0001), while IL-10 and CHAC1 are increased only in September if compared to the controls (respectively, p-value 0.040 and p-value < 0.001). In conclusion, physical activity creates an adaptation of the systems involved in oxidative metabolism but without causing damage to the liver or kidney. This information could be of help to sports doctors for the prevention of injuries and illnesses in professional athletes for the construction of the athlete's passport.
Collapse
Affiliation(s)
- Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Mariella Calvanese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Renato De Falco
- Division of Laboratory Medicine, Istituto Nazionale Tumori—IRCCS Fondazione Pascale, 80129 Naples, Italy;
| | - Luca Gentile
- Integrated Department of Laboratory and Transfusion Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Ciro Miele
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- UOC Laboratory Medicine, Hematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Filomena Capasso
- UOC Laboratory Medicine, Hematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
| | - Paola Borrelli
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University G. d’Annunzio of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
- CEINGE, Biotecnologie Avanzate s.c.ar.l., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.G.); (C.P.); (M.C.); (C.M.); (R.P.); (C.M.); (B.L.); (G.F.); (R.F.)
| |
Collapse
|
17
|
Kumar A, Wang J, Esterly A, Radcliffe C, Zhou H, Wyk BV, Allore HG, Tsang S, Barakat L, Mohanty S, Zhao H, Shaw AC, Zapata HJ. Dectin-1 stimulation promotes a distinct inflammatory signature in the setting of HIV-infection and aging. Aging (Albany NY) 2023; 15:7866-7908. [PMID: 37606991 PMCID: PMC10497004 DOI: 10.18632/aging.204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
Dectin-1 is an innate immune receptor that recognizes and binds β-1, 3/1, 6 glucans on fungi. We evaluated Dectin-1 function in myeloid cells in a cohort of HIV-positive and HIV-negative young and older adults. Stimulation of monocytes with β-D-glucans induced a pro-inflammatory phenotype in monocytes of HIV-infected individuals that was characterized by increased levels of IL-12, TNF-α, and IL-6, with some age-associated cytokine increases also noted. Dendritic cells showed a striking HIV-associated increase in IFN-α production. These increases in cytokine production paralleled increases in Dectin-1 surface expression in both monocytes and dendritic cells that were noted with both HIV and aging. Differential gene expression analysis showed that HIV-positive older adults had a distinct gene signature compared to other cohorts characterized by a robust TNF-α and coagulation response (increased at baseline), a persistent IFN-α and IFN-γ response, and an activated dendritic cell signature/M1 macrophage signature upon Dectin-1 stimulation. Dectin-1 stimulation induced a strong upregulation of MTORC1 signaling in all cohorts, although increased in the HIV-Older cohort (stimulation and baseline). Overall, our study demonstrates that the HIV Aging population has a distinct immune signature in response to Dectin-1 stimulation. This signature may contribute to the pro-inflammatory environment that is associated with HIV and aging.
Collapse
Affiliation(s)
- Archit Kumar
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| | - Jiawei Wang
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520-8022, USA
| | - Allen Esterly
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| | - Chris Radcliffe
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| | - Haowen Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520-8022, USA
| | - Brent Vander Wyk
- Yale University Program on Aging, Yale University, New Haven, CT 06520-8022, USA
| | - Heather G. Allore
- Yale University Program on Aging, Yale University, New Haven, CT 06520-8022, USA
| | - Sui Tsang
- Yale University Program on Aging, Yale University, New Haven, CT 06520-8022, USA
| | - Lydia Barakat
- Yale University, Yale AIDS Care Program, New Haven, CT 06520-8022, USA
| | - Subhasis Mohanty
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520-8022, USA
| | - Albert C. Shaw
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| | - Heidi J. Zapata
- Yale School of Medicine, Section of Infectious Diseases, Department of Internal Medicine, New Haven, CT 06520-8022, USA
| |
Collapse
|
18
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
19
|
Portmann K, Linder A, Oelgarth N, Eyer K. Single-cell deep phenotyping of cytokine release unmasks stimulation-specific biological signatures and distinct secretion dynamics. CELL REPORTS METHODS 2023; 3:100502. [PMID: 37533643 PMCID: PMC10391336 DOI: 10.1016/j.crmeth.2023.100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023]
Abstract
Cytokines are important mediators of the immune system, and their secretion level needs to be carefully regulated, as an unbalanced activity may lead to cytokine release syndromes. Dysregulation can be induced by various factors, including immunotherapies. Therefore, the need for risk assessment during drug development has led to the introduction of cytokine release assays (CRAs). However, the current CRAs offer little insight into the heterogeneous cellular dynamics. To overcome this limitation, we developed an advanced single-cell microfluidic-based cytokine secretion platform to quantify cytokine secretion on the single-cell level dynamically. Our approach identified different dynamics, quantities, and phenotypically distinct subpopulations for each measured cytokine upon stimulation. Most interestingly, early measurements after only 1 h of stimulation revealed distinct stimulation-dependent secretion dynamics and cytokine signatures. With increased sensitivity and dynamic resolution, our platform provided insights into the secretion behavior of individual immune cells, adding crucial additional information about biological stimulation pathways to traditional CRAs.
