1
|
Suzuki S, Itoh M. Synergistic effects of mutation and glycosylation on disease progression. Front Mol Biosci 2025; 12:1550815. [PMID: 39967653 PMCID: PMC11832388 DOI: 10.3389/fmolb.2025.1550815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Glycosylation, a post-translational modification, plays a crucial role in proper localization and function of proteins. It is regulated by multiple glycosyltransferases and can be influenced by various factors. Inherited missense mutations in glycosylated proteins such as NOTCH3, Low-density lipoprotein receptor (LDLR), and Amyloid precursor protein (APP) could affect their glycosylation states, leading to cerebral small vessel disease, hypercholesterolemia, and Alzheimer's disease, respectively. Additionally, physiological states and aging-related conditions can affect the expression levels of glycosyltransferases. However, the interplay between mutations in glycosylated proteins and changes in their glycosylation levels remains poorly understood. This mini-review summarizes the effects of glycosylation on transmembrane proteins with pathogenic mutations, including NOTCH3, LDLR, and APP. We highlight the synergistic contributions of missense amino acids in the mutant proteins and alterations in their glycosylation states to their molecular pathogenesis.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Zakharova NV, Kononikhin AS, Indeykina MI, Bugrova AE, Strelnikova P, Pekov S, Kozin SA, Popov IA, Mitkevich V, Makarov AA, Nikolaev EN. Mass spectrometric studies of the variety of beta-amyloid proteoforms in Alzheimer's disease. MASS SPECTROMETRY REVIEWS 2025; 44:3-21. [PMID: 35347731 DOI: 10.1002/mas.21775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aβ) peptides in human samples. Since Aβ is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aβ proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aβ studies. However, Aβ forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aβ species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aβ studies; and considers the potential of MS techniques for further studies of Aβ-peptides.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Polina Strelnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stanislav Pekov
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Popov
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- N.N. Semenov Federal Center of Chemical Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
3
|
Lantero-Rodriguez J, Camporesi E, Montoliu-Gaya L, Gobom J, Piotrowska D, Olsson M, Burmann IM, Becker B, Brinkmalm A, Burmann BM, Perkinton M, Ashton NJ, Fox NC, Lashley T, Zetterberg H, Blennow K, Brinkmalm G. Tau protein profiling in tauopathies: a human brain study. Mol Neurodegener 2024; 19:54. [PMID: 39026372 PMCID: PMC11264707 DOI: 10.1186/s13024-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Abnormal accumulation of misfolded and hyperphosphorylated tau protein in brain is the defining feature of several neurodegenerative diseases called tauopathies, including Alzheimer's disease (AD). In AD, this pathological change is reflected by highly specific cerebrospinal fluid (CSF) tau biomarkers, including both phosphorylated and non-phosphorylated variants. Interestingly, despite tau pathology being at the core of all tauopathies, CSF tau biomarkers remain unchanged in certain tauopathies, e.g., progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal neurodegeneration (CBD). To better understand commonalities and differences between tauopathies, we report a multiplex assay combining immunoprecipitation and high-resolution mass spectrometry capable of detecting and quantifying peptides from different tau protein isoforms as well as non-phosphorylated and phosphorylated peptides, including those carrying multiple phosphorylations. We investigated the tau proteoforms in soluble and insoluble fractions of brain tissue from subjects with autopsy-confirmed tauopathies, including sporadic AD (n = 10), PSP (n = 11), PiD (n = 10), and CBD (n = 10), and controls (n = 10). Our results demonstrate that non-phosphorylated tau profiles differ across tauopathies, generally showing high abundance of microtubule-binding region (MTBR)-containing peptides in insoluble protein fractions compared with controls; the AD group showed 12-72 times higher levels of MTBR-containing aggregates. Quantification of tau isoforms showed the 3R being more abundant in PiD and the 4R isoform being more abundant in CBD and PSP in the insoluble fraction. Twenty-three different phosphorylated peptides were quantified. Most phosphorylated peptides were measurable in all investigated tauopathies. All phosphorylated peptides were significantly increased in AD insoluble fraction. However, doubly and triply phosphorylated peptides were significantly increased in AD even in the soluble fraction. Results were replicated using a validation cohort comprising AD (n = 10), CBD (n = 10), and controls (n = 10). Our study demonstrates that abnormal levels of phosphorylation and aggregation do indeed occur in non-AD tauopathies, however, both appear pronouncedly increased in AD, becoming a distinctive characteristic of AD pathology.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elena Camporesi
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diana Piotrowska
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Irena Matečko Burmann
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael Perkinton
- AstraZeneca Neuroscience Innovative Medicines, MedImmune Ltd, Cambridge, CB21 6GH, UK
| | - Nicholas J Ashton
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, Maurice, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
4
|
Kasri A, Camporesi E, Gkanatsiou E, Boluda S, Brinkmalm G, Stimmer L, Ge J, Hanrieder J, Villain N, Duyckaerts C, Vermeiren Y, Pape SE, Nicolas G, Laquerrière A, De Deyn PP, Wallon D, Blennow K, Strydom A, Zetterberg H, Potier MC. Amyloid-β peptide signature associated with cerebral amyloid angiopathy in familial Alzheimer's disease with APPdup and Down syndrome. Acta Neuropathol 2024; 148:8. [PMID: 39026031 PMCID: PMC11258176 DOI: 10.1007/s00401-024-02756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid plaques containing amyloid-β (Aβ) peptides, intraneuronal neurofibrillary tangles, extracellular neuropil threads, and dystrophic neurites surrounding plaques composed of hyperphosphorylated tau protein (pTau). Aβ can also deposit in blood vessel walls leading to cerebral amyloid angiopathy (CAA). While amyloid plaques in AD brains are constant, CAA varies among cases. The study focuses on differences observed between rare and poorly studied patient groups with APP duplications (APPdup) and Down syndrome (DS) reported to have higher frequencies of elevated CAA levels in comparison to sporadic AD (sAD), most of APP mutations, and controls. We compared Aβ and tau pathologies in postmortem brain tissues across cases and Aβ peptides using mass spectrometry (MS). We further characterized the spatial distribution of Aβ peptides with MS-brain imaging. While intraparenchymal Aβ deposits were numerous in sAD, DS with AD (DS-AD) and AD with APP mutations, these were less abundant in APPdup. On the contrary, Aβ deposits in the blood vessels were abundant in APPdup and DS-AD while only APPdup cases displayed high Aβ deposits in capillaries. Investigation of Aβ peptide profiles showed a specific increase in Aβx-37, Aβx-38 and Aβx-40 but not Aβx-42 in APPdup cases and to a lower extent in DS-AD cases. Interestingly, N-truncated Aβ2-x peptides were particularly increased in APPdup compared to all other groups. This result was confirmed by MS-imaging of leptomeningeal and parenchymal vessels from an APPdup case, suggesting that CAA is associated with accumulation of shorter Aβ peptides truncated both at N- and C-termini in blood vessels. Altogether, this study identified striking differences in the localization and composition of Aβ deposits between AD cases, particularly APPdup and DS-AD, both carrying three genomic copies of the APP gene. Detection of specific Aβ peptides in CSF or plasma of these patients could improve the diagnosis of CAA and their inclusion in anti-amyloid immunotherapy treatments.
