1
|
Vandenbark AA, Meza-Romero R, Benedek G, Offner H. A novel neurotherapeutic for multiple sclerosis, ischemic injury, methamphetamine addiction, and traumatic brain injury. J Neuroinflammation 2019; 16:14. [PMID: 30683115 PMCID: PMC6346590 DOI: 10.1186/s12974-018-1393-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023] Open
Abstract
Neurovascular, autoimmune, and traumatic injuries of the central nervous system (CNS) all have in common an initial acute inflammatory response mediated by influx across the blood-brain barrier of activated mononuclear cells followed by chronic and often progressive disability. Although some anti-inflammatory therapies can reduce cellular infiltration into the initial lesions, there are essentially no effective treatments for the progressive phase. We here review the successful treatment of animal models for four separate neuroinflammatory and neurodegenerative CNS conditions using a single partial MHC class II construct called DRa1-hMOG-35-55 or its newest iteration, DRa1(L50Q)-hMOG-35-55 (DRhQ) that can be administered without a need for class II tissue type matching due to the conserved DRα1 moiety of the drug. These constructs antagonize the cognate TCR and bind with high affinity to their cell-bound CD74 receptor on macrophages and dendritic cells, thereby competitively inhibiting downstream signaling and pro-inflammatory effects of macrophage migration inhibitory factor (MIF) and its homolog, d-dopachrome tautomerase (D-DT=MIF-2) that bind to identical residues of CD74 leading to progressive disease. These effects suggest the existence of a common pathogenic mechanism involving a chemokine-driven influx of activated monocytes into the CNS tissue that can be reversed by parenteral injection of the DRa1-MOG-35-55 constructs that also induce anti-inflammatory macrophages and microglia within the CNS. Due to their ability to block this common pathway, these novel drugs appear to be prime candidates for therapy of a wide range of neuroinflammatory and neurodegenerative CNS conditions.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Gil Benedek
- Present Address: Tissue Typing and Immunogenetics Laboratory, Hadassah Medical Center, Jerusalem, Israel
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Yuan R, Wang B, Lu W, Maeda Y, Dowling P. A Distinct Region in Erythropoietin that Induces Immuno/Inflammatory Modulation and Tissue Protection. Neurotherapeutics 2015; 12:850-61. [PMID: 26271954 PMCID: PMC4604189 DOI: 10.1007/s13311-015-0379-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Beneficial effects of short-term whole-molecule erythropoietin (EPO) therapy have been demonstrated on several animal models of diverse central nervous system pathology. However, the increased hematocrit induced by EPO-driven marrow stimulation greatly limits its potential for side effect-free therapy. We created a library of EPO-derived fragments based on the hypothesis that 2 distinct functions, erythropoiesis and tissue protection, reside in different regions of the molecule. Several small EPO-derived peptides within the Aβ loop of whole EPO molecule were screened for tissue protection in EAE mice. The 19-mer JM-4 peptide that contains 2 cysteine molecules consistently demonstrated the most potent clinical beneficial effects without producing hematocrit alterations in animal models of EAE. The JM-4-induced tissue protection was associated with modulation of the immunoregulatory process that drives inflammation and provokes subsequent autoimmune damage. Like the whole EPO molecule, JM-4 effectively modulated immune/inflammatory reaction within both the peripheral lymphatic tissue and central nervous system. The major effects induced by JM-4 include blocked expansion of monocyte/dendritic antigen presenting cell and T helper 17 cell populations, decreased proinflammatory cytokine production, and sharply enhanced expansion of the regulatory T-cell population. JM-4 shows promise for treatment of a broad spectrum of neural and non-neural conditions associated with inflammation.
Collapse
Affiliation(s)
- RuiRong Yuan
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bo Wang
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Wei Lu
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Yasuhiro Maeda
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Dowling
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA.