Collapse
Affiliation(s)
- Kevin Portmann
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Aline Linder
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicole Oelgarth
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Dong LF, Chen FF, Fan YF, Zhang K, Chen HH. circ-0000512 inhibits PD-L1 ubiquitination through sponging miR-622/CMTM6 axis to promote triple-negative breast cancer and immune escape. J Immunother Cancer 2023; 11:e005461. [PMID: 37349124 PMCID: PMC10314703 DOI: 10.1136/jitc-2022-005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND This study reported the function and mechanism of circ-0000512 in the progression of triple-negative breast cancer (TNBC). METHODS circ-0000512 expression in TNBC tissues and paired adjacent normal tissues and cells was examined by qRT-PCR. Moreover, circ-0000512 expression in TNBC cells was modulated by transfection. Thereafter, colony formation assay, Transwell assay and flow cytometry were conducted to observe cell proliferation, migration and apoptosis. TNBC cells were treated with cycloheximide and the protease inhibitor MG132. Later, ubiquitination assay was performed to detect programmed cell death ligand 1 (PD-L1) ubiquitination in TNBC cells. The T cell killing ability was assessed by the T cell-mediated tumor cell killing assay. IFNγ and IL-2 levels were detected by ELISA. The percentage of activated T cells was detected with a flow cytometer. In addition, dual luciferase reporter gene assay and RNA immunoprecipitation assay were carried out to evaluate the binding between two genes. In vivo study was conducted on mice. CD8+ T cells in xenograft tumors were detected by immunohistochemistry. RESULTS circ-0000512 was upregulated in patients with TNBC. circ-0000512 knockdown attenuated the proliferation and migration of TNBC cells and enhanced their apoptosis. circ-0000512 overexpression had opposite effects. circ-0000512 knockdown enhanced the PD-L1 protein ubiquitination in TNBC cells by inhibiting CMTM6. Meanwhile, circ-0000512 promoted CMTM6 expression by sponging miR-622. circ-0000512 knockdown increased the ratio of CD8+T cells and the lethality of T cells against TNBC cells. Besides, circ-0000512 knockdown inhibited the growth of TNBC cells in immunodeficient nude mice and normal immune mice and increased the ratio of CD8+T cells in xenograft tumors of normal immune mice. CONCLUSIONS circ-0000512 inhibited PD-L1 ubiquitination by sponging the miR-622/CMTM6 axis, thus promoting TNBC progression and immune escape.