Collapse
Affiliation(s)
- Amal Kasri
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Elena Camporesi
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Susana Boluda
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lev Stimmer
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Junyue Ge
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jörg Hanrieder
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Charles Duyckaerts
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Sarah E Pape
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Gaël Nicolas
- Department of Genetics, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Annie Laquerrière
- Department of Pathology, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - David Wallon
- Department of Neurology, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, 76000, Rouen, France
| | - Kaj Blennow
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Andre Strydom
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
- UK Dementia Research Institute at UCL, London, UK.
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France.
| |
Collapse
|
5
|
Strelnikova PA, Bugrova AE, Zakharova NV, Danichkina KV, Indeykina MI, Gavrish MS, Krut’ VG, Babaev AA, Morozova AY, Kononikhin AS, Mitkevich VA, Makarov AA, Nikolaev EN. The Features of Beta-Amyloid Phosphorylation in Alzheimer's Disease. Acta Naturae 2024; 16:93-101. [PMID: 39555172 PMCID: PMC11569837 DOI: 10.32607/actanaturae.27456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 11/19/2024] Open
Abstract
Accumulation of neurotoxic aggregates of beta-amyloid peptides (Aβ) is a hallmark of Alzheimer's disease (AD) progression. Post-translational modifications (PTMs) increase Aβ aggregation and cytotoxicity, and the content of specific Aβ proteoforms is elevated in senile plaques of AD patients. The pathophysiological mechanisms of aggregate formation and the role of Aβ proteoforms need thorough study both to understand the role played by specific processes in the initiation of neuronal degradation and to find effective preventive means of therapeutic action. The present work investigates the dynamics of accumulation of phosphorylated serine-8 proteoform Aβ (pSer8-Aβ) using the 5xFAD mouse amyloid model. Aβ samples from human cerebrospinal fluid (CSF) and brain were also investigated. Western blot studies using 1E4E11 and 4G8 antibodies showed that accumulation of pSer8-Aβ in mouse brain starts as early as at the age of 3 months and reaches a maximum by the age of 14-17 months, which is generally similar to the dynamics of accumulation of the total pool of Aβ peptides. The pSer8-Aβ level in human CSF in AD patients can reach ~ 1-10% of the total amount of Aβ. Mass spectrometric analysis showed that Aβ phosphorylation by the Ser8, Tyr10, and Ser26 residues in brain tissues, as well as phosphorylation of the APP by Thr719 residue, is possible. These findings support the assumption that pSer8-Aβ proteoforms are involved in amyloidosis in AD. KEYWORDS Beta-amyloid, mass spectrometry, Alzheimer's disease, phosphorylation.
Collapse
Affiliation(s)
- P. A. Strelnikova
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, 119334 Russian Federation
| | - A. E. Bugrova
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, 119334 Russian Federation
| | - N. V. Zakharova
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, 119334 Russian Federation
| | - K. V. Danichkina
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| | - M. I. Indeykina
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, 119334 Russian Federation
| | - M. S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russian Federation
| | - V. G. Krut’
- Pirogov Russian National Research Medical University, Moscow, 117997 Russian Federation
| | - A. A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russian Federation
| | - A. Yu. Morozova
- V. Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, 119034 Russian Federation
- Mental Health Clinic No. 1 named after N.A. Alekseev, Moscow Healthcare Department, Moscow, 117152 Russian Federation
| | - A. S. Kononikhin
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334 Russian Federation
| | - V. A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - A. A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - E. N. Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| |
Collapse
|
6
|
Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma VR, Ashton NJ, Montoliu-Gaya L, Camporesi E, Winkel I, Paradowski B, Moghekar A, Troncoso JC, Lashley T, Brinkmalm G, Resnick SM, Mroczko B, Kvartsberg H, Gregorič Kramberger M, Hanrieder J, Čučnik S, Harrison P, Zetterberg H, Lewczuk P, Thambisetty M, Rot U, Galasko D, Blennow K, Karikari TK. Plasma p-tau212 antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology. Nat Commun 2024; 15:2615. [PMID: 38521766 PMCID: PMC10960791 DOI: 10.1038/s41467-024-46876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG078796 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG078538 NIA NIH HHS
- R01 MH108509 NIMH NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- #AARF-21-850325 Alzheimer's Association
- R01 MH121619 NIMH NIH HHS
- R37 AG023651 NIA NIH HHS
- R21 AG080705 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- R01 AG025516 NIA NIH HHS
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- Demensförbundet (Dementia Association)
- Anna Lisa and Brother Björnsson’s Foundation
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- the Swedish Dementia Foundation, Gun and Bertil Stohnes Foundation, Åhlén-stifelsen, and Gamla Tjänarinnor Foundation.
- Vetenskapsrådet (Swedish Research Council)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- EU Joint Programme – Neurodegenerative Disease Research (Programi i Përbashkët i BE-së për Kërkimet mbi Sëmundjet Neuro-degjeneruese)
- Swedish State Support for Clinical Research (#ALFGBG-71320), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C) the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Hjärnfonden, Sweden (#FO2022-0270), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
- the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01) the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495).
- Alzheimer’s Association
- National Institute of Health (NIH) - (R01 AG083874-01, U24 AG082930-01 1 RF1 AG052525-01A1, 5 P30 AG066468-04, 5 R01 AG053952-05, 3 R01 MH121619-04S1, 5 R37 AG023651-18, 2 RF1 AG025516-12A1, 5 R01 AG073267-02, 2 R01 MH108509-06, 5 R01 AG075336-02, 5 R01 AG072641-02, 2 P01 AG025204-16) the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann) Wallströms and Mary-Ann Sjöbloms stiftelsen, and the Emil och Wera Cornells stiftelsen.
