1
|
Belcher PE, Moberg A, Murphy MB. Standards for reporting optical biosensor experiments (STROBE): Improving standards in the reporting of optical biosensor-based data in the literature. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100192. [PMID: 39488330 DOI: 10.1016/j.slasd.2024.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The number of peer-reviewed publications that feature biosensor data increases every year. A search of PubMed using common technique terminology, including bio-layer interferometry (BLI), surface plasmon resonance (SPR) and grating-coupled interferometry (GCI) generated more than 2500 scientific papers from 2022. Compared to 2009, when David Myszka and Rebecca Rich presented their most recent review of biosensor literature (Rich and Myszka, 2011), this number has nearly doubled. With this increasing number of publications comes an increasing need for standardization of the way biosensor data is reported in journals to allow for replication of the experiments that were performed. Biosensor data is often poorly described in papers which makes it difficult, if not impossible, to replicate the experiment. Critical information typically missing includes sample preparation, method settings, and data evaluation details. We have also found published work in which the authors have failed to report the type of sensor that was used, or which biosensor instrumentation was used. To come to terms with this growing problem, we propose a standardization of the way biosensor data is reported in scientific journals. We call this standard STROBE, standards for reporting optical biosensor experiments.
Collapse
|
2
|
Fischer J, Kaufmann JO, Weller MG. Simple Determination of Affinity Constants of Antibodies by Competitive Immunoassays. Methods Protoc 2024; 7:49. [PMID: 38921828 PMCID: PMC11206456 DOI: 10.3390/mps7030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (Kd), can be considered as one of the most important characteristics for any antibody-antigen pair. Many methods based on different technologies have been proposed and used to determine this value. However, since a very large number of publications and commercial datasheets do not include this information, significant obstacles in performing such measurements seem to exist. In other cases where such data are reported, the results have often proved to be unreliable. This situation may indicate that most of the technologies available today require a high level of expertise and effort that does not seem to be available in many laboratories. In this paper, we present a simple approach based on standard immunoassay technology that is easy and quick to perform. It relies on the effect that the molar IC50 approaches the Kd value in the case of infinitely small concentrations of the reagent concentrations. A two-dimensional dilution of the reagents leads to an asymptotic convergence to Kd. The approach has some similarity to the well-known checkerboard titration used for the optimization of immunoassays. A well-known antibody against the FLAG peptide, clone M2, was used as a model system and the results were compared with other methods. This approach could be used in any case where a competitive assay is available or can be developed. The determination of an affinity constant should belong to the crucial parameters in any quality control of antibody-related products and assays and should be mandatory in papers using immunochemical protocols.
Collapse
Affiliation(s)
- Janina Fischer
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jan Ole Kaufmann
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael G. Weller
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Baardsnes J, Paul-Roc B. SARS-CoV-2S-Protein-Ace2 Binding Analysis Using Surface Plasmon Resonance. Methods Mol Biol 2024; 2762:71-87. [PMID: 38315360 DOI: 10.1007/978-1-0716-3666-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Surface plasmon resonance (SPR) allows for the label-free determination of the binding affinity and rate constants of bimolecular interactions. Here, we describe the method used for the analysis of the Ace2-SARS-CoV2 S-protein interaction using indirect capture of the S-protein onto the SPR surface, and flowing monomeric Ace2. This method will allow for the determination of the rate constants for affinity, with additional analysis that is achievable using S-protein capture levels in conjunction with the sensorgram response for relative activity benchmarking.
Collapse
Affiliation(s)
- Jason Baardsnes
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada.
| | - Béatrice Paul-Roc
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada
| |
Collapse
|
4
|
Fan C, Cohen AA, Park M, Hung AFH, Keeffe JR, Gnanapragasam PNP, Lee YE, Gao H, Kakutani LM, Wu Z, Kleanthous H, Malecek KE, Williams JC, Bjorkman PJ. Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity 2022; 55:2419-2435.e10. [PMID: 36370711 PMCID: PMC9606073 DOI: 10.1016/j.immuni.2022.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | | | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Kathryn E Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Wei Y, Lee J, Dziegelewski M, Marlow MS, Hayes DB. Determination of the SLAMF1 self-association affinity constant with sedimentation velocity ultracentrifugation. Anal Biochem 2021; 633:114410. [PMID: 34634259 DOI: 10.1016/j.ab.2021.114410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Signaling lymphocytic activating molecule family member 1 (SLAMF1 or CD150) is a cell surface glycoprotein expressed on various immune populations, regulating cell-cell interactions, activation, differentiation, and inflammatory responses and has been suggested as a potential target for inflammatory diseases. Signaling is believed to be mediated by high-affinity homophilic interactions; the recombinant soluble form of SLAMF1 has optimal activity in the range of 20 μg/mL. This contradicts with a rather weak homo-dimerization binding constant (KD) value reported previously; however, the analytical approach and data analysis suffered from various technical limitations at the time and therefore warrants re-examination. To address this apparent discrepancy, we determined the KD of soluble SLAMF1 using sedimentation velocity analytical ultracentrifuge (SV-AUC). A globally fitted monomer-dimer model properly explains the data from a wide concentration range obtained with both UV and fluorescence detection systems. The analysis suggests the dimerization KD value for human SLAMF1 is 0.48 μM. Additionally, our data show that SLAMF1 self-association is not driven by non-specific binding to glycans supporting the view of specific protein-protein interaction. We anticipate antibody biotherapeutics capable of modulating the biological consequences of SLAMF1 interactions will be readily identified.
