1
|
Robat RM, Nazakat R, Rashid SA, Ismail R, Hasni NAK, Mohamad N, Nik Hassan NMN, Pahrol MA, Suppiah J, Suib FA, Rajendran K, Shaharudin R. Detection of SARS-CoV-2 in bioaerosols and surface samples from healthcare facilities in Klang Valley, Malaysia. Sci Rep 2025; 15:7192. [PMID: 40021779 PMCID: PMC11871134 DOI: 10.1038/s41598-025-91566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has caused significant global threats, as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is primarily transmitted through airborne droplets and bioaerosols. Healthcare workers are particularly at high risk, yet there is limited research on the presence of SARS-CoV-2 in bioaerosols within healthcare facilities in Malaysia. This study aimed to determine the presence and viability of SARS-CoV-2 and its variants of concern in the air and ventilation systems of designated COVID-19 facilities from December 2021 to February 2022. Samples were collected from two hospitals and one quarantine centre (QC), including medical wards, intensive care units, emergency departments, and QC halls. Air samples were obtained using air samplers, while surface samples were taken from return air grilles. SARS-CoV-2 ribonucleic acid (RNA) and its variants were detected using reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) and PCR-based genotyping, respectively. Results showed that Hospital A had a higher rate (24.6%) of positive samples than Hospital B (8.8%). Surface samples had a higher positivity rate (50.0%) compared to air samples (8.3%). The detected variants included delta (34.7%), a mixture of delta and omicron (8.7%), non-variant of concern (non-VOC) (8.7%), and omicron (4.3%). This study emphasizes the need for strict airborne infection control measures for healthcare workers.
Collapse
Affiliation(s)
- Rosnawati Muhammad Robat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
- Occupational and Environmental Health Unit, Public Health Division, Selangor State Health Department, Shah Alam, Shah Alam, 40100, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia.
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Nadia Mohamad
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Nik Muhammad Nizam Nik Hassan
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Muhammad Alfatih Pahrol
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Jeyanthi Suppiah
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Fatin Amirah Suib
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Kamesh Rajendran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| | - Rafiza Shaharudin
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, 40170, Malaysia
| |
Collapse
|
2
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Romeo A, Pellegrini R, Gualtieri M, Benassi B, Santoro M, Iacovelli F, Stracquadanio M, Falconi M, Marino C, Zanini G, Arcangeli C. Experimental and in silico evaluations of the possible molecular interaction between airborne particulate matter and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165059. [PMID: 37353034 PMCID: PMC10284444 DOI: 10.1016/j.scitotenv.2023.165059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.
Collapse
Affiliation(s)
- Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Roberto Pellegrini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Maurizio Gualtieri
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy; Department of Earth and Environmental Sciences, Piazza della Scienza 1, University of Milano-Bicocca, Milano
| | - Barbara Benassi
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Milena Stracquadanio
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Gabriele Zanini
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Caterina Arcangeli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy.