Collapse
Affiliation(s)
- Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden.
| | - Fernando González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | | | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | | | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Old Age Psychiatry, King's College London, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011, Stavanger, Norway
- South London & Maudsley NHS Foundation, NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, SE5 8AF, London, UK
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Izabela Winkel
- Dementia Disorders Center, Medical University of Wrocław, 59-330, Ścinawa, Poland
| | - Bogusław Paradowski
- Department of Neurology, Medical University of Wrocław, 50-556, Wrocław, Poland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, 141 52, Huddinge, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, 1512-1518, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma V, Ashton NJ, Montoliu-Gaya L, Camporesi E, Winkel I, Paradowski B, Moghekar A, Troncoso JC, Brinkmalm G, Resnick SM, Mroczko B, Kvartsberg H, Kramberger MG, Hanrieder J, Čučnik S, Harrison P, Zetterberg H, Lewczuk P, Thambisetty M, Rot U, Galasko D, Blennow K, Karikari TK. Plasma p-tau212: antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.11.23299806. [PMID: 38168323 PMCID: PMC10760276 DOI: 10.1101/2023.12.11.23299806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.
Collapse
Affiliation(s)
- Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Fernando González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | | | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, CA 92161 United States of America
| | | | - Vijay Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Old Age Psychiatry, King's College London, London SE5 8AF, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- South London & Maudsley NHS Foundation, NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, SE5 8AF London, United Kingdom
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Izabela Winkel
- Dementia Disorders Center, Medical University of Wrocław, 59-330 Scinawa, Poland
| | - Bogusław Paradowski
- Department of Neurology, Medical University of Wrocław, 50-556 Wroclaw, Poland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok 15-269, Poland
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, 141 52 Huddinge, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, United Kingdom
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, United Kingdom
- UK Dementia Research Institute, University College London, London, WC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, 1512-1518, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, 15-269, Poland
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA 92161 United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States of America
| |
Collapse
|
8
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
9
|
Gosset-Erard C, Aubriet F, Leize-Wagner E, François YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible - A review. Talanta 2023; 257:124324. [PMID: 36780779 DOI: 10.1016/j.talanta.2023.124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France; Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | |
Collapse
|
10
|
Mañucat-Tan NB, Chowdhury A, Cataldi R, Abdullah RZ, Kumita JR, Wyatt AR. Hypochlorite-induced oxidation promotes aggregation and reduces toxicity of amyloid beta 1-42. Redox Biol 2023; 63:102736. [PMID: 37216700 DOI: 10.1016/j.redox.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aβ1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aβ1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aβ1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aβ1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aβ1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aβ1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aβ1-42 to the surface of cells and facilitating the cell surface clearance of Aβ1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Noralyn B Mañucat-Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048
| | - Ashfaq Chowdhury
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rodrigo Cataldi
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rafaa Zeineddine Abdullah
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, NSW, Australia, 2500
| | - Janet R Kumita
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048.
| |
Collapse
|
11
|
Takahashi K, Chambers JK, Takaichi Y, Uchida K. Different Aβ43 deposition patterns in the brains of aged dogs, sea lions, and cats. J Vet Med Sci 2022; 84:1563-1573. [PMID: 36288928 PMCID: PMC9791235 DOI: 10.1292/jvms.22-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral amyloid β (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). There are several molecular species of Aβ, including Aβ40, Aβ42, and Aβ43, and the pathological roles of Aβ43 have attracted particular attention in recent years. Aβ43 is mainly deposited as senile plaques (SPs) in AD brains, and is known to be more amyloidogenic and neurotoxic than Aβ42 and Aβ40. Aβ40 and Aβ42 deposition have been demonstrated in several animal species, while Aβ43 deposition has not been studied in animals. The brains of sea lions, dogs, and cats exhibit unique age-related Aβ pathologies. In the present study, the deposition patterns of Aβ40, Aβ42, and Aβ43 were examined immunohistochemically in the brains of aged dogs (n=52), sea lions (n=5), and cats (n=17). In dogs, most cerebral amyloid angiopathy (CAA) lesions and primitive SPs were positive for Aβ42, Aβ43, and Aβ40. However, diffuse SPs and capillary CAA lesions were negative for Aβ40. In sea lions, all SPs and most CAA lesions were positive for Aβ42, Aβ43, and Aβ40, while capillary CAA lesions were negative for Aβ40. In cats, Aβ42-immunopositive granular aggregates and arteriole and capillary CAA lesions were positive for Aβ43, but negative for Aβ40. Double-labelling immunohistochemistry revealed the co-localization of Aβ42 and Aβ43. These findings suggest that Aβ43 and Aβ42 are frequently deposited in the brains of Carnivora animals and may play an important role in Aβ pathology.
Collapse
Affiliation(s)
- Kei Takahashi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
13
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
14
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
15
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
16
|
Lantero‐Rodriguez J, Snellman A, Benedet AL, Milà‐Alomà M, Camporesi E, Montoliu‐Gaya L, Ashton NJ, Vrillon A, Karikari TK, Gispert JD, Salvadó G, Shekari M, Toomey CE, Lashley TL, Zetterberg H, Suárez‐Calvet M, Brinkmalm G, Rosa Neto P, Blennow K. P-tau235: a novel biomarker for staging preclinical Alzheimer's disease. EMBO Mol Med 2021; 13:e15098. [PMID: 34725927 PMCID: PMC8649868 DOI: 10.15252/emmm.202115098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
Collapse
|
17
|
Minta K, Brinkmalm G, Portelius E, Johansson P, Svensson J, Kettunen P, Wallin A, Zetterberg H, Blennow K, Andreasson U. Brevican and Neurocan Peptides as Potential Cerebrospinal Fluid Biomarkers for Differentiation Between Vascular Dementia and Alzheimer's Disease. J Alzheimers Dis 2021; 79:729-741. [PMID: 33337373 DOI: 10.3233/jad-201039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brevican and neurocan are central nervous system-specific extracellular matrix proteoglycans. They are degraded by extracellular enzymes, such as metalloproteinases. However, their degradation profile is largely unexplored in cerebrospinal fluid (CSF). OBJECTIVE The study aim was to quantify proteolytic peptides derived from brevican and neurocan in human CSF of patients with Alzheimer's disease (AD) and vascular dementia (VaD) compared with controls. METHODS The first cohort consisted of 75 individuals including 25 patients with AD, 7 with mild cognitive impairment (MCI) diagnosed with AD upon follow-up, 10 patients with VaD or MCI diagnosed with VaD upon follow-up, and 33 healthy controls and cognitively stable MCI patients. In the second cohort, 31 individuals were included (5 AD patients, 14 VaD patients and 12 healthy controls). Twenty proteolytic peptides derived from brevican (n = 9) and neurocan (n = 11) were quantified using high-resolution parallel reaction monitoring mass spectrometry. RESULTS In the first cohort, the majority of CSF concentrations of brevican and neurocan peptides were significantly decreased inVaDas compared withADpatients (AUC = 0.83.0.93, p≤0.05) and as compared with the control group (AUC = 0.79.0.87, p ≤ 0.05). In the second cohort, CSF concentrations of two brevican peptides (B87, B156) were significantly decreased in VaD compared with AD (AUC = 0.86.0.91, p ≤ 0.05) and to controls (AUC = 0.80.0.82, p ≤ 0.05), while other brevican and neurocan peptides showed a clear trend to be decreased in VaD compared with AD (AUC = 0.64.80, p > 0.05). No peptides differed between AD and controls. CONCLUSION Brevican and neurocan peptides are potential diagnostic biomarkers for VaD, with ability to separate VaD from AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Per Johansson
- Department of Clinical Sciences Helsingborg, Lund University, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry,Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
18
|
Busch L, Vieten S, Brödel S, Endres K, Bufe B. Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biol Chem 2021; 403:27-41. [PMID: 34505459 DOI: 10.1515/hsz-2021-0258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs - via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 - to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Stefan Vieten