Collapse
Affiliation(s)
- Yangjie Wei
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - JangEun Lee
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Michael Dziegelewski
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA.
| | - David B Hayes
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| |
Collapse
|
6
|
Conrad M, Fechner P, Proll G, Gauglitz G. Comparison of methods for quantitative biomolecular interaction analysis. Anal Bioanal Chem 2021; 414:661-673. [PMID: 34505164 PMCID: PMC8748344 DOI: 10.1007/s00216-021-03623-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
In order to perform good kinetic experiments, not only the experimental conditions have to be optimized, but the evaluation procedure as well. The focus of this work is the in-depth comparison of different approaches and algorithms to determine kinetic rate constants for biomolecular interaction analysis (BIA). The different algorithms are applied not only to flawless simulated data, but also to real-world measurements. We compare five mathematical approaches for the evaluation of binding curves following pseudo-first-order kinetics with different noise levels. In addition, reflectometric interference spectroscopy (RIfS) measurements of two antibodies are evaluated to determine their binding kinetics. The advantages and disadvantages of the individual approach will be investigated and discussed in detail. In summary, we will raise awareness on how to evaluate and judge results from BIA by using different approaches rather than having to rely on “black box” closed (commercial) software packages.
Collapse
Affiliation(s)
- Monika Conrad
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| | - Peter Fechner
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Günther Proll
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Günter Gauglitz
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Spiegelberg D, Stenberg J, Richalet P, Vanhove M. K D determination from time-resolved experiments on live cells with LigandTracer and reconciliation with end-point flow cytometry measurements. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:979-991. [PMID: 34302187 PMCID: PMC8448686 DOI: 10.1007/s00249-021-01560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Design of next-generation therapeutics comes with new challenges and emulates technology and methods to meet them. Characterizing the binding of either natural ligands or therapeutic proteins to cell-surface receptors, for which relevant recombinant versions may not exist, represents one of these challenges. Here we report the characterization of the interaction of five different antibody therapeutics (Trastuzumab, Rituximab, Panitumumab, Pertuzumab, and Cetuximab) with their cognate target receptors using LigandTracer. The method offers the advantage of being performed on live cells, alleviating the need for a recombinant source of the receptor. Furthermore, time-resolved measurements, in addition to allowing the determination of the affinity of the studied drug to its target, give access to the binding kinetics thereby providing a full characterization of the system. In this study, we also compared time-resolved LigandTracer data with end-point KD determination from flow cytometry experiments and hypothesize that discrepancies between these two approaches, when they exist, generally come from flow cytometry titration curves being acquired prior to full equilibration of the system. Our data, however, show that knowledge of the kinetics of the interaction allows to reconcile the data obtained by flow cytometry and LigandTracer and demonstrate the complementarity of these two methods.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Stenberg
- Ridgeview Instruments AB, Skillsta 4, 740 20, Vänge, Sweden.,A3P Biomedical AB, Vallongatan 1, 752 28, Uppsala, Sweden
| | | | - Marc Vanhove
- Marc Vanhove Consultancy, 4100, Boncelles, Belgium. .,Oxurion N.V., Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
8
|
Merten H, Brandl F, Zimmermann M, Schaefer JV, Irpinio L, Sand KMK, Nilsen J, Andersen JT, Zangemeister-Wittke U, Plückthun A. Half-life extension of efficiently produced DARPin serum albumin fusions as a function of FcRn affinity and recycling. Eur J Pharm Biopharm 2021; 167:104-113. [PMID: 34303832 DOI: 10.1016/j.ejpb.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Serum albumin shows slow clearance from circulation due to neonatal Fc receptor (FcRn)-mediated recycling and has been used for half-life extension. We report here fusions to a high-affinity DARPin, binding to Epithelial Cell Adhesion Molecule (EpCAM). We developed a novel, efficient expression system for such fusion proteins in Pichia pastoris with titers above 300 mg/L of lab-scale shake-flask culture. Since human serum albumin (HSA) does not bind to the murine FcRn, half-lives of therapeutic candidates are frequently measured in human FcRn transgenic mice, limiting useable tumor models. Additionally, serum albumins with extended half-life have been designed. We tested HSA7, motivated by its previously claimed extraordinarily long half-life in mice, which we could not confirm. Instead, we determined a half-life of only 29 h for HSA7, comparable to MSA. The fusion of HSA7 to a DARPin showed a similar half-life. To rationalize these findings, we measured binding kinetics and affinities to murine and human FcRn. Briefly, HSA7 showed affinity to murine FcRn only in the micromolar range, comparable to MSA to its cognate murine FcRn, and an affinity in the nanomolar range only to the human FcRn. This explains the comparable half-life of MSA and HSA7 in mice, while wild-type-HSA has a half-life of only 21 h, as it does not bind the murine FcRn and is not recycled. Thus, HSA-fusions with improved FcRn-affinity, such as HSA7, can be used for preclinical experiments in mice when FcRn transgenes cannot be used, as they reflect better the complex FcRn-mediated recycling and distribution mechanisms.
