1
|
Liu S, Wang B, Chen T, Wang H, Liu J, Zhao X, Zhang Y. Two new and effective food-extracted immunomodulatory agents exhibit anti-inflammatory response activity in the hACE2 acute lung injury murine model of COVID-19. Front Immunol 2024; 15:1374541. [PMID: 38807598 PMCID: PMC11130445 DOI: 10.3389/fimmu.2024.1374541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. METHODS In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. RESULTS Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. CONCLUSION Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baiqiao Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianran Chen
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
3
|
Elsebai MF, Albalawi MA. Essential Oils and COVID-19. Molecules 2022; 27:molecules27227893. [PMID: 36431995 PMCID: PMC9696513 DOI: 10.3390/molecules27227893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herbal products are a major source of herbal medicines and other medicines. Essential oils have shown various pharmacological activities, such as antiviral activity, and therefore are proposed to have potential activity against SARS-CoV-2. Due to their lipophilicity, essential oils can easily penetrate the viral membrane and cause the viral membrane to rupture. In addition, crude essential oils usually have many active constituents that can act on different parts of the virus including its cell entry, translation, transcription, and assembly. They have further beneficial pharmacological effects on the host's respiratory system, including anti-inflammatory, immune regulation, bronchiectasis, and mucolytics. This review reported potential essential oils which could be promising drugs for COVID-19 eradication. Essential oils have many advantages because they are promising volatile antiviral molecules, making them potential drug targets for the prevention and treatment of COVID-19, whether used alone or in combination with other chemotherapeutic drugs. The aim of the current review is to shed light on the potential essential oils against enveloped viruses and their proposed activity against SARS-CoV-2 which is also an enveloped virus. The objectives were to present all data reflecting the promising activities of diverse essential oils against enveloped viruses and how they could contribute to the eradication of COVID disease, especially in indoor places. The data collected for the current review were obtained through the SciFinder database, Google scholar, PubMed, and Mendeley database. The data of the current review focused on the most common essential oils which are available in the pharmaceutical market and showed noticeable activities against enveloped viruses such as HSV and influenza.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or ; Tel.: +20-1557290900; Fax: +20-50-2247496
| | | |
Collapse
|
4
|
Yan JK, Zhu J, Liu Y, Chen X, Wang W, Zhang H, Li L. Recent advances in research on Allium plants: functional ingredients, physiological activities, and applications in agricultural and food sciences. Crit Rev Food Sci Nutr 2022; 63:8107-8135. [PMID: 35343832 DOI: 10.1080/10408398.2022.2056132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fruits and vegetables (FVs) have long been a major source of nutrients and dietary phytochemicals with outstanding physiological properties that are essential for protecting humans from chronic diseases. Moreover, the growing demand of consumers for nutritious and healthy foods is greatly promoting the increased intake of FVs. Allium (Alliaceae) is a perennial bulb plant genus of the Liliaceae family. They are customarily utilized as vegetable, medicinal, and ornamental plants and have an important role in agriculture, aquaculture, and the pharmaceutical industry. Allium plants produce abundant secondary metabolites, such as organosulfur compounds, flavonoids, phenols, saponins, alkaloids, and polysaccharides. Accordingly, Allium plants possess a variety of nutritional, biological, and health-promoting properties, including antimicrobial, antioxidant, antitumor, immunoregulatory, antidiabetic, and anti-inflammatory effects. This review aims to highlight the advances in the research on the bioactive components, physiological activities and clinical trials, toxicological assessment for safety, and applications of different Allium plants. It also aims to cover the direction of future research on the Allium genus. This review is expected to provide theoretical reference for the comprehensive development and utilization of Allium plants in the fields of functional foods, medicine, and cosmetics.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Xu Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
5
|
The immunomodulatory effects of low molecular weight garlic protein in crosstalk between peripheral blood mononuclear cells and colon cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Donma MM, Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 2020; 144:109934. [PMID: 32512493 PMCID: PMC7265825 DOI: 10.1016/j.mehy.2020.109934] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
The severity of coronavirus disease 2019 (COVID-19) infection is quite variable and the manifestations varies from asymptomatic disease to severe acute respiratory infection. Fever, dry cough, dyspnea, myalgia, fatigue, loss of appetite, olfactory and gustatory dysfunctions are the most prevalent general symptoms. Decreased immune system cells such as suppressed regulatory T cells, cytotoxic and helper T cells, natural killer cells, monocytes/macrophages and increased proinflammatory cytokines are the characteristic features. Compounds derived from Allium sativum (garlic) have the potential to decrease the expression of proinflammatory cytokines and to reverse the immunological abnormalities to more acceptable levels. Allium sativum is suggested as a beneficial preventive measure before being infected with SARS-CoV-2 virus. Allium sativum is a functional food well-known for its immunomodulatory, antimicrobial, antiinflammatory, antimutagenic, antitumor properties. Its antiviral efficiency was also demonstrated. Some constituents of this plant were found to be active against protozoan parasites. Within this context, it appears to reverse most immune system dysfunctions observed in patients with COVID-19 infection. The relations among immune system parameters, leptin, leptin receptor, adenosin mono phosphate-activated protein kinase, peroxisome proliferator activated receptor-gamma have also been interpreted. Leptin's role in boosting proinflammatory cytokines and in appetite decreasing suggest the possible beneficial effect of decreasing the concentration of this proinflammatory adipose tissue hormone in relieving some symptoms detected during COVID-19 infection. In conclusion, Allium sativum may be an acceptable preventive measure against COVID-19 infection to boost immune system cells and to repress the production and secretion of proinflammatory cytokines as well as an adipose tissue derived hormone leptin having the proinflammatory nature.