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Susan Brödel
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
19
|
Gkanatsiou E, Nilsson J, Toomey CE, Vrillon A, Kvartsberg H, Portelius E, Zetterberg H, Blennow K, Brinkmalm A, Lashley T, Brinkmalm G. Amyloid pathology and synaptic loss in pathological aging. J Neurochem 2021; 159:258-272. [PMID: 34473357 DOI: 10.1111/jnc.15487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Agathe Vrillon
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
20
|
Pagnon de la Vega M, Giedraitis V, Michno W, Kilander L, Güner G, Zielinski M, Löwenmark M, Brundin R, Danfors T, Söderberg L, Alafuzoff I, Nilsson LNG, Erlandsson A, Willbold D, Müller SA, Schröder GF, Hanrieder J, Lichtenthaler SF, Lannfelt L, Sehlin D, Ingelsson M. The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation. Sci Transl Med 2021; 13:13/606/eabc6184. [PMID: 34380771 DOI: 10.1126/scitranslmed.abc6184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/05/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid β (Aβ). Here, we describe the Uppsala APP mutation (Δ690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) Aβ42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing β-secretase cleavage and affecting α-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated Aβ, AβUpp1-42Δ19-24, accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 43180 Gothenburg, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany
| | - Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Radiology, Uppsala University, 75185 Uppsala, Sweden
| | | | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Lars N G Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, 0316 Oslo, Norway
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 43180 Gothenburg, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
21
|
Singh Y, Ormaza D, Massetti A, Minond D, Cudic M. Tyrosine O-GalNAc Alters the Conformation and Proteolytic Susceptibility of APP Model Glycopeptides. ACS Chem Neurosci 2021; 12:2974-2980. [PMID: 34324289 PMCID: PMC8378340 DOI: 10.1021/acschemneuro.1c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
The amyloid-β precursor protein (APP) undergoes proteolytic cleavage by α-,
β-, and γ-secretases, to determine its fate in Alzheimer’s disease
(AD) pathogenesis. Recent findings suggest a possible role of
O-glycosylation in APP’s proteolytic processing. Therefore, we
synthesized native and Swedish-double-mutated APP (glyco)peptides with
Tyr681-O-GalNAc. We studied conformational changes and
proteolytic processing using circular dichroism (CD) spectroscopy and enzyme cleavage
assay, respectively. CD analysis was carried out in four solvent systems to evaluate
peptide environment and O-glycosylation induced conformational changes.
The Swedish mutation and Tyr681-O-GalNAc were the key
factors driving conformational changes. Furthermore, the level of α- and
β-secretase activity was increased by the presence of mutation and this effect was
more pronounced for its glycosylated analogues. Our results suggest that
O-glycosylation of Tyr681 can induce a conformational
change in APP and affect its proteolytic processing fate toward the amyloidogenic
pathway.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - David Ormaza
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Alessandra Massetti
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Dmitriy Minond
- College of Pharmacy and Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida 33314, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
22
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
23
|
Uddin MS, Kabir MT, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Exploring the Potential of Neuroproteomics in Alzheimer's Disease. Curr Top Med Chem 2021; 20:2263-2278. [PMID: 32493192 DOI: 10.2174/1568026620666200603112030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Michno W, Stringer KM, Enzlein T, Passarelli MK, Escrig S, Vitanova K, Wood J, Blennow K, Zetterberg H, Meibom A, Hopf C, Edwards FA, Hanrieder J. Following spatial Aβ aggregation dynamics in evolving Alzheimer's disease pathology by imaging stable isotope labeling kinetics. SCIENCE ADVANCES 2021; 7:7/25/eabg4855. [PMID: 34134980 PMCID: PMC8208724 DOI: 10.1126/sciadv.abg4855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
β-Amyloid (Aβ) plaque formation is the major pathological hallmark of Alzheimer's disease (AD) and constitutes a potentially critical, early inducer driving AD pathogenesis as it precedes other pathological events and cognitive symptoms by decades. It is therefore critical to understand how Aβ pathology is initiated and where and when distinct Aβ species aggregate. Here, we used metabolic isotope labeling in APPNL-G-F knock-in mice together with mass spectrometry imaging to monitor the earliest seeds of Aβ deposition through ongoing plaque development. This allowed visualizing Aβ aggregation dynamics within single plaques across different brain regions. We show that formation of structurally distinct plaques is associated with differential Aβ peptide deposition. Specifically, Aβ1-42 is forming an initial core structure followed by radial outgrowth and late secretion and deposition of Aβ1-38. These data describe a detailed picture of the earliest events of precipitating amyloid pathology at scales not previously possible.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Katie M Stringer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Melissa K Passarelli
- Laboratory of Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Stephane Escrig
- Laboratory of Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karina Vitanova
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Jack Wood
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Anders Meibom
- Laboratory of Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Frances A Edwards
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
25
|
Gkanatsiou E, Sahlin C, Portelius E, Johannesson M, Söderberg L, Fälting J, Basun H, Möller C, Odergren T, Zetterberg H, Blennow K, Lannfelt L, Brinkmalm G. Characterization of monomeric and soluble aggregated Aβ in Down's syndrome and Alzheimer's disease brains. Neurosci Lett 2021; 754:135894. [PMID: 33848613 DOI: 10.1016/j.neulet.2021.135894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (Aβ) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the Aβ peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different Aβ species including oligomeric Aβ. Mass spectrometry was then used to evaluate the presence of Aβ species in the different patient groups. A large number of Aβ peptides were identified including Aβ1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and Aβ peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the Aβ sequence APP/Aβ(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most Aβ peptides had higher abundance in AD and DS compared to controls, except the APP/Aβ(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of AβX-40 and AβX-34 were increased in DS compared with AD. Aβ1-40, Aβ1-42, and Aβ4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative Aβ1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All Aβ peptides found in AD were also present in DS indicating similar pathways of Aβ peptide production, degradation and accumulation, except for APP/Aβ(-X to 15). Likewise, the Aβ peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Charlotte Sahlin
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | | | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Lannfelt
- BioArctic AB, Stockholm, Sweden; Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
26
|
Nazir FH, Camporesi E, Brinkmalm G, Lashley T, Toomey CE, Kvartsberg H, Zetterberg H, Blennow K, Becker B. Molecular forms of neurogranin in cerebrospinal fluid. J Neurochem 2020; 157:816-833. [PMID: 33249594 PMCID: PMC8378242 DOI: 10.1111/jnc.15252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
Neurogranin (Ng) is a 78 amino acid neuronal protein and a biomarker candidate for Alzheimer's disease (AD). Ng has been suggested to bind to calmodulin and phosphatidic acid via its centrally located IQ domain. Ng is cleaved within this functionally important domain, yielding the majority of fragments identified in cerebrospinal fluid (CSF), suggesting that cleavage of Ng may be a mechanism to regulate its function. Up to now, Ng has been shown to be present in CSF as both C‐terminal fragments as well as full‐length protein. To obtain an overview of the different molecular forms of Ng present in CSF, we show by size exclusion chromatography (SEC), immunoblotting, immunoprecipitation, and MS that Ng is present in CSF as several molecular forms. Besides monomeric full‐length Ng, also higher molecular weight forms of Ng, and C‐terminal‐ and previously not identified N‐terminal fragments were observed. We found by immunodepletion that C‐terminal peptides contribute on average to ~50% of the total‐Ng ELISA signal in CSF samples. There were no differences in the overall C‐terminal fragment/total‐Ng ratios between samples from AD and control groups. In addition, we found that monomeric Ng and its C‐terminal fragments bind to heparin via a heparin‐binding motif, which might be of relevance for their export mechanism from neurons. Taken together, this study highlights the presence of several molecular forms of Ng in CSF, comprising monomeric full‐length Ng, and N‐ and C‐terminal truncations of Ng, as well as larger forms of still unknown composition.