Collapse
Affiliation(s)
- Hannes Merten
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Martina Zimmermann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Linda Irpinio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Kine M K Sand
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Jeannette Nilsen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Uwe Zangemeister-Wittke
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
9
|
Pirc K, Hodnik V, Snoj T, Lenarčič T, Caserman S, Podobnik M, Böhm H, Albert I, Kotar A, Plavec J, Borišek J, Damuzzo M, Magistrato A, Brus B, Sosič I, Gobec S, Nürnberger T, Anderluh G. Nep1-like proteins as a target for plant pathogen control. PLoS Pathog 2021; 17:e1009477. [PMID: 33857257 PMCID: PMC8078777 DOI: 10.1371/journal.ppat.1009477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tea Lenarčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hannah Böhm
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Anita Kotar
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Martina Damuzzo
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Boris Brus
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
10
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
11
|
Tiwari PB, Bencheqroun C, Lemus M, Shaw T, Kouassi-Brou M, Alaoui A, Üren A. SPRD: a surface plasmon resonance database of common factors for better experimental planning. BMC Mol Cell Biol 2021; 22:17. [PMID: 33676410 PMCID: PMC7937274 DOI: 10.1186/s12860-021-00354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background Surface plasmon resonance is a label-free biophysical technique that is widely used in investigating biomolecular interactions, including protein-protein, protein-DNA, and protein-small molecule binding. Surface plasmon resonance is a very powerful tool in different stages of small molecule drug development and antibody characterization. Both academic institutions and pharmaceutical industry extensively utilize this method for screening and validation studies involving direct molecular interactions. In most applications of the surface plasmon resonance technology, one of the studied molecules is immobilized on a microchip, while the second molecule is delivered through a microfluidic system over the immobilized molecules. Changes in total mass on the chip surface is recorded in real time as an indicator of the molecular interactions. Main body Quality and accuracy of the surface plasmon resonance data depend on experimental variables, including buffer composition, type of sensor chip, coupling chemistry of molecules on the sensor surface, and surface regeneration conditions. These technical details are generally included in materials and methods sections of published manuscripts and are not easily accessible using the common internet browser search engines or PubMed. Herein, we introduce a surface plasmon resonance database, www.sprdatabase.info that contains technical details extracted from 5140 publications with surface plasmon resonance data. We also provide an analysis of experimental conditions preferred by different laboratories. These experimental variables can be searched within the database and help future users of this technology to design better experiments. Conclusion Amine coupling and CM5 chips were the most common methods used for immobilizing proteins in surface plasmon resonance experiments. However, number of different chips, capture methods and buffer conditions were used by multiple investigators. We predict that the database will significantly help the scientific community using this technology and hope that users will provide feedback to improve and expand the database indefinitely. Publicly available information in the database can save a great amount of time and resources by assisting initial optimization and troubleshooting of surface plasmon resonance experiments.
Collapse
Affiliation(s)
| | - Camelia Bencheqroun
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, 20057, USA
| | - Mario Lemus
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA
| | - Taryn Shaw
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA
| | - Marilyn Kouassi-Brou
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA.,Geisel School of Medicine, Dartmouth College, NH, 03755, Hanover, USA
| | - Adil Alaoui
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, 20057, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
12
|
Cree SL, Chua EW, Crowther J, Dobson RCJ, Kennedy MA. G-quadruplex structures bind to EZ-Tn5 transposase. Biochimie 2020; 177:190-197. [PMID: 32805304 DOI: 10.1016/j.biochi.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022]
Abstract
Next generation DNA sequencing and analysis of amplicons spanning the pharmacogene CYP2D6 suggested that the Nextera transposase used for fragmenting and providing sequencing priming sites displayed a targeting bias. This manifested as dramatically lower sequencing coverage at sites in the amplicon that appeared likely to form G-quadruplex structures. Since secondary DNA structures such as G-quadruplexes are abundant in the human genome, and are known to interact with many other proteins, we further investigated these sites of low coverage. Our investigation revealed that G-quadruplex structures are formed in vitro within the CYP2D6 pharmacogene at these sites, and G-quadruplexes can interact with the hyperactive Tn5 transposase (EZ-Tn5) with high affinity. These findings indicate that secondary DNA structures such as G-quadruplexes may represent preferential transposon integration sites and provide additional evidence for the role of G-quadruplex structures in transposition or viral integration processes.
Collapse
Affiliation(s)
- Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand
| | - Eng Wee Chua
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand
| | - Jennifer Crowther
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C J Dobson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
13
|
Expression, purification, and characterization of human mannose-6-phosphate receptor – Extra cellular domain from a stable cell line utilizing a small molecule biomimetic of the mannose-6-phosphate moiety. Protein Expr Purif 2020; 170:105589. [DOI: 10.1016/j.pep.2020.105589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/06/2020] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
|
14
|
Sass S, Stöcklein WFM, Klevesath A, Hurpin J, Menger M, Hille C. Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy. Analyst 2019; 144:6064-6073. [PMID: 31528891 DOI: 10.1039/c9an01247h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Anthracyclines like daunorubicin (DRN) and doxorubicin (DOX) play an undisputed key role in cancer treatment, but their chronic administration can cause severe side effects. For precise anthracycline analytical systems, aptamers are preferable recognition elements. Here, we describe the detailed characterisation of a single-stranded DNA aptamer DRN-10 and its truncated versions for DOX and DRN detection. Binding affinities were determined from surface plasmon resonance (SPR) and microscale thermophoresis (MST) and combined with conformational data from circular dichroism (CD). Both aptamers displayed similar nanomolar binding affinities to DRN and DOX, even though their rate constants differed as shown by SPR recordings. SPR kinetic data unravelled a two-state reaction model including a 1 : 1 binding and a subsequent conformational change of the binding complex. This model was supported by CD spectra. In addition, the dissociation constants determined with MST were always lower than that from SPR, and especially for the truncated aptamer they differed by two orders of magnitude. This most probably reflects the methodological difference, namely labelling for MST vs. immobilisation for SPR. From CD recordings, we suggested a specific G-quadruplex as structural basis for anthracycline binding. We concluded that the aptamer DRN-10 is a promising recognition element for anthracycline detection systems and further selected aptamers can be also characterised with the combined methodological approach presented here.