| |
Collapse
|
4
|
Zambrana W, Boehm AB. Occurrence of Human Viruses on Fomites in the Environment: A Systematic Review and Meta-analysis. ACS ENVIRONMENTAL AU 2023; 3:277-294. [PMID: 37743950 PMCID: PMC10515712 DOI: 10.1021/acsenvironau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
Documenting the occurrence of viruses on fomites is crucial in determining the significance of fomite-mediated transmission and the potential use of fomites for environmental disease surveillance. We conducted a systematic review and meta-analysis to compile information on the occurrence of human viruses on fomites in the environment; we identified 134 peer-reviewed papers. We compiled sampling and measurement methods, results, quality control information, and whether virus data were compared with community health data from the papers. We conducted univariate and multivariate analyses to investigate if presence of virus on fomites was associated with virus type (enveloped, nonenveloped), sampling location (healthcare setting, nonhealthcare temporary setting, nonhealthcare nontemporary setting), and area of fomite swabbed (<50, 50-100, >100 cm2). Across 275 data sets from the 134 papers, there was the most data available for Coronaviridae and from fomites at hospitals. Positivity rates, defined as the percent positive fomite samples, were low (median = 6%). Data were available on viruses from 16 different viral families, but data on viruses from 9 families had few (n < 5) data sets. Many human virus families were not identified in this review (11 families). Less than 15% of the data sets reported virus concentrations in externally valid units (viruses per area of surface), and 16% provided a quantitative comparison between virus and health data. Virus type and area swabbed were significant predictors of virus presence on fomites, and the positivity rate of data sets collected from healthcare settings and nonhealthcare nontemporary settings (e.g., individual housing) were significantly higher than those collected in nonhealthcare temporary settings (e.g., restaurants). Data from this review indicates that viruses may be present on fomites, that fomite-mediated virus transmission may occur, and that fomites may provide information on circulation of infectious diseases in the community. However, more quantitative data on diverse viruses are needed, and method reporting needs significant improvements.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department
of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Alexandria B. Boehm
- Department
of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
5
|
Kumar D, Oberoi HS, Singh H, Shrivastav TG, Bhukya PL, Kumari M, Koner BC, Sonkar SC. Development and optimization of an in-house heterologous ELISA for detection of prednisolone drug in enzyme conjugates using spacers. Front Immunol 2023; 14:1200328. [PMID: 37675116 PMCID: PMC10477981 DOI: 10.3389/fimmu.2023.1200328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023] Open
Abstract
The introduction of spacers in coating steroid protein complexes and/or enzyme conjugates or immunogens is known to exert an influence on the sensitivity of steroid enzyme immunoassays. We investigated the impact of different homobifunctional spacers, ranging in atomic length from 3 to 10, on the sensitivity and specificity of prednisolone (PSL) enzyme immunoassays. In this study, four homo-bifunctional spacers, namely, carbohydrazide (CH), adipic acid dihydrazide (ADH), ethylene diamine (EDA), and urea (U), were incorporated between PSL and horseradish peroxidase (HRP) for preparing the enzyme conjugate with an aim to improve the sensitivity of the assay without compromising assay specificity. The assays were developed using these enzymes conjugated with antibodies raised against the PSL-21-HS-BSA immunogen. The sensitivity of the PSL assays after insertion of a bridge in the enzyme conjugate was 1.22 ng/mL, 0.59 ng/mL, 0.48 ng/mL, and 0.018 ng/mL with ADH, CH, EDA, and urea as a spacer, respectively. Among the four combinations, the PSL-21-HS-BSA-antibody with PSL-21-HS-U-HRP-enzyme conjugate gave better sensitivity and less cross-reaction. The percent recovery of PSL from the exogenously spiked human serum pools was in the range of 88.32%-102.50%. The intra and inter-assay CV% was< 8.46%. The PSL concentration was estimated in the serum samples of patients on PSL treatment. The serum PSL values obtained by this method correlated well with the commercially available kit (r2 = 0.98). The present study suggests that the nature of the spacer is related to assay sensitivity and not the spacer length.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare (NIHFW), New Delhi, India
- Quality Assurance Division, Food Safety and Standards Authority of India (FSSAI), New Delhi, India
| | - Harinder Singh Oberoi
- Quality Assurance Division, Food Safety and Standards Authority of India (FSSAI), New Delhi, India
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences Delhi (AIIMS-D), New Delhi, India