Collapse
Affiliation(s)
- Li-Feng Dong
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fang-Fang Chen
- Department of Breast Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yang-Fan Fan
- Department of Breast Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Hui-Hui Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Dwyer LJ, Maheshwari S, Levy E, Poznansky MC, Whalen MJ, Sîrbulescu RF. B cell treatment promotes a neuroprotective microenvironment after traumatic brain injury through reciprocal immunomodulation with infiltrating peripheral myeloid cells. J Neuroinflammation 2023; 20:133. [PMID: 37259118 PMCID: PMC10230748 DOI: 10.1186/s12974-023-02812-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and severe disability worldwide. We found previously that treatment with exogenous naïve B cells was associated with structural and functional neuroprotection after TBI. Here, we used a mouse model of unilateral controlled cortical contusion TBI to investigate cellular mechanisms of immunomodulation associated with intraparenchymal delivery of mature naïve B lymphocytes at the time of injury. Exogenous B cells showed a complex time-dependent response in the injury microenvironment, including significantly increased expression of IL-10, IL-35, and TGFβ, but also IL-2, IL-6, and TNFα. After 10 days in situ, B cell subsets expressing IL-10 or TGFβ dominated. Immune infiltration into the injury predominantly comprised myeloid cells, and B cell treatment did not alter overall numbers of infiltrating cells. In the presence of B cells, significantly more infiltrating myeloid cells produced IL-10, TGFβ, and IL-35, and fewer produced TNFα, interferon-γ and IL-6 as compared to controls, up to 2 months post-TBI. B cell treatment significantly increased the proportion of CD206+ infiltrating monocytes/macrophages and reduced the relative proportion of activated microglia starting at 4 days and up to 2 months post-injury. Ablation of peripheral monocytes with clodronate liposomes showed that infiltrating peripheral monocytes/macrophages are required for inducing the regulatory phenotype in exogenous B cells. Reciprocally, B cells specifically reduced the expression of inflammatory cytokines in infiltrating Ly6C+ monocytes/macrophages. These data support the hypothesis that peripheral myeloid cells, particularly infiltrating monocyte/macrophages, are key mediators of the neuroprotective immunomodulatory effects observed after B cell treatment.
Collapse
Affiliation(s)
- Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Emily Levy
- Neuroscience Center, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Michael J Whalen
- Neuroscience Center, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
22
|
Topuz Ata D, Hussain M, Jones M, Best J, Wiese M, Carter KC. Immunisation with Transgenic L. tarentolae Expressing Gamma Glutamyl Cysteine Synthetase from Pathogenic Leishmania Species Protected against L. major and L. donovani Infection in a Murine Model. Microorganisms 2023; 11:1322. [PMID: 37317296 PMCID: PMC10223578 DOI: 10.3390/microorganisms11051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Leishmaniasis is a protozoan disease responsible for significant morbidity and mortality. There is no recommended vaccine to protect against infection. In this study, transgenic Leishmania tarentolae expressing gamma glutamyl cysteine synthetase (γGCS) from three pathogenic species were produced and their ability to protect against infection determined using models of cutaneous and visceral leishmaniasis. The ability of IL-2-producing PODS® to act as an adjuvant was also determined in L. donovani studies. Two doses of the live vaccine caused a significant reduction in L. major (p < 0.001) and L. donovani (p < 0.05) parasite burdens compared to their respective controls. In contrast, immunisation with wild type L. tarentolae, using the same immunisation protocol, had no effect on parasite burdens compared to infection controls. Joint treatment with IL-2-producing PODS® enhanced the protective effect of the live vaccine in L. donovani studies. Protection was associated with a Th1 response in L. major and a mixed Th1/Th2 response in L. donovani, based on specific IgG1 and IgG2a antibody and cytokine production from in vitro proliferation assays using antigen-stimulated splenocytes. The results of this study provide further proof that γGCS should be considered a candidate vaccine for leishmaniasis.
Collapse
Affiliation(s)
- Derya Topuz Ata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Muattaz Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Michael Jones
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jonathan Best
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Katharine Christine Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
23
|
Milicevic S, Cemazar M, Ivancic AK, Gasljevic G, Bosnjak M, Sersa G, Peric B. Electrochemotherapy of Melanoma Cutaneous Metastases in Organ Transplant Recipients: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24098335. [PMID: 37176042 PMCID: PMC10179383 DOI: 10.3390/ijms24098335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive form of skin cancer. The development of immune checkpoint inhibitors (ICIs) has revolutionized the management of advanced melanoma, led to durable responses, and improved overall survival. However, the success of ICIs in melanoma treatment is influenced by the tumor microenvironment (TME) which plays a critical role in regulating the immune response to the tumor. Understanding the mechanisms underlying this interaction is crucial to optimizing the efficiency of ICIs. Electrochemotherapy (ECT) has been shown to enhance the efficacy of ICIs in melanoma treatment by inducing tumor cell death and facilitating the release of tumor antigens which can subsequently be recognized and targeted by the immune system. Moreover, ECT has been reported to modulate the TME, leading to increased infiltration of immune cells and a more favorable immunological profile. In this review, we summarize the available knowledge of changes in TME after ECT of melanoma cutaneous metastasis and highlight the differences in tumor-infiltrating immune cells between immunocompetent and immunosuppressed organisms. In addition, we showed that ECT can be an effective and safe procedure for organ transplant recipients. Furthermore, repeated ECT may enhance immune activation and probably induce a bystander effect by trained immunity.