Collapse
Affiliation(s)
- Stephan Sass
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Walter F M Stöcklein
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Anja Klevesath
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Jeanne Hurpin
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalysis and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.
| | - Carsten Hille
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany.,Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| |
Collapse
|
15
|
Abstract
The accurate and precise determination of binding interactions plays a central role in fields such as drug discovery where structure-activity relationships guide the selection and optimization of drug leads. Binding is often assessed by monitoring the response caused by varying one of the binding partners in a functional assay or by using methods where the concentrations of free and/or bound ligand can be directly determined. In addition, there are also many approaches where binding leads to a change in the properties of the binding partner(s) that can be directly quantified such as an alteration in mass or in a spectroscopic signal. The analysis of data resulting from these techniques invariably relies on computer software that enable rapid fitting of the data to nonlinear multiparameter equations. The objective of this Perspective is to serve as a reminder of the basic assumptions that are used in deriving these equations and thus that should be considered during assay design and subsequent data analysis. The result is a set of guidelines for authors considering submitting their work to journals such as ACS Infectious Diseases.
Collapse
Affiliation(s)
- Peter J. Tonge
- Center for Advanced Study of Drug Action, Departments of Chemistry and Radiology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
16
|
Goldsmith BR, Locascio L, Gao Y, Lerner M, Walker A, Lerner J, Kyaw J, Shue A, Afsahi S, Pan D, Nokes J, Barron F. Digital Biosensing by Foundry-Fabricated Graphene Sensors. Sci Rep 2019; 9:434. [PMID: 30670783 PMCID: PMC6342992 DOI: 10.1038/s41598-019-38700-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/31/2018] [Indexed: 01/17/2023] Open
Abstract
The prevailing philosophy in biological testing has been to focus on simple tests with easy to interpret information such as ELISA or lateral flow assays. At the same time, there has been a decades long understanding in device physics and nanotechnology that electrical approaches have the potential to drastically improve the quality, speed, and cost of biological testing provided that computational resources are available to analyze the resulting complex data. This concept can be conceived of as "the internet of biology" in the same way miniaturized electronic sensors have enabled "the internet of things." It is well established in the nanotechnology literature that techniques such as field effect biosensing are capable of rapid and flexible biological testing. Until now, access to this new technology has been limited to academic researchers focused on bioelectronic devices and their collaborators. Here we show that this capability is retained in an industrially manufactured device, opening access to this technology generally. Access to this type of production opens the door for rapid deployment of nanoelectronic sensors outside the research space. The low power and resource usage of these biosensors enables biotech engineers to gain immediate control over precise biological and environmental data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Deng Pan
- Cardea Bio Inc., San Diego, CA, USA
| | | | | |
Collapse
|
17
|
Šakanovič A, Hodnik V, Anderluh G. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. Methods Mol Biol 2019; 2003:53-70. [PMID: 31218613 DOI: 10.1007/978-1-4939-9512-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein-lipid and protein-membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
Affiliation(s)
- Aleksandra Šakanovič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Kidakova A, Reut J, Rappich J, Öpik A, Syritski V. Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Mathematical Modeling of Bioassays. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523069 DOI: 10.1134/s0006297917130119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand-receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predictive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contemporary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
20
|
Performance qualification for reproducible Surface Plasmon Resonance analysis. Anal Biochem 2018; 544:108-113. [DOI: 10.1016/j.ab.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|
21
|
Abstract
The ability to quantify binding affinity of molecular interactions is an essential component of drug development and life science research. This chapter outlines the practical use of surface plasmon resonance spectroscopy to monitor protein-protein interactions with an emphasis on basic experimental design. A short summary of epitope binning assays is also included.
Collapse
|
22
|
Deng S, Wang P, Yu X. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2819. [PMID: 29206182 PMCID: PMC5751602 DOI: 10.3390/s17122819] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology.