| | - Tulsidas G. Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare (NIHFW), New Delhi, India
| | - Prudhvi Lal Bhukya
- Rodent Experimentation Facility, Indian Council of Medical Research (ICMR)-National Animal Resource Facility for Biomedical Research (Indian Council of Medical Research (ICMR)-NARFBR), Hyderabad, India
| | - Mansi Kumari
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Bidhan Chandra Koner
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, India
| | - Subash Chandra Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Mirza S, Niwalkar A, Gupta A, Gautam S, Anshul A, Bherwani H, Biniwale R, Kumar R. Is safe distance enough to prevent COVID-19? Dispersion and tracking of aerosols in various artificial ventilation conditions using OpenFOAM. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:40-54. [PMID: 35431597 PMCID: PMC8990448 DOI: 10.1016/j.gr.2022.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 05/11/2023]
Abstract
The current COVID-19 pandemic has underlined the importance of learning more about aerosols and particles that migrate through the airways when a person sneezes, coughs and speaks. The coronavirus transmission is influenced by particle movement, which contributes to the emergence of regulations on social distance, use of masks and face shield, crowded assemblies, and daily social activity in domestic, public, and corporate areas. Understanding the transmission of aerosols under different micro-environmental conditions, closed, or ventilated, has become extremely important to regulate safe social distances. The present work attempts to simulate the airborne transmission of coronavirus-laden particles under different respiratory-related activities, i.e., coughing and speaking, using CFD modelling through OpenFOAM v8. The dispersion coupled with the Discrete Phase Method (DPM) has been simulated to develop a better understanding of virus carrier particles transmission processes and their path trailing under different ventilation scenarios. The preliminary results of this study with respect to flow fields were in close agreement with published literature, which was then extended under varied ventilation scenarios and respiratory-related activities. The study observed that improper wearing of mask leads to escape of SARS-CoV-2 containminated aerosols having a smaller aerodynamic diameter from the gap between face mask and face, infecting different surfaces in the vicinity. It was also observed that aerosol propagation infecting the area through coughing is a faster phenomenon compared to the propagation of coronavirus-laden particles during speaking. The study's findings will help decision-makers formulate common but differentiated guidelines for safe distancing under different micro-environmental conditions.
Collapse
Affiliation(s)
- Shahid Mirza
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Amol Niwalkar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankit Gupta
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sneha Gautam
- Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Avneesh Anshul
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hemant Bherwani
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rajesh Biniwale
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Council of Scientific and Industrial Research (CSIR), Anusandhan Bhawan, 2 Rafi Ahmed Kidwai Marg, New Delhi 110001, India
| |
Collapse
|
7
|
Mahilkar S, Agrawal S, Chaudhary S, Parikh S, Sonkar SC, Verma DK, Chitalia V, Mehta D, Koner BC, Vijay N, Shastri J, Sunil S. SARS-CoV-2 variants: Impact on biological and clinical outcome. Front Med (Lausanne) 2022; 9:995960. [PMID: 36438034 PMCID: PMC9685312 DOI: 10.3389/fmed.2022.995960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was first identified in December 2019, in Wuhan, China was found to be the etiological agent for a novel respiratory infection that led to a Coronavirus Induced Disease named COVID-19. The disease spread to pandemic magnitudes within a few weeks and since then we have been dealing with several waves across the world, due to the emergence of variants and novel mutations in this RNA virus. A direct outcome of these variants apart from the spike of cases is the diverse disease presentation and difficulty in employing effective diagnostic tools apart from confusing disease outcomes. Transmissibility rates of the variants, host response, and virus evolution are some of the features found to impact COVID-19 disease management. In this review, we will discuss the emerging variants of SARS-CoV-2, notable mutations in the viral genome, the possible impact of these mutations on detection, disease presentation, and management as well as the recent findings in the mechanisms that underlie virus-host interaction. Our aim is to invigorate a scientific debate on how pathogenic potential of the new pandemic viral strains contributes toward development in the field of virology in general and COVID-19 disease in particular.