Collapse
Affiliation(s)
- Sara Milicevic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | | | - Gorana Gasljevic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Askerceva Cesta 7, 1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia
| | - Barbara Peric
- Institute of Oncology Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
25
|
Liu W, Jakobs J, Rink L. Proton-Pump Inhibitors Suppress T Cell Response by Shifting Intracellular Zinc Distribution. Int J Mol Sci 2023; 24:ijms24021191. [PMID: 36674704 PMCID: PMC9867219 DOI: 10.3390/ijms24021191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used drugs for various gastrointestinal diseases. However, more and more side effects, especially an increased risk of infections, have been reported in recent years. The underlying mechanism has still not yet been fully uncovered. Hence, in this study, we analyzed the T cell response after treatment with pantoprazole in vitro. Pantoprazole preincubation reduced the production and secretion of interferon (IFN)-γ and interleukin (IL)-2 after the T cells were activated with phytohemagglutinin (PHA)-L or toxic shock syndrome toxin-1 (TSST-1). Moreover, a lower zinc concentration in the cytoplasm and a higher concentration in the lysosomes were observed in the pantoprazole-treated group compared to the untreated group. We also tested the expression of the zinc transporter Zrt- and Irt-like protein (Zip)8, which is located in the lysosomal membrane and plays a key role in regulating intracellular zinc distribution after T cell activation. Pantoprazole reduced the expression of Zip8. Furthermore, we measured the expression of cAMP-responsive element modulator (CREM) α, which directly suppresses the expression of IL-2, and the expression of the phosphorylated cAMP response element-binding protein (pCREB), which can promote the expression of IFN-γ. The expression of CREMα was dramatically increased, and different isoforms appeared, whereas the expression of pCREB was downregulated after the T cells were treated with pantoprazole. In conclusion, pantoprazole downregulates IFN-γ and IL-2 expression by regulating the expression of Zip8 and pCREB or CREMα, respectively.
Collapse
|
26
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
27
|
Cao Y, Du Y, Jia W, Ding J, Yuan J, Zhang H, Zhang X, Tao K, Yang Z. Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1125829. [PMID: 36923221 PMCID: PMC10009268 DOI: 10.3389/fendo.2023.1125829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. METHODS CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. RESULTS A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. CONCLUSION 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Weili Jia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| |
Collapse
|
28
|
Prasad S, Dimmock DP, Greenberg B, Walia JS, Sadhu C, Tavakkoli F, Lipshutz GS. Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Hum Gene Ther 2022; 33:1228-1245. [PMID: 35994385 PMCID: PMC9808800 DOI: 10.1089/hum.2022.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being increasingly used as gene therapy vectors in clinical studies especially targeting central nervous system (CNS) disorders. Correspondingly, host immune responses to the AAV capsid or the transgene-encoded protein have been observed in various clinical and preclinical studies. Such immune responses may adversely impact patients' health, prevent viral transduction, prevent repeated dosing strategies, eliminate transduced cells, and pose a significant barrier to the potential effectiveness of AAV gene therapy. Consequently, multiple immunomodulatory strategies have been used in attempts to limit immune-mediated responses to the vector, enable readministration of AAV gene therapy, prevent end-organ toxicity, and increase the duration of transgene-encoded protein expression. Herein we review the innate and adaptive immune responses that may occur during CNS-targeted AAV gene therapy as well as host- and treatment-specific factors that could impact the immune response. We also summarize the available preclinical and clinical data on immune responses specifically to CNS-targeted AAV gene therapy and discuss potential strategies for incorporating prophylactic immunosuppression regimens to circumvent adverse immune responses.