Collapse
Affiliation(s)
- Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Xinglong Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Deganutti G, Zhukov A, Deflorian F, Federico S, Spalluto G, Cooke RM, Moro S, Mason JS, Bortolato A. Impact of protein-ligand solvation and desolvation on transition state thermodynamic properties of adenosine A 2A ligand binding kinetics. In Silico Pharmacol 2017; 5:16. [PMID: 29308352 PMCID: PMC5755719 DOI: 10.1007/s40203-017-0037-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
Ligand-protein binding kinetic rates are growing in importance as parameters to consider in drug discovery and lead optimization. In this study we analysed using surface plasmon resonance (SPR) the transition state (TS) properties of a set of six adenosine A2A receptor inhibitors, belonging to both the xanthine and the triazolo-triazine scaffolds. SPR highlighted interesting differences among the ligands in the enthalpic and entropic components of the TS energy barriers for the binding and unbinding events. To better understand at a molecular level these differences, we developed suMetaD, a novel molecular dynamics (MD)-based approach combining supervised MD and metadynamics. This method allows simulation of the ligand unbinding and binding events. It also provides the system conformation corresponding to the highest energy barrier the ligand is required to overcome to reach the final state. For the six ligands evaluated in this study their TS thermodynamic properties were linked in particular to the role of water molecules in solvating/desolvating the pocket and the small molecules. suMetaD identified kinetic bottleneck conformations near the bound state position or in the vestibule area. In the first case the barrier is mainly enthalpic, requiring the breaking of strong interactions with the protein. In the vestibule TS location the kinetic bottleneck is instead mainly of entropic nature, linked to the solvent behaviour.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | - Andrei Zhukov
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Herts AL7 3AX UK
| | - Francesca Deflorian
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Herts AL7 3AX UK
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa, 34127 Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa, 34127 Trieste, Italy
| | - Robert M. Cooke
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Herts AL7 3AX UK
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Herts AL7 3AX UK
| | - Andrea Bortolato
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Herts AL7 3AX UK
| |
Collapse
|
24
|
Bech EM, Martos-Maldonado MC, Wismann P, Sørensen KK, van Witteloostuijn SB, Thygesen MB, Vrang N, Jelsing J, Pedersen SL, Jensen KJ. Peptide Half-Life Extension: Divalent, Small-Molecule Albumin Interactions Direct the Systemic Properties of Glucagon-Like Peptide 1 (GLP-1) Analogues. J Med Chem 2017; 60:7434-7446. [DOI: 10.1021/acs.jmedchem.7b00787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esben M. Bech
- Department
of Chemistry, University of Copenhagen, Frederiksberg 1870, Denmark
- Gubra Aps, Hørsholm 2970, Denmark
| | | | | | - Kasper K. Sørensen
- Department
of Chemistry, University of Copenhagen, Frederiksberg 1870, Denmark
| | | | - Mikkel B. Thygesen
- Department
of Chemistry, University of Copenhagen, Frederiksberg 1870, Denmark
| | | | | | | | - Knud J. Jensen
- Department
of Chemistry, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
25
|
Steinicke F, Oltmann-Norden I, Wätzig H. Long term kinetic measurements revealing precision and general performance of surface plasmon resonance biosensors. Anal Biochem 2017; 530:94-103. [DOI: 10.1016/j.ab.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/16/2017] [Accepted: 05/08/2017] [Indexed: 11/29/2022]
|
26
|
Reinhard A, Nürnberger T. Steady-State and Kinetics-Based Affinity Determination in Effector-Effector Target Interactions. Methods Mol Biol 2017; 1578:81-108. [PMID: 28220417 DOI: 10.1007/978-1-4939-6859-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dissecting the functional basis of pathogenicity and resistance in the context of plant innate immunity benefits greatly from detailed knowledge about biomolecular interactions, as both resistance and virulence depend on specific interactions between pathogen and host biomolecules. While in vivo systems provide biological context to host-pathogen interactions, these experiments typically cannot provide quantitative biochemical characterization of biomolecular interactions. However, in many cases, the biological function does not only depend on whether an interaction occurs at all, but rather on the "intensity" of the interaction, as quantified by affinity. Specifically, microbial effector proteins may bind more than one host target to exert virulence functions, and looking at these interactions more closely than would be possible in a purely black-and-white qualitative assay (as classically based on plant or yeast systems) can reveal new insights into the evolutionary arms race between host and pathogen. Recent advances in biomolecular interaction assays that can be performed in vitro allow quantification of binding events with ever greater fidelity and application range. Here, we describe assays based on microscale thermophoresis (MST) and surface plasmon resonance (SPR). Using these technologies allows affinity determination both in steady-state and in kinetic configurations, providing two conceptually independent pathways to arrive at quantitative affinity data describing the interactions of pathogen and host biomolecules.
Collapse
Affiliation(s)
- André Reinhard
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany.
| |
Collapse
|
27
|
Abstract
Phage display is commonly used to identify and isolate binders from large combinatorial libraries. Here we present phage selection protocols enabling generation of synthetic antibodies capable of recognizing multiprotein complexes and conformational states. The procedure describes stages of the experiment design, optimization, and screening, as well as provides the framework for building downstream assays with an end goal of isolating bioactive antibodies for future therapeutic use. The methods described are also applicable to screening directly on cells and can be ported to other in vitro directed evolution systems utilizing non-immunoglobulin scaffolds.