Collapse
Affiliation(s)
- Faisal Hayat Nazir
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Elena Camporesi
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Hlin Kvartsberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Bruno Becker
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
27
|
Akasaka-Manya K, Manya H. The Role of APP O-Glycosylation in Alzheimer's Disease. Biomolecules 2020; 10:biom10111569. [PMID: 33218200 PMCID: PMC7699271 DOI: 10.3390/biom10111569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer’s disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-β (Aβ), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aβ production process. In this report, we describe new findings on the O-glycosylation of APP and Aβ production.
Collapse
|
28
|
Minond D. Novel Approaches and Challenges of Discovery of Exosite Modulators of a Disintegrin and Metalloprotease 10. Front Mol Biosci 2020; 7:75. [PMID: 32435655 PMCID: PMC7218085 DOI: 10.3389/fmolb.2020.00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
A disintegrin and metaproteinase 10 is an important target for multiple therapeutic areas, however, despite drug discovery efforts by both industry and academia no compounds have reached the clinic so far. The lack of enzyme and substrate selectivity of developmental drugs is believed to be a main obstacle to the success. In this review, we will focus on novel approaches and associated challenges in discovery of ADAM10 selective modulators that can overcome shortcomings of previous generations of compounds and be translated into the clinic.
Collapse
Affiliation(s)
- Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
29
|
Brinkmalm G, Hong W, Wang Z, Liu W, O'Malley TT, Sun X, Frosch MP, Selkoe DJ, Portelius E, Zetterberg H, Blennow K, Walsh DM. Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain. Brain 2020; 142:1441-1457. [PMID: 31032851 DOI: 10.1093/brain/awz066] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 11/13/2022] Open
Abstract
The primary structure of canonical amyloid-β-protein was elucidated more than 30 years ago, yet the forms of amyloid-β that play a role in Alzheimer's disease pathogenesis remain poorly defined. Studies of Alzheimer's disease brain extracts suggest that amyloid-β, which migrates on sodium dodecyl sulphate polyacrylamide gel electrophoresis with a molecular weight of ∼7 kDa (7kDa-Aβ), is particularly toxic; however, the nature of this species has been controversial. Using sophisticated mass spectrometry and sensitive assays of disease-relevant toxicity we show that brain-derived bioactive 7kDa-Aβ contains a heterogeneous mixture of covalently cross-linked dimers in the absence of any other detectable proteins. The identification of amyloid-β dimers may open a new phase of Alzheimer's research and allow a better understanding of Alzheimer's disease, and how to monitor and treat this devastating disorder. Future studies investigating the bioactivity of individual dimers cross-linked at known sites will be critical to this effort.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xin Sun
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, SE-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SE-431 80 Mölndal, Sweden
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Höglund K, Schussler N, Kvartsberg H, Smailovic U, Brinkmalm G, Liman V, Becker B, Zetterberg H, Cedazo-Minguez A, Janelidze S, Lefevre IA, Eyquem S, Hansson O, Blennow K. Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration: A translatable marker of synaptic degeneration. Neurobiol Dis 2020; 134:104645. [DOI: 10.1016/j.nbd.2019.104645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022] Open
|
31
|
Shen L, Xia S, Zhang H, Yao F, Liu X, Zhao Y, Ying M, Iqbal J, Liu Q. Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease. Mol Med 2019. [DOI: 10.5772/intechopen.82035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Michno W, Wehrli P, Meier SR, Sehlin D, Syvänen S, Zetterberg H, Blennow K, Hanrieder J. Chemical imaging of evolving amyloid plaque pathology and associated Aβ peptide aggregation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 2019; 152:602-616. [DOI: 10.1111/jnc.14888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Patrick Wehrli
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Silvio R. Meier
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- UK Dementia Research Institute at UCL London UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology University College London London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology University College London London UK
| |
Collapse
|
33
|
Abstract
Glycosylation is one of the most ubiquitous and complex post-translational modifications (PTMs). It plays pivotal roles in various biological processes. Studies at the glycopeptide level are typically considered as a downstream work resulting from enzymatic digested glycoproteins. Less attention has been focused on glycosylated endogenous signaling peptides due to their low abundance, structural heterogeneity and the lack of enabling analytical tools. Here, protocols are presented to isolate and characterize glycosylated neuropeptides utilizing nanoflow liquid chromatography coupled with mass spectrometry (LC-MS). We first demonstrate how to extract neuropeptides from raw tissues and perform further separation/cleanup before MS analysis. Then we describe hybrid MS methods for glycosylated neuropeptide profiling and site-specific analysis. We also include recommendations for data analysis to identify glycosylated neuropeptides in crustaceans where a complete neuropeptide database is still lacking. Other strategies and future directions are discussed to provide readers with alternative approaches and further unravel biological complexity rendered by glycosylation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
34
|
Tao PF, Huang HC. Regulation of AβPP Glycosylation Modification and Roles of Glycosylation on AβPP Cleavage in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2115-2124. [PMID: 30802027 DOI: 10.1021/acschemneuro.8b00574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of senile plaques in the gray matter of the brain is one of the major pathologic features of Alzheimer's disease (AD), and amyloid-β (Aβ) is the main component of extracellular deposits of the senile plaques. Aβ derives from amyloid-β precursor protein (AβPP) cleaved by β-secretase (BACE1) and γ-secretase, and the abnormal cleavage of AβPP is an important event leading to overproduction and aggregation of Aβ species. After translation, AβPP undergoes post-translational modifications (PTMs) including glycosylation and phosphorylation in the endoplasmic reticulum (ER) and Golgi apparatus, and these modifications play an important role in regulating the cleavage of this protein. In this Review, we summarize research progress on the modification of glycosylation, especially O-GlcNAcylation and mucin-type O-linked glycosylation (also known as O-GalNAcylation), on the regulation of AβPP cleavage and on the influence of AβPP's glycosylation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Peng-Fei Tao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| |