Collapse
Affiliation(s)
| | - David P. Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Benjamin Greenberg
- Department of Neurology, O'Donnell Brain Institute, University of Texas Southwestern, Dallas, Texas, USA
| | - Jagdeep S. Walia
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Canada
| | | | | | - Gerald S. Lipshutz
- Departments of Molecular and Medical Pharmacology and Surgery, Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Correspondence: Prof. Gerald S. Lipshutz, Departments of Molecular and Medical Pharmacology and Surgery, Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
30
|
Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M, Frič J. Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies. Front Immunol 2022; 13:932055. [PMID: 36330529 PMCID: PMC9623302 DOI: 10.3389/fimmu.2022.932055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2025] Open
Abstract
Recent findings about the new roles of lactate have changed our understanding of this end product of glycolysis or fermentation that was once considered only a waste product. It is now well accepted that lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted environment. Moreover, lactate and lactate dehydrogenase are markers of poor prognosis of many cancers and regulate many functions of immune cells. The presence of lactate in the tumor microenvironment (TME) leads to polarization of the immunosuppressive phenotypes of dendritic cells and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a major obstacle to immune-cell effector functions and the efficacy of cell-based immunotherapies. Emerging evidence suggests that lactate in the TME might be a novel therapeutic target to enhance the immunotherapeutic potential of cell-based therapies. This review describes our current understanding of the role of lactate in tumor biology, including its detrimental effects on cell-based immunotherapy in cancer. We also highlight how the role of lactate in the TME must be considered when producing cell therapies designed for adoptive transfer and describe how targeted modulation of lactate in the TME might boost immune-cell functions and positively impact cellular immunotherapy, with a focus on NK cell.
Collapse
Affiliation(s)
- Marek Jedlička
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Tereza Feglarová
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
| | - Lucie Janstová
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Marcela Hortová-Kohoutková
- Cellular and Molecular Immunoregulation Group, International Clinical Research Center of St. Anne´s University Hospital Brno, Brno, Czechia
| | - Jan Frič
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Cellular and Molecular Immunoregulation Group, International Clinical Research Center of St. Anne´s University Hospital Brno, Brno, Czechia
| |
Collapse
|
31
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
32
|
Baarz BR, Laurentius T, Wolf J, Wessels I, Bollheimer LC, Rink L. Short-term zinc supplementation of zinc-deficient seniors counteracts CREMα - mediated IL-2 suppression. Immun Ageing 2022; 19:40. [PMID: 36042501 PMCID: PMC9424813 DOI: 10.1186/s12979-022-00295-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023]
Abstract
Background Aging is accompanied by a dramatic decline in the interleukin (IL)-2 production capacity of human immune cells, thus making seniors more susceptible to a variety of age-related diseases. A common cause of impaired cytokine production in advanced age is a deficiency of the essential micronutrient zinc. Nevertheless, the molecular mechanisms underlying a zinc deficiency-induced decrease in IL-2 production have not yet been satisfactorily elucidated. Recent animal and in vitro data suggested that the transcription factor cAMP-responsive element modulator (CREM) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α plays a critical role in T cells´ disturbed IL-2 production in suboptimal zinc conditions. However, its role in the human aging process and the possibility of influencing this detrimental process by short-term zinc supplementation have not yet been evaluated. Results Comparing peripheral lymphocytes of 23 young and 31 elderly subjects with either high, intermediate, or deficient zinc status, we observed zinc-dependent regulation of the IL-2 production mediated by the transcription factor CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α. For the first time in humans, we report a mutual relationship between low zinc levels, high CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α expression, subsequent impaired IL-2 production, and vice versa. Remarkably, an average of only 6 days of in vivo zinc supplementation to zinc-deficient seniors was sufficient to rapidly improve zinc status, reverse CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α overexpression, and counteract subsequent low IL-2 production rates. Conclusions Our ex vivo and in vivo data identify zinc deficiency-mediated CREM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α overexpression as a key cellular mechanism underlying impaired IL-2 production in the elderly and point toward the use of zinc as a rapidly immune-enhancing add-on nutraceutical in geriatric therapy. Graphical abstract During the aging process, there is a progressive decrease in zinc status, which in turn leads to overexpression of the transcription factor CREM\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α in peripheral lymphocytes. CREMα is a negative regulator of the IL-2 gene, the overexpression of which dramatically limits adequate IL-2 production. This deleterious mechanism can be counteracted by short-term oral zinc administration, which can adjust IL-2 production in old, zinc-deficient individuals to a level similar to that of young adults.![]()
Collapse
|
33
|