Collapse
Affiliation(s)
- Shakuntala Mahilkar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sachee Agrawal
- Department of Microbiology, Topiwala National Medical College (TNMC) and Bai Yamunabai Laxman Nair (BYL) Charitable Hospital, Mumbai, Maharashtra, India
| | - Sakshi Chaudhary
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Swapneil Parikh
- Molecular Diagnostic Reference Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai, Maharashtra, India
| | - Subash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, India
| | - Dileep Kumar Verma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vidushi Chitalia
- Molecular Diagnostic Reference Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai, Maharashtra, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bidhan Chandra Koner
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, India
| | - Neetu Vijay
- Department of Health Research, Ministry of Health and Family Welfare, New Delhi, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College (TNMC) and Bai Yamunabai Laxman Nair (BYL) Charitable Hospital, Mumbai, Maharashtra, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
8
|
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156812. [PMID: 35738381 PMCID: PMC9212631 DOI: 10.1016/j.scitotenv.2022.156812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment. To determine the mechanisms underlying the impact of MPs on SARS-CoV-2, we used molecular dynamic simulations to investigate the molecular interactions between five MPs and a SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 K in vacuum and in water. We furthermore compared the interactions of MPs and SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. The interaction affinity between the MPs and the SARS-CoV-2 RNA fragment was found to be greater than the affinity between the MPs and the SARS-CoV-1 or HBV RNA fragments, independent of the environmental media, temperature, and type of MPs. The mechanisms of the interaction between the MPs and the SARS-CoV-2 RNA fragment involved electrostatic and hydrophobic processes, and the interaction affinity was associated with the inherent structural parameters (i.e., molecular volume, polar surface area, and molecular topological index) of the MPs monomers. Although the evidence on the infectious potential of SARS-CoV-2 RNA is not fully understood, humans are exposed to MPs via their lungs, and the strong interaction with the gene materials of SARS-CoV-2 likely affects the exposure of humans to SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| |
Collapse
|
9
|
Del Real Á, Expósito A, Ruiz-Azcona L, Santibáñez M, Fernández-Olmo I. SARS-CoV-2 surveillance in indoor and outdoor size-segregated aerosol samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62973-62983. [PMID: 35449331 PMCID: PMC9023038 DOI: 10.1007/s11356-022-20237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/09/2022] [Indexed: 05/13/2023]
Abstract
We aimed to determine the presence of SARS-CoV-2 RNA in indoor and outdoor size-segregated aerosol samples (PM10-2.5, PM2.5). Five outdoor daily samples were collected between November and December 2020 in an urban/industrial area with relatively high PM10 levels (Maliaño, Santander, Spain) by using a PM impactor (air flowrate of 30 L/min). In a non-hospital indoor sampling surveillance context, 8 samples in classrooms and 6 samples in the central library-Paraninfo of the University of Cantabria (UC) were collected between April and June 2021 by using personal PM samplers (air flowrate of 3 L/min). Lastly, 8 samples in the pediatric nasopharyngeal testing room at Liencres Hospital, 6 samples from different single occupancy rooms of positive patients, and 2 samples in clinical areas of the COVID plant of the University Hospital Marqués de Valdecilla (HUMV) were collected between January and May 2021. N1, N2 genes were used to test the presence of SARS-CoV-2 RNA by RT-qPCR. SARS-CoV-2 positive detection was only obtained from one fine fraction (PM2.5) sample, corresponding to one occupancy room, where a patient with positive PCR and cough was present. Negative results found in other sampling areas such as the pediatric nasopharyngeal testing rooms should be interpreted in terms of air sampling volume limitation and good ventilation.
Collapse
Affiliation(s)
- Álvaro Del Real
- Medicine and Psychiatry Department, Universidad de Cantabria, Av. Cardenal Herrera Oria, s/n, 39011, Santander, Cantabria, Spain
| | - Andrea Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros S/N, 39005, Santander, Cantabria, Spain
| | - Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
- Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Ignacio Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros S/N, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
10
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Thuresson S, Fraenkel CJ, Sasinovich S, Soldemyr J, Widell A, Medstrand P, Alsved M, Löndahl J. Airborne Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Hospitals: Effects of Aerosol-Generating Procedures, HEPA-Filtration Units, Patient Viral Load, and Physical Distance. Clin Infect Dis 2022; 75:e89-e96. [PMID: 35226740 PMCID: PMC9383519 DOI: 10.1093/cid/ciac161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transmission of coronavirus disease 2019 (COVID-19) can occur through inhalation of fine droplets or aerosols containing infectious virus. The objective of this study was to identify situations, patient characteristics, environmental parameters, and aerosol-generating procedures (AGPs) associated with airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. METHODS Air samples were collected near hospitalized COVID-19 patients and analyzed by RT-qPCR. Results were related to distance to the patient, most recent patient diagnostic PCR cycle threshold (Ct) value, room ventilation, and ongoing potential AGPs. RESULTS In total, 310 air samples were collected; of these, 26 (8%) were positive for SARS-CoV-2. Of the 231 samples from patient rooms, 22 (10%) were positive for SARS-CoV-2. Positive air samples were associated with a low patient Ct value (OR, 5.0 for Ct <25 vs >25; P = .01; 95% CI: 1.18-29.5) and a shorter physical distance to the patient (OR, 2.0 for every meter closer to the patient; P = .05; 95% CI: 1.0-3.8). A mobile HEPA-filtration unit in the room decreased the proportion of positive samples (OR, .3; P = .02; 95% CI: .12-.98). No association was observed between SARS-CoV-2-positive air samples and mechanical ventilation, high-flow nasal cannula, nebulizer treatment, or noninvasive ventilation. An association was found with positive expiratory pressure training (P < .01) and a trend towards an association for airway manipulation, including bronchoscopies and in- and extubations. CONCLUSIONS Our results show that major risk factors for airborne SARS-CoV-2 include short physical distance, high patient viral load, and poor room ventilation. AGPs, as traditionally defined, seem to be of secondary importance.