Collapse
|
35
|
A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 2019; 701:125-131. [DOI: 10.1016/j.neulet.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
|
36
|
Nilsson J, Brinkmalm G, Ramadan S, Gilborne L, Noborn F, Blennow K, Wallin A, Svensson J, Abo-Riya MA, Huang X, Larson G. Synthetic standard aided quantification and structural characterization of amyloid-beta glycopeptides enriched from cerebrospinal fluid of Alzheimer's disease patients. Sci Rep 2019; 9:5522. [PMID: 30940835 PMCID: PMC6445081 DOI: 10.1038/s41598-019-41897-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
An early pathological hallmark of Alzheimer's disease (AD) is amyloid-β (Aβ) deposits in the brain, which largely consist of up to 43 amino acids long Aβ peptides derived from the amyloid precursor protein (APP). We previously identified a series of sialylated Tyr-10 O-glycosylated Aβ peptides, 15-20 residues long, from human cerebrospinal fluid (CSF) and observed a relative increase of those in AD vs non-AD patients. We report here on the synthesis and use of an isotopically double-labeled Aβ1-15 glycopeptide, carrying the core 1 Galβ3GalNAcα1-O-Tyr-10 structure, to (1) identify by HCD LC-MS/MS the definite glycan core 1 structure of immunopurified and desialylated Aβ glycopeptides in human CSF and to (2) establish a LC-MS/MS quantification method for desialylated Aβ1-15 (and Aβ1-17) glycopeptides and to (3) compare the concentrations of these Aβ glycopeptides in CSF from 20 AD patients and 20 healthy controls. Although we unambiguously identified the core 1 structures and Tyr-10 attachment sites of the glycopeptides, we did not observe any quantitative differences, determined through both peptide and oxonium ion fragments, of the desialylated Aβ1-15 or Aβ1-17 glycopeptides between the AD and non-AD group. The new quantitative glycoproteomic approach described, using double-labeled glycopeptide standards, will undoubtedly facilitate future studies of glycopeptides as clinical biomarkers but should also embrace sialylated Aβ standards to reveal specific sialylation patterns of individual Aβ glycopeptides in AD patients and controls.
Collapse
Affiliation(s)
- Jonas Nilsson
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sherif Ramadan
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, 13518, Egypt
| | - Lisa Gilborne
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Noborn
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamed A Abo-Riya
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, 13518, Egypt
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health, Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Göran Larson
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Grant MKO, Handoko M, Rozga M, Brinkmalm G, Portelius E, Blennow K, Ashe KH, Zahs KR, Liu P. Human cerebrospinal fluid 6E10-immunoreactive protein species contain amyloid precursor protein fragments. PLoS One 2019; 14:e0212815. [PMID: 30817799 PMCID: PMC6394962 DOI: 10.1371/journal.pone.0212815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we reported that levels of two types of protein species-a type of ~55-kDa species and a type of ~15-kDa species-are elevated in the lumbar cerebrospinal fluid (CSF) of cognitively intact elderly individuals who are at risk for Alzheimer's disease (AD). These species are immunoreactive to the monoclonal antibody 6E10, which is directed against amino acids 6-10 of amyloid-β (Aβ), and their levels correlate with levels of total tau and tau phosphorylated at Thr181. In this study, we investigated the molecular composition of these AD-related proteins using immunoprecipitation (IP)/Western blotting coupled with IP/mass spectrometry. We show that canonical Aβ1-40/42 peptides, together with amyloid-β precursor protein (APP) fragments located N-terminally of Aβ, are present in the ~55-kDa, 6E10-immunoreactive species. We demonstrate that APP fragments located N-terminally of Aβ, plus the N-terminal region of Aβ, are present in the ~15-kDa, 6E10-immunoreactive species. These findings add to the catalog of AD-related Aβ/APP species found in CSF and should motivate further study to determine whether these species may serve as biomarkers of disease progression.
Collapse
Affiliation(s)
- Marianne K. O. Grant
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Maureen Handoko
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Malgorzata Rozga
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Kathleen R. Zahs
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KRZ); (PL)
| | - Peng Liu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KRZ); (PL)
| |
Collapse
|
38
|
Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G, Guerard L, Syvänen S, Sehlin D, Kaya I, Brinet D, Nilsson KPR, Hammarström P, Blennow K, Zetterberg H, Hanrieder J. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. J Biol Chem 2019; 294:6719-6732. [PMID: 30814252 PMCID: PMC6497931 DOI: 10.1074/jbc.ra118.006604] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated Aβ polymorphism with amyloid conformation–sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased Aβ1–40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that Aβ1–40 aggregates at the core structure of mature plaques, whereas Aβ1–42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Aβx-42 levels in s-AD but not CU-AP, suggesting an AD pathology–related, hydrophobic functionalization of diffuse plaques facilitating Aβ1–40 deposition. Experiments in tgAPPSwe mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of Aβ1–42 and that Aβ plaque maturation over time is associated with increases in Aβ1–40. Finally, we found that Aβ1–40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Aβx-42 pyroglutamation and Aβ1–40 deposition are critical events in priming and maturation of pathogenic Aβ from diffuse into cored plaques, underlying neurotoxic plaque development in AD.