Li X, Khorsandi S, Wang Y, Santelli J, Huntoon K, Nguyen N, Yang M, Lee D, Lu Y, Gao R, Kim BYS, de Gracia Lux C, Mattrey RF, Jiang W, Lux J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. NATURE NANOTECHNOLOGY 2022; 17:891-899. [PMID: 35637356 PMCID: PMC9378430 DOI: 10.1038/s41565-022-01134-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
The cytosolic innate immune sensor cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is crucial for priming adaptive antitumour immunity through antigen-presenting cells (APCs). Natural agonists, such as cyclic dinucleotides (CDNs), activate the cGAS-STING pathway, but their clinical translation is impeded by poor cytosolic entry and serum stability, low specificity and rapid tissue clearance. Here we developed an ultrasound (US)-guided cancer immunotherapy platform using nanocomplexes composed of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) electrostatically bound to biocompatible branched cationic biopolymers that are conjugated onto APC-targeting microbubbles (MBs). The nanocomplex-conjugated MBs engaged with APCs and efficiently delivered cGAMP into the cytosol via sonoporation, resulting in activation of cGAS-STING and downstream proinflammatory pathways that efficiently prime antigen-specific T cells. This bridging of innate and adaptive immunity inhibited tumour growth in both localized and metastatic murine cancer models. Our findings demonstrate that targeted local activation of STING in APCs under spatiotemporal US stimulation results in systemic antitumour immunity and improves the therapeutic efficacy of checkpoint blockade, thus paving the way towards novel image-guided strategies for targeted immunotherapy of cancer.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sina Khorsandi
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julien Santelli
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nhu Nguyen
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruoqi Gao
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline de Gracia Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert F Mattrey
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jacques Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Kogut MH, Genovese KJ, Byrd JA, Swaggerty CL, He H, Farnell Y, Arsenault RJ. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:899395. [PMID: 35846741 PMCID: PMC9279939 DOI: 10.3389/fcimb.2022.899395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Poultry is a major source of human foodborne illness caused by broad host range Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest interventions to reduce these pathogens would be valuable to the industry and consumer. Host responses to infectious agents are often regulated through phosphorylation. However, proteomic mechanisms of Salmonella acute infection biology and host responses to the bacteria have been limited concentrating predominately on the genomic responses of the host to infection. Our recent development of chicken-specific peptide arrays for kinome analysis of host phosphorylation-based cellular signaling responses provided us with the opportunity to develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen interactions during the initial colonization of the cecum by Salmonella. Using the chicken-specific kinomic immune peptide array, biological pathway analysis showed infection with S. Enteritidis increased signaling related to the innate immune response, relative to the non-infected control ceca. Notably, the acute innate immune signaling pathways were characterized by increased peptide phosphorylation (activation) of the Toll-like receptor and NOD-like receptor signaling pathways, the activation of the chemokine signaling pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling pathway demonstrating the initiation of the acquired immune response to Salmonella infection. Based on the individual phosphorylation events altered by the early Salmonella infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized by both TLR and NOD receptors that initiated the innate immune response; (2) activation of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6, IFN-α, and IFN-γ; (3) Salmonella infection targeted the JAK-STAT pathway as a means of evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and (5) the T cell receptor signaling pathway activates the AP-1 and NF-κB transcription factor cascades, but not NFAT.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
- *Correspondence: Michael H. Kogut,
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Haiqi He
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Yuhua Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
35
|
Canine Cytokines Profile in an Endemic Region of L. infantum: Related Factors. Vet Sci 2022; 9:vetsci9060305. [PMID: 35737357 PMCID: PMC9231092 DOI: 10.3390/vetsci9060305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/22/2023] Open
Abstract
Canine leishmaniosis is caused by infection with parasite Leishmania infantum, which are transmitted by sandflies Phlebotomus. Canine leishmaniosis is an endemic disease in the Mediterranean region. The immune response could vary between hosts and determines the severity of the disease and clinical features. The aim of this study was to analyze the serum levels of cytokines TNF-α, IFN-γ, IL-2, IL-6, and IL-8, which are related to the activation of Th1 or Th2 immune responses in dogs living in the L. infantum endemic region. Moreover, we intend to relate and correlate these levels with different factors, such as sex, age, diet, lifestyle, and breed. Epidemiological data and serum were recovered for seventy-eight dogs, and serum levels of cytokines described previously were analyzed by using the ELISA method. The results showed differences in serum levels of IFN-γ, IL-2, and IL-8 between breeds. The lifestyle also affected serum levels of IL-2. The main conclusion of this study is that Ibizan hounds and crossbred dogs have a serological profile of cytokines that seems to indicate certain protections against infection by L. infantum compared to boxer and purebred breeds.