Collapse
Affiliation(s)
- Sara Thuresson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Carl Johan Fraenkel
- Department of Infection Control, Region Skåne, Lund, Sweden
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Swedenand
| | | | - Jonathan Soldemyr
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Anders Widell
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Malin Alsved
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Burgold-Voigt S, Müller E, Zopf D, Monecke S, Braun SD, Frankenfeld K, Kiehntopf M, Weis S, Schumacher T, Pletz MW, Ehricht R. Development of a new antigen-based microarray platform for screening and detection of human IgG antibodies against SARS-CoV-2. Sci Rep 2022; 12:8067. [PMID: 35577791 PMCID: PMC9109672 DOI: 10.1038/s41598-022-10823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to contain the current SARS-CoV-2 pandemic rely, beside vaccinations, also on molecular and serological testing. For any kind of assay development, screening for the optimal antigen is essential. Here we describe the verification of a new protein microarray with different commercially available preparations significant antigens of SARS-CoV-2 that can be used for the evaluation of the performance of these antigens in serological assays and for antibody screening in serum samples. Antigens of other pathogens that are addressed by widely used vaccinations were also included. To evaluate the accuracy of 21 different antigens or antigen preparations on the microarray, receiver operating characteristics (ROC) curve analysis using ELISA results as reference were performed. Except for a single concentration, a diagnostic sensitivity of 1 was determined for all antigen preparations. A diagnostic specificity, as well as an area under the curve (AUC) of 1 was obtained for 16 of 21 antigen preparations. For the remaining five, the diagnostic specificity ranged from 0.942 to 0.981 and AUC from 0.974 to 0.999. The optimized assay was subsequently also applied to determine the immune status of previously tested individuals and/or to detect the immunization status after COVID-19 vaccination. Microarray evaluation of the antibody profiles of COVID-19 convalescent and post vaccination sera showed that the IgG response differed between these groups, and that the choice of the test antigen is crucial for the assay performance. Furthermore, the results showed that the immune response is highly individualized, depended on several factors (e.g., age or sex), and was not directly related to the severity of disease. The new protein microarray provides an ideal method for the parallel screening of many different antigens of vaccine-preventable diseases in a single sample and for reliable and meaningful diagnostic tests, as well as for the development of safe and specific vaccines.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany.
| | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - David Zopf
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - Katrin Frankenfeld
- INTER-ARRAY, Research Center for Medical Technology and Biotechnology (fzmb GmbH), Bad Langensalza, Germany
| | - Michael Kiehntopf
- Institute for Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute for Infection Biology and Natural Product Research-Hans Knöll Institute - HKI, Jena, Germany
| | | | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
13
|
Irungbam M, Chitkara A, Singh VK, Sonkar SC, Dubey A, Bansal A, Shrivastava R, Goswami B, Manchanda V, Saxena S, Saxena R, Garg S, Husain F, Talukdar T, Kumar D, Koner BC. Evaluation of Performance of Detection of Immunoglobulin G and Immunoglobulin M Antibody Against Spike Protein of SARS-CoV-2 by a Rapid Kit in a Real-Life Hospital Setting. Front Microbiol 2022; 13:802292. [PMID: 35558113 PMCID: PMC9087894 DOI: 10.3389/fmicb.2022.802292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Antibody testing is often used for serosurveillance of coronavirus disease 2019 (COVID-19). Enzyme-linked immunosorbent assay and chemiluminescence-based antibody tests are quite sensitive and specific for such serological testing. Rapid antibody tests against different antigens are developed and effectively used for this purpose. However, their diagnostic efficiency, especially in real-life hospital setting, needs to be evaluated. Thus, the present study was conducted in a dedicated COVID-19 hospital in New Delhi, India, to evaluate the diagnostic efficacy of a rapid antibody kit against the receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Sixty COVID-19 confirmed cases by reverse transcriptase-polymerase chain reaction (RT-PCR) were recruited and categorized as early, intermediate, and late cases based on the days passed after their first RT-PCR-positive test report, with 20 subjects in each category. Twenty samples from pre-COVID era and 20 RT-PCR-negative collected during the study period were taken as controls. immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the RBD of the spike (S) protein of SARS-CoV-2 virus were detected by rapid antibody test and compared with the total antibody against the nucleocapsid (N) antigen of SARS-CoV-2 by electrochemiluminescence-based immunoassay (ECLIA). RESULTS The detection of IgM against the RBD of the spike protein by rapid kit was less sensitive and less specific for the diagnosis of SARS-CoV-2 infection. However, diagnostic efficacy of IgG by rapid kit was highly sensitive and specific when compared with the total antibody against N antigen measured by ECLIA. CONCLUSION It can be concluded that detection of IgM against the RBD of S protein by rapid kit is less effective, but IgG detection can be used as an effective diagnostic tool for SARS-CoV-2 infection in real-life hospital setting.
Collapse
Affiliation(s)
- Monica Irungbam
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Anubhuti Chitkara
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Vijay Kumar Singh
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Subash Chandra Sonkar
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Abhisek Dubey
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Aastha Bansal
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Ritika Shrivastava
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Binita Goswami
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Sonal Saxena
- Department of Microbiology, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Ritu Saxena
- Emergency Department, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Sandeep Garg
- Department of Medicine, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Farah Husain
- Department of Anesthesiology, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Tanmay Talukdar
- Department of TB & Chest Diseases/Pulmonary Medicine, Lady Hardinge Medical College (LHMC), New Delhi, India
| | - Dinesh Kumar
- Food Safety and Standards Authority of India, Ministry of Health and Family Welfare (MoHFW), New Delhi, India
| | - Bidhan Chandra Koner
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
14
|
Dinoi A, Feltracco M, Chirizzi D, Trabucco S, Conte M, Gregoris E, Barbaro E, La Bella G, Ciccarese G, Belosi F, La Salandra G, Gambaro A, Contini D. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151137. [PMID: 34699823 PMCID: PMC8539199 DOI: 10.1016/j.scitotenv.2021.151137] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 05/03/2023]
Abstract
Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.
Collapse
Affiliation(s)
- Adelaide Dinoi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy
| | - Matteo Feltracco
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Daniela Chirizzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Sara Trabucco
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Via Gobetti 101, Bologna, Italy
| | - Marianna Conte
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy; Laboratory for Observations and Analyses of Earth and Climate, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Elena Gregoris
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Elena Barbaro
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Giuseppina Ciccarese
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Franco Belosi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Via Gobetti 101, Bologna, Italy
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy.