Collapse
Affiliation(s)
- Wojciech Michno
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Sofie Nyström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Patrick Wehrli
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Tammaryn Lashley
- the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Gunnar Brinkmalm
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Laurent Guerard
- the Center for Cellular Imaging, Core Facilities, Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Stina Syvänen
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Dag Sehlin
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Ibrahim Kaya
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Dimitri Brinet
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - K Peter R Nilsson
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Per Hammarström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Kaj Blennow
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden.,the UK Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom, and
| | - Jörg Hanrieder
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden, .,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
39
|
Cicognola C, Brinkmalm G, Wahlgren J, Portelius E, Gobom J, Cullen NC, Hansson O, Parnetti L, Constantinescu R, Wildsmith K, Chen HH, Beach TG, Lashley T, Zetterberg H, Blennow K, Höglund K. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer's disease. Acta Neuropathol 2019; 137:279-296. [PMID: 30547227 PMCID: PMC6514201 DOI: 10.1007/s00401-018-1948-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
Abstract
Tau is an axonal microtubule-binding protein. Tau pathology in brain and increased tau concentration in the cerebrospinal fluid (CSF) are hallmarks of Alzheimer's disease (AD). Most of tau in CSF is present as fragments. We immunoprecipitated tau from CSF and identified several endogenous peptides ending at amino acid (aa) 123 or 224 using high-resolution mass spectrometry. We raised neo-epitope-specific antibodies against tau fragments specifically ending at aa 123 and 224, respectively. With these antibodies, we performed immunohistochemistry on brain tissue and designed immunoassays measuring N-123, N-224, and x-224 tau. Immunoassays were applied to soluble brain fractions from pathologically confirmed subjects (81 AD patients, 33 controls), CSF from three cross-sectional and two longitudinal cohorts (a total of 133 AD, 38 MCI, 20 MCI-AD, 31 PSP, 15 CBS patients, and 91 controls), and neuronally- and peripherally-derived extracellular vesicles (NDEVs and PDEVs, respectively) in serum from four AD patients and four controls. Anti-tau 224 antibody stained neurofibrillary tangles and neuropil threads, while anti-tau 123 only showed weak cytoplasmic staining in AD. N-224 tau was lower in the AD soluble brain fraction compared to controls, while N-123 tau showed similar levels. N-224 tau was higher in AD compared to controls in all CSF cohorts (p < 0.001), but not N-123 tau. Decrease in cognitive performance and conversion from MCI to AD were associated with increased baseline CSF levels of N-224 tau (p < 0.0001). N-224 tau concentrations in PSP and CBS were significantly lower than in AD (p < 0.0001) and did not correlate to t-tau and p-tau. In a longitudinal cohort, CSF N-224 tau levels were stable over 6 months, with no significant effect of treatment with AChE inhibitors. N-224 tau was present in NDEVs, while N-123 tau showed comparable concentrations in both vesicle types. We suggest that N-123 tau is produced both in CNS and PNS and represents a general marker of tau metabolism, while N-224 tau is neuron-specific, present in the tangles, secreted in CSF, and upregulated in AD, suggesting a link between tau cleavage and propagation, tangle pathology, and cognitive decline.
Collapse
Affiliation(s)
- Claudia Cicognola
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden.
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
| | - Jessica Wahlgren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas C Cullen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Lucilla Parnetti
- Department of Medicine, Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Neurology Clinic, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Radu Constantinescu
- Institute of Neuroscience and Physiology, Department of Neurology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kristin Wildsmith
- Biomarker Development Department, Genentech, South San Francisco, CA, USA
| | - Hsu-Hsin Chen
- Biomarker Discovery Department, Genentech, South San Francisco, CA, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Göteborgsvägen 31, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| |
Collapse
|
40
|
Nakamura N, Kurosaka A. Mucin-type glycosylation as a regulatory factor of amyloid precursor protein processing. J Biochem 2019; 165:205-208. [DOI: 10.1093/jb/mvy121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Naosuke Nakamura
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| | - Akira Kurosaka
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, Japan
| |
Collapse
|
41
|
Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Cullen NC, Höglund K, Zetterberg H, Blennow K, Portelius E. The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease. Acta Neuropathol 2019; 137:89-102. [PMID: 30244311 PMCID: PMC6338696 DOI: 10.1007/s00401-018-1910-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Synaptic degeneration and neuronal loss are early events in Alzheimer's disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodegeneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer's disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n = 9), fAD (n = 10), CU-AP (n = 13) and controls (n = 9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of peptide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increased in both sAD and fAD cases compared to controls and CU-AP. This finding was confirmed by western blot, which mainly detects full-length Ng, and enzyme-linked immunosorbent assay, most likely detecting a mix of peptides and full-length Ng. In addition, Ng was significantly associated with the degree of amyloid and tau pathology. These results suggest that processing of Ng into peptides is increased in AD brain tissue, which may reflect the ongoing synaptic degeneration, and which is also mirrored as increased levels of Ng peptides in CSF.
Collapse
Affiliation(s)
- Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Christina E Murray
- Queen Square Brain Bank for Neurological Disorders, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas C Cullen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
42
|
Zakharova NV, Bugrova AE, Kononikhin AS, Indeykina MI, Popov IA, Nikolaev EN. Mass spectrometry analysis of the diversity of Aβ peptides: difficulties and future perspectives for AD biomarker discovery. Expert Rev Proteomics 2018; 15:773-775. [PMID: 30253669 DOI: 10.1080/14789450.2018.1525296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Natalia V Zakharova
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Anna E Bugrova
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Alexey S Kononikhin
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Maria I Indeykina
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Igor A Popov
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Nikolaev
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
- d Skolkovo Institute of Science and Technology , Center of Life Sciences , Moscow , Russia
| |
Collapse
|
43
|
Boersema PJ, Melnik A, Hazenberg BPC, Rezeli M, Marko-Varga G, Kamiie J, Portelius E, Blennow K, Zubarev RA, Polymenidou M, Picotti P. Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date. J Proteome Res 2018; 17:4072-4084. [PMID: 30137990 DOI: 10.1021/acs.jproteome.8b00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Biology/Disease-driven (B/D) working groups of the Human Proteome Project are alliances of research groups aimed at developing or improving proteomic tools to support specific biological or disease-related research areas. Here, we describe the activities and progress to date of the B/D working group focused on protein aggregation diseases (PADs). PADs are characterized by the intra- or extracellular accumulation of aggregated proteins and include devastating diseases such as Parkinson's and Alzheimer's disease and systemic amyloidosis. The PAD B/D working group aims for the development of proteomic assays for the quantification of aggregation-prone proteins involved in PADs to support basic and clinical research on PADs. Because the proteins in PADs undergo aberrant conformational changes, a goal is to quantitatively resolve altered protein structures and aggregation states in complex biological specimens. We have developed protein-extraction protocols and a set of mass spectrometric (MS) methods that enable the detection and quantification of proteins involved in the systemic and localized amyloidosis and the probing of aberrant protein conformational transitions in cell and tissue extracts. In several studies, we have demonstrated the potential of MS-based proteomics approaches for specific and sensitive clinical diagnoses and for the subtyping of PADs. The developed methods have been detailed in both protocol papers and manuscripts describing applications to facilitate implementation by nonspecialized laboratories, and assay coordinates are shared through public repositories and databases. Clinicians actively involved in the PAD working group support the transfer to clinical practice of the developed methods, such as assays to quantify specific disease-related proteins and their fragments in biofluids and multiplexed MS-based methods for the diagnosis and typing of systemic amyloidosis. We believe that the increasing availability of tools to precisely measure proteins involved in PADs will positively impact research on the molecular bases of these diseases and support early disease diagnosis and a more-confident subtyping.