Collapse
|
36
|
Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review. Mol Biol Rep 2022; 49:10627-10633. [PMID: 35715610 DOI: 10.1007/s11033-022-07633-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient's body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient's body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using "surfaceome" analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.
Collapse
|
37
|
Kawaguchi T, Fukata M, Omori T, Kiyohara H, Sugimoto S, Nanki K, Sujino T, Mikami Y, Kanai T. Efficacy of Calcineurin Inhibitors for Induction of Remission in Intestinal Behçet's Disease. CROHN'S & COLITIS 360 2022; 4:otac017. [PMID: 36777415 PMCID: PMC9802215 DOI: 10.1093/crocol/otac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background The efficacy of calcineurin inhibitors (CNIs) for induction of remission in intestinal Behçet's disease (intestinal BD) has not been explored. Methods A multicenter retrospective case series study of patients with active intestinal BD treated with CNIs (cyclosporin and tacrolimus) was conducted. Results Of 16 patients, 12 (75%) showed a clinical response and 5 (31.3%) achieved clinical remission after 2 weeks of CNI treatment. Similar efficacy of CNIs was observed even in 7 patients refractory to antitumor necrosis factor-alpha therapies. Endoscopic improvement was observed in 11 of 12 patients. Conclusions CNIs may be promising treatment options for refractory intestinal BD.
Collapse
Affiliation(s)
- Takaaki Kawaguchi
- Address correspondence to: Takaaki Kawaguchi, MD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan ()
| | - Masayuki Fukata
- Center for Inflammatory Bowel Disease, Division of Gastroenterology, Department of Internal Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Teppei Omori
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kosaku Nanki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
39
|
Hirata RDC, Genvigir FDV, Hirata TDC, Cerda A, Hirata MH. Pharmacogenomics of mycophenolic acid in kidney transplantation: Contribution of immune response-related genes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
40
|
Lee KJ, Ratih K, Kim GJ, Lee YR, Shin JS, Chung KH, Choi EJ, Kim EK, An JH. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe 2O 3) nanoparticles in an atopic dermatitis model. Colloids Surf B Biointerfaces 2021; 210:112244. [PMID: 34896691 DOI: 10.1016/j.colsurfb.2021.112244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
We investigated the immunomodulatory and anti-inflammatory efficacy of hederagenin coating on maghemite (γ-Fe2O3) nanoparticles (HM) in atopic dermatitis (AD), as well as the physical and optical properties of maghemite nanoparticles (MP) using SEM, XRD spectroscopy, UV-vis spectra, Raman spectra, and FTIR spectroscopy. Dose-dependent treatment with HM (10, 50, 100, 200 μg/mL) inhibited the expression of Interleukin-2 (IL-2) and Tumor necrosis factor- α (TNF-α) in inflammatory induced HaCaT and Jurkat cells with inflammation caused by TNF/IFN-γ and PMA/A23187. AD model was induced by performing topical application of 2,4-dinitrochlorobenzene (DNCB) and dermatophagoides farinae extract (DFE) for a 31-day period on 8-week-old BALB/c mice. The HM treatments efficiently diminished the AD-like cutaneous lesion induced by DNCB-DFE sensitization in mice. Compared to the AD-only groups, HM treatment considerably attenuated mast cell infiltration and lowered epidermal, and dermal thickness of mice ears skin. In addition, HM treatment prominently alleviated the enlarged size and weight of lymph nodes. Furthermore, HM treatment resulted in a notable reduction in the mRNA expression of Th1 cytokines (TNF-α and IFN-γ), Th2 cytokines (IL-4 and IL-6), Th17 (IL-17), and TSLP. Our data showed that HM provides better AD attenuation compared to MP. Additionally, HM had synergistic effect and act as anti-inflammatory and immunomodulatory agent. Thus, HM shows great potential in AD medication and as a substitution of non-steroid-based medication.