| |
Collapse
|
15
|
Parvez MK, Parveen S. Airborne transmission of SARS-CoV-2 disease (COVID-19). Future Virol 2022; 17:10.2217/fvl-2021-0324. [PMID: 35251292 PMCID: PMC8889901 DOI: 10.2217/fvl-2021-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh, 11451, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Central University, New Delhi, 110025, India
| |
Collapse
|
16
|
Ribaric NL, Vincent C, Jonitz G, Hellinger A, Ribaric G. Hidden hazards of SARS-CoV-2 transmission in hospitals: A systematic review. INDOOR AIR 2022; 32:e12968. [PMID: 34862811 DOI: 10.1111/ina.12968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Despite their considerable prevalence, dynamics of hospital-associated COVID-19 are still not well understood. We assessed the nature and extent of air- and surface-borne SARS-CoV-2 contamination in hospitals to identify hazards of viral dispersal and enable more precise targeting of infection prevention and control. PubMed, ScienceDirect, Web of Science, Medrxiv, and Biorxiv were searched for relevant articles until June 1, 2021. In total, 51 observational cross-sectional studies comprising 6258 samples were included. SARS-CoV-2 RNA was detected in one in six air and surface samples throughout the hospital and up to 7.62 m away from the nearest patients. The highest detection rates and viral concentrations were reported from patient areas. The most frequently and heavily contaminated types of surfaces comprised air outlets and hospital floors. Viable virus was recovered from the air and fomites. Among size-fractionated air samples, only fine aerosols contained viable virus. Aerosol-generating procedures significantly increased (ORair = 2.56 (1.46-4.51); ORsurface = 1.95 (1.27-2.99)), whereas patient masking significantly decreased air- and surface-borne SARS-CoV-2 contamination (ORair = 0.41 (0.25-0.70); ORsurface = 0.45 (0.34-0.61)). The nature and extent of hospital contamination indicate that SARS-CoV-2 is likely dispersed conjointly through several transmission routes, including short- and long-range aerosol, droplet, and fomite transmission.
Collapse
Affiliation(s)
- Noach Leon Ribaric
- Faculty of Medicine, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Charles Vincent
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Günther Jonitz
- German Medical Association, Berlin, Germany
- State Chamber of Physicians Berlin, Berlin, Germany
| | - Achim Hellinger
- Department of General, Visceral, Endocrine and Oncologic Surgery, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - Goran Ribaric
- Johnson & Johnson Institute, Norderstedt, Germany
- MedTech Europe, Antimicrobial Resistance (AMR) and Healthcare Associated Infections (HAI) Sector Group, Brussels, Belgium
| |
Collapse
|
17
|
Escandón K, Rasmussen AL, Bogoch II, Murray EJ, Escandón K, Popescu SV, Kindrachuk J. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect Dis 2021; 21:710. [PMID: 34315427 PMCID: PMC8314268 DOI: 10.1186/s12879-021-06357-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Scientists across disciplines, policymakers, and journalists have voiced frustration at the unprecedented polarization and misinformation around coronavirus disease 2019 (COVID-19) pandemic. Several false dichotomies have been used to polarize debates while oversimplifying complex issues. In this comprehensive narrative review, we deconstruct six common COVID-19 false dichotomies, address the evidence on these topics, identify insights relevant to effective pandemic responses, and highlight knowledge gaps and uncertainties. The topics of this review are: 1) Health and lives vs. economy and livelihoods, 2) Indefinite lockdown vs. unlimited reopening, 3) Symptomatic vs. asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 4) Droplet vs. aerosol transmission of SARS-CoV-2, 5) Masks for all vs. no masking, and 6) SARS-CoV-2 reinfection vs. no reinfection. We discuss the importance of multidisciplinary integration (health, social, and physical sciences), multilayered approaches to reducing risk ("Emmentaler cheese model"), harm reduction, smart masking, relaxation of interventions, and context-sensitive policymaking for COVID-19 response plans. We also address the challenges in understanding the broad clinical presentation of COVID-19, SARS-CoV-2 transmission, and SARS-CoV-2 reinfection. These key issues of science and public health policy have been presented as false dichotomies during the pandemic. However, they are hardly binary, simple, or uniform, and therefore should not be framed as polar extremes. We urge a nuanced understanding of the science and caution against black-or-white messaging, all-or-nothing guidance, and one-size-fits-all approaches. There is a need for meaningful public health communication and science-informed policies that recognize shades of gray, uncertainties, local context, and social determinants of health.
Collapse
Affiliation(s)
- Kevin Escandón
- School of Medicine, Universidad del Valle, Cali, Colombia.
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Georgetown Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Isaac I Bogoch
- Division of Infectious Diseases, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Eleanor J Murray
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Karina Escandón
- Department of Anthropology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Saskia V Popescu
- Georgetown Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| | - Jason Kindrachuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|