Collapse
Affiliation(s)
- Mustafa Metin Donma
- Tekirdag Namik Kemal University, Medical Faculty, Department of Pediatrics, Tekirdag, Turkey.
| | - Orkide Donma
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
7
|
Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H 2 S donors in COVID-19 therapy. Br J Pharmacol 2020; 177:4931-4941. [PMID: 32783196 PMCID: PMC7436626 DOI: 10.1111/bph.15230] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
| | | | | | - Simone Brogi
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | - Lara Testai
- Department of PharmacyUniversity of PisaPisaItaly
| | | |
Collapse
|
8
|
Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Antiviral potential of garlic ( Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol 2020; 104:219-234. [PMID: 32836826 PMCID: PMC7434784 DOI: 10.1016/j.tifs.2020.08.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.
Collapse
Key Words
- AGE, Aged garlic extract
- AIV-H9N2, Avian influenza virus-H9N2
- ALT, Alanine aminotransferase
- ARVI, Acute respiratory viral infection
- AdV-3, Adenovirus-3
- AdV-41, Adenovirus-41
- Allium sativum
- CBV-3, Coxsackie B −3
- CPE, Cytopathic effect
- CoV, Coronavirus
- DADS, Diallyl disulfide
- DAS, Diallyl sulfide
- DATS, Diallyl trisulfide
- DDB, Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylene dioxybiphenyl-2,2′-dicarboxylate
- ECHO11, Echovirus-11
- ECM, Extracellular matrix
- ERK, Extracellular-signal-regulated kinase
- FDA, Food and drug administration
- Functional food
- GE, Garlic extract
- GLRaV‐2, Grapevine leafroll‐associated virus 2
- GO, Garlic oil
- GRAS, Generally regarded as safe
- HAV, Hepatitis A virus
- HCMV, Human cytomegalovirus
- HIV-1, Human immunodeficiency virus-1
- HPV, Influenza B virus Human papillomavirus
- HRV-2, Human rhinovirus type 2
- HSV-1, Herpes simplex virus-1
- HSV-2, Herpes simplex virus-2
- Hp, Haptoglobin
- IAV-H1N1, IBV Influenza A virus-H1N1
- IEG1, Immediate-early gene 1
- IEGs, Immediate-early genes
- Immunomodulatory
- LGE, Lipid garlic extract
- MAPK, Mitogen activated protein kinase
- MARS-CoV, Middle East respiratory syndrome coronavirus
- MDCK cells, Madin-darby canine kidney cells
- MeV, Measles virus
- NA, Not available
- NDV, Newcastle disease virus
- NK, Natural killer
- OSCs, Organosulfur compounds
- Organosulfur compounds
- PGE, Powdered garlic extract
- PIV- 3, Parainfluenza virus-3
- PRRSV, Porcine reproductive and respiratory syndrome virus
- PRV, Porcine Rotavirus
- PVY, Potato Virus Y
- Pandemic
- RCTs, Randomized clinical trials
- RMCW, Recalcitrant multiple common warts
- RV-SA-11, Rotavirus SA-11
- SAC, Serum antioxidant concentration
- SAMC, S-allyl-mercaptocysteine
- SAMG, S-allyl-mercapto-glutathione
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SI, Selectivity index
- SRGE, Sustained release garlic extract
- SWV, Spotted wilt virus
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
Collapse
Affiliation(s)
- Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - Shaikh Jamal Uddin
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology, Griffith University, Southport, Qld, Australia
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
9
|
Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020; 25:molecules25173804. [PMID: 32825600 PMCID: PMC7503525 DOI: 10.3390/molecules25173804] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing’s influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza 2D, 35-601 Rzeszow, Poland
- Correspondence: ; Tel.: +48-22606-36-03
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Czesław Puchalski
- Department of Bioenergetics and Food Analysis, Faculty of Bogy and Agriculture, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland;
| | - Artur H. Świergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
| |
Collapse
|
10
|
Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A. Hydrogen Sulfide: A Novel Player in Airway Development, Pathophysiology of Respiratory Diseases, and Antiviral Defenses. Am J Respir Cell Mol Biol 2017; 57:403-410. [PMID: 28481637 PMCID: PMC5650090 DOI: 10.1165/rcmb.2017-0114tr] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H2S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H2S is catalyzed by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H2S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H2S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H2S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H2S donors for clinical therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Roberto P. Garofalo
- Departments of Pediatrics and
- Microbiology and Immunology, and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Antonella Casola
- Departments of Pediatrics and
- Microbiology and Immunology, and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
11
|
Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res 2015; 2015:401630. [PMID: 25961060 PMCID: PMC4417560 DOI: 10.1155/2015/401630] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023] Open
Abstract
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
Collapse
|