Collapse
Affiliation(s)
- Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 34520, Republic of Korea
| | - Khoirunnisa Ratih
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yu-Rim Lee
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Jae-Soo Shin
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeung Hee An
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea.
| |
Collapse
|
41
|
Wagner A, Jasinska J, Tomosel E, Zielinski CC, Wiedermann U. Absent antibody production following COVID19 vaccination with mRNA in patients under immunosuppressive treatments. Vaccine 2021; 39:7375-7378. [PMID: 34785100 PMCID: PMC8557974 DOI: 10.1016/j.vaccine.2021.10.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 01/07/2023]
Abstract
Patients undergoing immunosuppressive treatments have a higher need for protection against coronavirus disease (COVID19) that follows infection with the SARS-CoV-2 virus but their ability to respond sufficiently to COVID vaccines is uncertain. We retrospectively evaluated SARS-CoV-2 spike subunit 1 (S1)-specific antibody levels after two mRNA doses in 242 patients with underlying chronic inflammatory, hematooncological or metabolic diseases and in solid organ transplant recipients. S1-specific antibodies were measured 30 days after the second dose. In 15.9% of these patients, no S1-specific antibodies were detectable. Non-responsiveness was linked to administration of B-cell depleting therapies as well as to ongoing therapies that block lymphocyte trafficking (Fingolimod) or inhibit T cell proliferation (Tacrolimus). Thus, it is important to inform immunosuppressed patients about the risk of vaccine non-responsiveness and the necessity to maintain non-pharmaceutical protection measures. In these risk patients antibody testing and cellular analysis are helpful to estimate the benefit/responsiveness to further booster vaccinations.
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
| | - Joanna Jasinska
- Institute of Specific Prophylaxis and Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
| | - Elena Tomosel
- Institute of Specific Prophylaxis and Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
| | - Christoph C Zielinski
- Central European Cancer Center, Wiener Privatklinik, Vienna, Austria, and Central European Cooperative Oncology Group, HQ: Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria.
| |
Collapse
|
42
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
43
|
Phillips BG, Wang Y, Ambati S, Ma P, Meagher RB. Airways therapy of obstructive sleep apnea dramatically improves aberrant levels of soluble cytokines involved in autoimmune disease. Clin Immunol 2020; 221:108601. [PMID: 33017651 DOI: 10.1016/j.clim.2020.108601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Obstructive Sleep Apnea (OSA) damages the health of 35% of adult Americans. Disordered sleep results in increased risk of several autoimmune disorders, but the molecular links to autoimmunity are poorly understood. Herein, we identified four cytokines associated with autoimmune disease, whose median serum levels were significantly different for OSA patients receiving airways therapy, from the levels in untreated OSA patients, APRIL (5.2-fold lower, p = 3.5 × 10-11), CD30 (1.6-fold higher, p = 7.7 × 10-5), IFN-Alpha-2 (2.9-fold higher, p = 9.6 × 10-14) and IL-2 (1.9-fold higher, p = 0.0003). Cytokine levels in airways treated patients were similar to the levels in control subjects. t-SNE and UMAP analysis of these high dimensional patient cytokine data identified only two groups, suggesting a similar global response for all four cytokines to airways therapy. Our findings suggest the levels of these four cytokines may be altered by disordered sleep and perhaps by chronic hypoxia. Therapeutic options are discussed.
Collapse
Affiliation(s)
- Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA 30602, USA; Clinical and Translational Research Unit, University of Georgia, Athens, GA 30602, USA
| | - Ye Wang
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
44
|
Bendickova K, Fric J. Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy. J Leukoc Biol 2020; 108:427-437. [PMID: 32480431 PMCID: PMC7384134 DOI: 10.1002/jlb.5mir0420-055r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
IL-2 was initially characterized as a T cell growth factor in the 1970s, and has been studied intensively ever since. Decades of research have revealed multiple and diverse roles for this potent cytokine, indicating a unique linking role between adaptive and innate arms of the immune system. Here, we review the literature showing that IL-2 is expressed in a plethora of cell types across the immune system, where it has indispensable functions in orchestrating cellular interactions and shaping the nature and magnitude of immune responses. Emerging from the basic research that has revealed the molecular mechanisms and the complexity of the biologic actions of IL-2, several immunotherapeutic approaches have now focused on manipulating the levels of this cytokine in patients. These strategies range from inhibition of IL-2 to achieve immunosuppression, to the application of IL-2 as a vaccine adjuvant and in cancer therapies. This review will systematically summarize the major findings in the field and identify key areas requiring further research in order to realize the potential of IL-2 in the treatment of human diseases.
Collapse
Affiliation(s)
- Kamila Bendickova
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Jan Fric
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
- Institute of Hematology and Blood TransfusionPragueCzech Republic
| |
Collapse
|