Collapse
|
28
|
Rogez-Florent T, Goossens L, Drucbert AS, Duban-Deweer S, Six P, Depreux P, Danzé PM, Goossens JF, Foulon C. Amine coupling versus biotin capture for the assessment of sulfonamide as ligands of hCA isoforms. Anal Biochem 2016; 511:42-51. [DOI: 10.1016/j.ab.2016.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
|
29
|
Koukouvinos G, Petrou P, Misiakos K, Drygiannakis D, Raptis I, Stefanitsis G, Martini S, Nikita D, Goustouridis D, Moser I, Jobst G, Kakabakos S. Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy. Biosens Bioelectron 2016; 84:89-96. [DOI: 10.1016/j.bios.2015.11.094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
|
30
|
Ouyang W, Ko SH, Wu D, Wang AY, Barone PW, Hancock WS, Han J. Microfluidic Platform for Assessment of Therapeutic Proteins Using Molecular Charge Modulation Enhanced Electrokinetic Concentration Assays. Anal Chem 2016; 88:9669-9677. [PMID: 27624735 DOI: 10.1021/acs.analchem.6b02517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Therapeutic proteins (TPs) are critical in modern medicine, yet shortage of TPs in disaster situations and remote areas remains a worldwide challenge. Manufacturing and real-time release of TPs on demand at the point-of-care is considered the key to this issue, which requires reliable and rapid analytics techniques for quality assurance. Herein we report a microfluidic platform that could be implemented in-line and at the point-of-care for real-time decision-making about the quality of a TP. The in vivo efficacy and duration of efficacy of TPs were assessed by the equilibrium and kinetics of TP and TP receptor (TPR) binding, using electrokinetic concentration (EC) and molecular charge modulation (MCM). EC can simultaneously concentrate and separate bound and unbound species in an assay based on electrical mobility, allowing for the quantification of binding. MCM enables the application of EC to arbitrary TPs by enhancing the mobility differences between TPs, TPRs, and TP-TPR complexes. This technology is homogeneous and overcomes many practical challenges of conventional heterogeneous assays. We developed various formats of assays for equilibrium and kinetic analysis and rapid determination of degradation of TPs, obtaining results comparable to state-of-the-art technologies with significantly less time (<1 h) and simpler setup. Finally, we demonstrated that the results of MCM-EC based assays correlated well with those from mass spectrometry and cell-based assay, which are the industrial standards for quality testing of TPs.
Collapse
Affiliation(s)
| | | | - Di Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Annie Yu Wang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | |
Collapse
|
31
|
Cree SL, Fredericks R, Miller A, Pearce FG, Filichev V, Fee C, Kennedy MA. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett 2016; 590:2870-83. [PMID: 27468168 DOI: 10.1002/1873-3468.12331] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
Abstract
The DNA methyltransferase enzymes (DNMTs) catalyzing cytosine methylation do so at specific locations of the genome, although with some level of redundancy. The de novo methyltransferases DNMT3A and 3B play a vital role in methylating the genome of the developing embryo in regions devoid of methylation marks. The ability of DNMTs to colocalize at sites of DNA damage is suggestive that recognition of mispaired bases and unusual structures is inherent to the function of these proteins. We provide evidence for G-quadruplex formation within imprinted gene promoters, and report high-affinity binding of recombinant human DNMTs to such DNA G-quadruplexes in vitro. These observations suggest a potential interaction of G-quadruplexes with the DNA methylation machinery, which may be of epigenetic and biological significance.
Collapse
Affiliation(s)
- Simone L Cree
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rayleen Fredericks
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Allison Miller
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Vyacheslav Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Conan Fee
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
32
|
Fabini E, Zambelli B, Mazzei L, Ciurli S, Bertucci C. Surface plasmon resonance and isothermal titration calorimetry to monitor the Ni(II)-dependent binding of Helicobacter pylori NikR to DNA. Anal Bioanal Chem 2016; 408:7971-7980. [DOI: 10.1007/s00216-016-9894-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 02/03/2023]
|
33
|
Focsan M, Campu A, Craciun AM, Potara M, Leordean C, Maniu D, Astilean S. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors. Biosens Bioelectron 2016; 86:728-735. [PMID: 27476053 DOI: 10.1016/j.bios.2016.07.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/29/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023]
Abstract
In this manuscript we propose a simple and efficient strategy to improve the sensitivity of localized surface plasmon resonance (LSPR) shift-based biosensors using biotin-streptavidin recognition interaction as a proof-of-concept. Specifically, biotin molecules are immobilized on a low-cost plasmonic LSPR biosensor based on annealed self-assembled spherical gold nanoparticles (AuNSs) and successively incubated with increasing concentrations of streptavidin, achieving a limit of detection (LOD) of 5nM. Interestingly, when the detection is performed by the same biotin-functionalized plasmonic AuNSs substrate but against streptavidin previously conjugated to gold nanorods, the LSPR shift is 26-fold enhanced. Moreover, we confirm these results through numerical simulations and demonstrate that the proposed sensing architecture can operate as transducer not only to confirm the adsorption of bioanalyte but also to provide the chemical identity of the capture and targeted molecules from their vibrational Raman fingerprints. Therefore, we are confident that the development of such plasmonic biosensors that use metallic labels for improving the sensitivity of detection could become highly promising for future point-of-care diagnostic assays, pushing sensitivity towards single-molecule detection limit.
Collapse
Affiliation(s)
- Monica Focsan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania
| | - Andreea Campu
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania
| | - Ana-Maria Craciun
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania
| | - Monica Potara
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania
| | - Cosmin Leordean
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania
| | - Dana Maniu
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, Cluj-Napoca, 400084, Romania
| | - Simion Astilean
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean Str. 42, Cluj-Napoca, 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, Cluj-Napoca, 400084, Romania.
| |
Collapse
|
34
|
Bonvin P, Venet S, Fontaine G, Ravn U, Gueneau F, Kosco-Vilbois M, Proudfoot AE, Fischer N. De novo isolation of antibodies with pH-dependent binding properties. MAbs 2015; 7:294-302. [PMID: 25608219 PMCID: PMC4623423 DOI: 10.1080/19420862.2015.1006993] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.