Collapse
Affiliation(s)
- Paul J Boersema
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Andre Melnik
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology , Azabu University , 1-17-71 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5201 , Japan
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics , Karolinska Institute , 17177 Stockholm , Sweden
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zürich , Winterthurerstrasse 190 , Zürich , Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| |
Collapse
|
44
|
Ashton NJ, Schöll M, Heurling K, Gkanatsiou E, Portelius E, Höglund K, Brinkmalm G, Hye A, Blennow K, Zetterberg H. Update on biomarkers for amyloid pathology in Alzheimer's disease. Biomark Med 2018; 12:799-812. [DOI: 10.2217/bmm-2017-0433] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At the center of Alzheimer's disease pathogenesis is the aberrant aggregation of amyloid-β (Aβ) into oligomers, fibrils and plaques. Effective monitoring of Aβ deposition directly in patients is essential to assist anti-Aβ therapeutics in target engagement and participant selection. In the advent of approved anti-Aβ therapeutics, biomarkers will become of fundamental importance in initiating treatments having disease modifying effects at the earliest stage. Two well-established Aβ biomarkers are widely utilized: Aβ-binding ligands for positron emission tomography and immunoassays to measure Aβ42 in cerebrospinal fluid. In this review, we will discuss the current clinical, diagnostic and research state of biomarkers for Aβ pathology. Furthermore, we will explore the current application of blood-based markers to assess Aβ pathology.
Collapse
Affiliation(s)
- Nicholas J Ashton
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Kerstin Heurling
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eleni Gkanatsiou
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
45
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
46
|
Cholesterol ester hydrolase inhibitors reduce the production of synaptotoxic amyloid-β oligomers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:649-659. [DOI: 10.1016/j.bbadis.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
|
47
|
Bate C, Williams A. Monomeric amyloid-β reduced amyloid-β oligomer-induced synapse damage in neuronal cultures. Neurobiol Dis 2017; 111:48-58. [PMID: 29272738 DOI: 10.1016/j.nbd.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) in the brain. Aβ oligomers are believed to cause synapse damage resulting in the memory deficits that are characteristic of this disease. Since the loss of synaptic proteins in the brain correlates closely with the degree of dementia in Alzheimer's disease, the process of Aβ-induced synapse damage was investigated in cultured neurons by measuring the loss of synaptic proteins. Soluble Aβ oligomers, derived from Alzheimer's-affected brains, caused the loss of cysteine string protein and synaptophysin from neurons. When applied to synaptosomes Aβ oligomers increased cholesterol concentrations and caused aberrant activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, Aβ monomer preparations did not affect cholesterol concentrations or activate synaptic cPLA2, nor did they damage synapses. The Aβ oligomer-induced aggregation of cellular prion proteins (PrPC) at synapses triggered the activation of cPLA2 that leads to synapse degeneration. Critically, Aβ monomer preparations did not cause the aggregation of PrPC; rather they reduced the Aβ oligomer-induced aggregation of PrPC. The presence of Aβ monomer preparations also inhibited the Aβ oligomer-induced increase in cholesterol concentrations and activation of cPLA2 in synaptosomes and protected neurons against the Aβ oligomer-induced synapse damage. These results support the hypothesis that Aβ monomers are neuroprotective. We hypothesise that synapse damage may result from a pathological Aβ monomer:oligomer ratio rather than the total concentrations of Aβ within the brain.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK.
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
48
|
Dutta D, Mandal C, Mandal C. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3096-3108. [DOI: 10.1016/j.bbagen.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
49
|
Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles: A chance for new biomarkers in neuroproteomics? J Proteomics 2017; 161:11-25. [DOI: 10.1016/j.jprot.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
|
50
|
Jefferson AL, Gifford KA, Acosta LMY, Bell SP, Donahue MJ, Davis LT, Gottlieb J, Gupta DK, Hohman TJ, Lane EM, Libon DJ, Mendes LA, Niswender K, Pechman KR, Rane S, Ruberg FL, Su YR, Zetterberg H, Liu D. The Vanderbilt Memory & Aging Project: Study Design and Baseline Cohort Overview. J Alzheimers Dis 2017; 52:539-59. [PMID: 26967211 DOI: 10.3233/jad-150914] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vascular health factors frequently co-occur with Alzheimer's disease (AD). A better understanding of how systemic vascular and cerebrovascular health intersects with clinical and pathological AD may inform prevention and treatment opportunities. OBJECTIVE To establish the Vanderbilt Memory & Aging Project, a case-control longitudinal study investigating vascular health and brain aging, and describe baseline methodology and participant characteristics. METHODS From September 2012 to November 2014, 335 participants age 60- 92 were enrolled, including 168 individuals with mild cognitive impairment (MCI, 73±8 years, 41% female) and 167 age-, sex-, and race-matched cognitively normal controls (NC, 72±7 years, 41% female). At baseline, participants completed a physical and frailty examination, fasting blood draw, neuropsychological assessment, echocardiogram, cardiac MRI, and brain MRI. A subset underwent 24-hour ambulatory blood pressure monitoring and lumbar puncture for cerebrospinal fluid (CSF) collection. RESULTS As designed, participant groups were comparable for age (p = 0.31), sex (p = 0.95), and race (p = 0.65). MCI participants had greater Framingham Stroke Risk Profile scores (p = 0.008), systolic blood pressure values (p = 0.008), and history of left ventricular hypertrophy (p = 0.04) than NC participants. As expected, MCI participants performed worse on all neuropsychological measures (p-values < 0.001), were more likely to be APOEɛ4 carriers (p = 0.02), and had enhanced CSF biomarkers, including lower Aβ42 (p = 0.02), higher total tau (p = 0.004), and higher p-tau (p = 0.02) compared to NC participants. CONCLUSION Diverse sources of baseline and longitudinal data will provide rich opportunities to investigate pathways linking vascular and cerebrovascular health, clinical and pathological AD, and neurodegeneration contributing to novel strategies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Angela L Jefferson
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lealani Mae Y Acosta
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan P Bell
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Quality Aging, Division of General Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.,Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - JoAnn Gottlieb
- Vanderbilt Institute for Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deepak K Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M Lane
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David J Libon
- Rowan University - School of Osteopathic Medicine, Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Stratford, NJ, USA
| | - Lisa A Mendes
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin Niswender
- Tennessee Valley Healthcare System, Division of Diabetes, Endocrinology, & Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Frederick L Ruberg
- Boston University School of Medicine, Boston, MA, USA.,Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, USA
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Deparment of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Dandan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|