Collapse
Key Words
- BLI, bio-layer interferometry
- CDR, complementary determining region
- CDRH, CDR of the heavy chain
- CDRL, CDR of the light chain
- ELISA, enzyme-linked immunosorbent assay
- GPCR, G protein-coupled receptor
- KB, kinetic buffer
- PBS, phosphate buffered saline
- SPR, surface plasmon resonance
- antibody recycling
- chemokine
- histidine
- mAb, monoclonal antibody
- monoclonal antibody
- pH-dependency
- phage display
- phage libraries
- scFv, single-chain variable fragment
Collapse
|
35
|
Mehand MS, Srinivasan B, De Crescenzo G. Optimizing Multiple Analyte Injections in Surface Plasmon Resonance Biosensors with Analytes having Different Refractive Index Increments. Sci Rep 2015; 5:15855. [PMID: 26515024 PMCID: PMC4626837 DOI: 10.1038/srep15855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Surface plasmon resonance-based biosensors have been successfully applied to the study of the interactions between macromolecules and small molecular weight compounds. In an effort to increase the throughput of these SPR-based experiments, we have already proposed to inject multiple compounds simultaneously over the same surface. When specifically applied to small molecular weight compounds, such a strategy would however require prior knowledge of the refractive index increment of each compound in order to correctly interpret the recorded signal. An additional experiment is typically required to obtain this information. In this manuscript, we show that through the introduction of an additional global parameter corresponding to the ratio of the saturating signals associated with each molecule, the kinetic parameters could be identified with similar confidence intervals without any other experimentation.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| | - Bala Srinivasan
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
36
|
Abstract
Isotope labeling of biologically interesting proteins is a prerequisite for structural and dynamics studies by NMR spectroscopy. Many of these proteins require mammalian cofactors, chaperons, or posttranslational modifications such as myristoylation, glypiation, disulfide bond formation, or N- or O-linked glycosylation; and mammalian cells have the necessary machinery to produce them in their functional forms. Here, we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically labeled proteins. This system enables expression of mammalian proteins and their complexes, including proteins that require posttranslational modifications. We describe a roadmap to produce isotopically labeled (15)N and (13)C posttranslationally modified proteins, such as the outer domain of HIV-1 gp120, which has four disulfide bonds and 15 potential sites of N-linked glycosylation. These methods should allow NMR spectroscopic analysis of the structure and function of posttranslationally modified and secreted, cytoplasmic, or membrane-bound proteins.
Collapse
Affiliation(s)
- Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
37
|
Korhonen K, Granqvist N, Ketolainen J, Laitinen R. Monitoring of drug release kinetics from thin polymer films by multi-parametric surface plasmon resonance. Int J Pharm 2015; 494:531-6. [DOI: 10.1016/j.ijpharm.2015.08.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
|
38
|
Vauquelin G, Huber W, Swinney DC. Experimental Methods to Determine Binding Kinetics. THERMODYNAMICS AND KINETICS OF DRUG BINDING 2015. [DOI: 10.1002/9783527673025.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors. BIOSENSORS-BASEL 2015; 5:562-76. [PMID: 26262647 PMCID: PMC4600172 DOI: 10.3390/bios5030562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 11/17/2022]
Abstract
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.
Collapse
|
40
|
Trahey M, Li MJ, Kwon H, Woodahl EL, McClary WD, Atkins WM. Applications of Lipid Nanodiscs for the Study of Membrane Proteins by Surface Plasmon Resonance. ACTA ACUST UNITED AC 2015; 81:29.13.1-29.13.16. [PMID: 26237675 DOI: 10.1002/0471140864.ps2913s81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods for the initial steps of surface plasmon resonance analysis of membrane proteins incorporated in lipid nanodiscs are described. Several types of Biacore sensor chips are available and require distinct strategies to immobilize proteonanodiscs on the chip surface. The procedures for immobilization on three of these chips (NTA, antibody coupled CM5, and L1) are described in this unit and results are demonstrated for a model system with cytochrome P4503A4 (CYP3A4) in nanodiscs binding to a polyclonal anti-CYP3A4 antibody. Advantages and disadvantages of each chip type are considered.
Collapse
Affiliation(s)
- Meg Trahey
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana.,These authors contributed equally to this work
| | - Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington, Seattle Washington.,These authors contributed equally to this work
| | - Hyewon Kwon
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Wynton D McClary
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| |
Collapse
|
41
|
Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M, Bianchessi M, Decosterd L, Buclin T, Guiducci C. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal Chem 2015; 87:5278-85. [PMID: 25811093 DOI: 10.1021/acs.analchem.5b00389] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Collapse
Affiliation(s)
- Giulia Cappi
- †Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, CH-1015 Switzerland
| | - Fabio M Spiga
- †Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, CH-1015 Switzerland
| | - Yessica Moncada
- ‡Bio-Lab, STMicroelectronics, Agrate Brianza, Monza and Brianza, 20864, Italy
| | - Anna Ferretti
- †Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, CH-1015 Switzerland
| | - Michael Beyeler
- †Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, CH-1015 Switzerland
| | - Marco Bianchessi
- ‡Bio-Lab, STMicroelectronics, Agrate Brianza, Monza and Brianza, 20864, Italy
| | - Laurent Decosterd
- §Laboratory and Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, CH-1011 Switzerland
| | - Thierry Buclin
- §Laboratory and Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, CH-1011 Switzerland
| | - Carlotta Guiducci
- †Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, CH-1015 Switzerland
| |
Collapse
|
42
|
Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System. BIOSENSORS-BASEL 2015; 5:27-36. [PMID: 25607476 PMCID: PMC4384080 DOI: 10.3390/bios5010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/26/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022]
Abstract
We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step.
Collapse
|
43
|
Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit Rev Anal Chem 2015; 45:97-105. [DOI: 10.1080/10408347.2014.881250] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Kumaraswamy S, Tobias R. Label-free kinetic analysis of an antibody-antigen interaction using biolayer interferometry. Methods Mol Biol 2015; 1278:165-82. [PMID: 25859949 DOI: 10.1007/978-1-4939-2425-7_10] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Biolayer Interferometry (BLI) is a powerful technique that enables direct measurement of biomolecular interactions in real time without the need for labeled reagents. Here we describe the analysis of a high-affinity binding interaction between a monoclonal antibody and purified antigen using BLI. A simple Dip-and-Read™ format in which biosensors are dipped into microplate wells containing purified or complex samples provides a highly parallel, user-friendly technique to study molecular interactions. A rapid rise in publications citing the use of BLI technology in a wide range of applications, from biopharmaceutical discovery to infectious diseases monitoring, suggests broad utility of this technology in the life sciences.
Collapse
Affiliation(s)
- Sriram Kumaraswamy
- ForteBio Inc. - A Division of Pall Life Sciences, 1360 Willow Road, Suite 201, Menlo Park, CA, 94025, USA,
| | | |
Collapse
|
45
|
Abstract
Protein-protein interactions regulate many important cellular processes, including carbohydrate and lipid metabolism, cell cycle and cell death regulation, protein and nucleic acid metabolism, signal transduction, and cellular architecture. A complete understanding of cellular function depends on full characterization of the complex network of cellular protein-protein interactions, including measurements of their kinetic and binding properties. Surface plasmon resonance (SPR) is one of the commonly used technologies for detailed and quantitative studies of protein-protein interactions and determination of their equilibrium and kinetic parameters. SPR provides excellent instrumentation for a label-free, real-time investigation of protein-protein interactions. This chapter details the experimental design and proper use of the instrumentation for a kinetic experiment. It will provide readers with basic theory, assay setup, and the proper way of reporting this type of results with practical tips useful for SPR-based studies. A generic protocol for immobilizing ligands using amino coupling chemistry, also useful if an antibody affinity capture approach is used, performing kinetic studies, and collecting and analyzing data is described.
Collapse
Affiliation(s)
- Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, 4510E MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA,
| |
Collapse
|
46
|
Myklebust LM, Horvli O, Raae AJ. RACK1 (receptor for activated C-kinase 1) interactions with spectrin repeat elements. J Mol Recognit 2014; 28:49-58. [PMID: 26268370 DOI: 10.1002/jmr.2411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Line M. Myklebust
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Ole Horvli
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Arnt J. Raae
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| |
Collapse
|
47
|
Si Mehand M, De Crescenzo G, Srinivasan B. On-line kinetic model discrimination for optimized surface plasmon resonance experiments. J Mol Recognit 2014; 27:276-84. [PMID: 24700594 DOI: 10.1002/jmr.2358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 01/15/2023]
Abstract
In order to improve the throughput of surface plasmon resonance-based biosensors, an on-line iterative optimization algorithm has been presented aiming at reducing experimental time and material consumption without any loss of confidence on kinetic parameters [De Crescenzo (2008) J. Mol Recognit., 21, 256-66.]. This algorithm was based on a simple Langmuirian model to compute the confidence and predict optimal injections. However, this kinetic model is not suitable for all interactions, as it does not include mass transfer limitation that may occur for fast interaction kinetics. If a simple model was to be used when this phenomenon influenced the interactions, kinetic parameters would be biased. On the other hand, we show in this paper that data analysis with a kinetic model including a mass transfer limitation step would lead to longer experiments and poorer confidence if the interactions were simple. So, in this manuscript, we present an on-line model discrimination and optimization approach to increase the throughput of surface plasmon resonance biosensors.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, H3C 3A7, Montréal, Québec, Canada
| | | | | |
Collapse
|
48
|
Hill RT. Plasmonic biosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:152-68. [PMID: 25377594 DOI: 10.1002/wnan.1314] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Abstract
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology.
Collapse
Affiliation(s)
- Ryan T Hill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
49
|
Lebendiker M, Danieli T, de Marco A. The Trip Adviser guide to the protein science world: a proposal to improve the awareness concerning the quality of recombinant proteins. BMC Res Notes 2014; 7:585. [PMID: 25178166 PMCID: PMC4161829 DOI: 10.1186/1756-0500-7-585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022] Open
Abstract
In many research articles, where protein purification is required for various assays, (protein-protein interactions, activity assays, etc.), we always have access to the final results, but seldom have access to the raw data required for an accurate evaluation of the protein quality. This data is extremely important on one hand to critically evaluate the quality of the proteins used in the described research and, on the other hand, to allow other laboratories to safely use the described procedure in a reproducible manner. We herby propose to include a standardized methodology that can easily be incorporated in research papers. Moreover, this methodology can be utilized as a “quality control” ladder, where the more information given, will lead to a higher ranking of the article. This “quality control” stamp will allow researchers retrieving relevant and useful materials and methods in the field of protein research.
Collapse
Affiliation(s)
| | | | - Ario de Marco
- Department of Biomedical Sciences and Engineering, University of Nova Gorica, Glavni Trg 9, SI-5261 Vipava, Slovenia.
| |
Collapse
|
50
|
Barta P, Andersson K, Trejtnar F, Buijs J. Exploring Time-Resolved Characterization of the Heterogeneity and Dynamics of Ligand-Receptor Interactions on Living Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.6000/1927-7229.2014.03.02.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|