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Vandenbark AA, Meza-Romero R, Benedek G, Andrew S, Huan J, Chou YK, Buenafe AC, Dahan R, Reiter Y, Mooney JL, Offner H, Burrows GG. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun 2012; 40:96-110. [PMID: 23026773 DOI: 10.1016/j.jaut.2012.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Treatment with partial (p)MHC class II-β1α1 constructs (also referred to as recombinant T-cell receptor ligands - RTL) linked to antigenic peptides can induce T-cell tolerance, inhibit recruitment of inflammatory cells and reverse autoimmune diseases. Here we demonstrate a novel regulatory pathway that involves RTL binding to CD11b(+) mononuclear cells through a receptor comprised of MHC class II invariant chain (CD74), cell-surface histones and MHC class II itself for treatment of experimental autoimmune encephalomyelitis (EAE). Binding of RTL constructs with CD74 involved a previously unrecognized MHC class II-α1/CD74 interaction that inhibited CD74 expression, blocked activity of its ligand, macrophage migration inhibitory factor, and reduced EAE severity. These findings implicate binding of RTL constructs to CD74 as a key step in both antigen-driven and bystander T-cell tolerance important in treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Research Service, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gil Benedek
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shayne Andrew
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jianya Huan
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yuan K Chou
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abigail C Buenafe
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jeffery L Mooney
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Halina Offner
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gregory G Burrows
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.,Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind, Placebo-Controlled, Phase 1, Dose-Escalation Study. Autoimmune Dis 2012; 2012:954739. [PMID: 22548151 PMCID: PMC3328144 DOI: 10.1155/2012/954739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022] Open
Abstract
Background. Recombinant T-cell receptor ligand 1000 (RTL1000) is a single-chain protein construct containing the outer two domains of HLA-DR2 linked to myelin-oligodendrocyte-glycoprotein- (MOG-) 35–55 peptide. Analogues of RTL1000 induce T-cell tolerance, reverse clinical and histological disease, and promote repair in experimental autoimmune encephalomyelitis (EAE) in DR2 transgenic, C57BL/6, and SJL/J mice. Objective. Determining the maximum tolerated dose, safety, and tolerability of RTL1000 in multiple sclerosis (MS) subjects. Methods. This was a multicenter, Phase I dose-escalation study in HLA-DR2+ MS subjects. Consecutive cohorts received RTL1000 doses of 2, 6, 20, 60, 200, and 100 mg, respectively. Subjects within each cohort randomly received a single intravenous infusion of RTL1000 or placebo at a 4 : 2 ratio. Safety monitoring included clinical, laboratory, and brain magnetic resonance imaging (MRI) evaluations. Results. Thirty-four subjects completed the protocol. All subjects tolerated the 2–60 mg doses of RTL1000. Doses ≥100 mg caused hypotension and diarrhea in 3 of 4 subjects, leading to discontinuation of further enrollment. Conclusions. The maximum tolerated dose of RTL1000 in MS subjects is 60 mg, comparable to effective RTL doses in EAE. RTL1000 is a novel approach for MS treatment that may induce immunoregulation without immunosuppression and promote neural repair.
Collapse
|
5
|
Dahan R, Tabul M, Chou YK, Meza-Romero R, Andrew S, Ferro AJ, Burrows GG, Offner H, Vandenbark AA, Reiter Y. TCR-like antibodies distinguish conformational and functional differences in two- versus four-domain auto reactive MHC class II-peptide complexes. Eur J Immunol 2011; 41:1465-79. [PMID: 21469129 DOI: 10.1002/eji.201041241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/02/2011] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Antigen-presenting cell-associated four-domain MHC class II (MHC-II) molecules play a central role in activating autoreactive CD4(+) T cells involved in multiple sclerosis (MS) and type 1 diabetes (T1D). In contrast, two-domain MHC-II structures with the same covalently attached self-peptide (recombinant T-cell receptor ligands (RTLs)) can regulate pathogenic CD4(+) T cells and reverse clinical signs of experimental autoimmune diseases. RTL1000, which is composed of the β1α1 domains of human leukocyte antigen (HLA)-DR2 linked to the encephalitogenic human myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide, was recently shown to be safe and well tolerated in a phase I clinical trial in MS. To evaluate the opposing biological effects of four- versus two-domain MHC-II structures, we screened phage Fab antibodies (Abs) for the neutralizing activity of RTL1000. Five different TCR-like Abs were identified that could distinguish between the two- versus four-domain MHC-peptide complexes while the cognate TCR was unable to make such a distinction. Moreover, Fab detection of native two-domain HLA-DR structures in human plasma implies that there are naturally occurring regulatory MHC-peptide complexes. These results demonstrate for the first time distinct conformational determinants characteristic of activating versus tolerogenic MHC-peptide complexes involved in human autoimmunity.
Collapse
Affiliation(s)
- Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Huan J, Meza-Romero R, Mooney JL, Vandenbark AA, Offner H, Burrows GG. Single-chain recombinant HLA-DQ2.5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease. Mucosal Immunol 2011; 4:112-20. [PMID: 20736999 PMCID: PMC3012747 DOI: 10.1038/mi.2010.44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Celiac disease (CD) is a disorder of the small intestine caused by intolerance to wheat gluten and related proteins in barley and rye. CD4(+) T cells have a central role in CD, recognizing and binding complexes of HLA-DQ2.5 bearing gluten peptides that have survived digestion and that are deamidated by tissue transglutaminase (TG2), propagating a cascade of inflammatory processes that damage and eventually destroy the villous tissue structures of the small intestine. In this study, we present data showing that recombinant DQ2.5-derived molecules bearing covalently tethered α2-gliadin-61-71 peptide have a remarkable ability to block antigen-specific T-cell proliferation and inhibited proinflammatory cytokine secretion in human DQ2.5-restricted α2-gliadin-specific T-cell clones obtained from patients with CD. The results from our in vitro studies suggest that HLA-DQ2.5-derived molecules could significantly inhibit and perhaps reverse the intestinal pathology caused by T-cell-mediated inflammation and the associated production of proinflammatory cytokines.
Collapse
Affiliation(s)
- J Huan
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - R Meza-Romero
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - J L Mooney
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - A A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - H Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - G G Burrows
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
7
|
Zhao D, Young JS, Chen YH, Shen E, Yi T, Todorov I, Chu PG, Forman SJ, Zeng D. Alloimmune response results in expansion of autoreactive donor CD4+ T cells in transplants that can mediate chronic graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2010; 186:856-68. [PMID: 21149609 DOI: 10.4049/jimmunol.1002195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is considered an autoimmune-like disease mediated by donor CD4(+) T cells, but the origin of the autoreactive T cells is still controversial. In this article, we report that the transplantation of DBA/2 donor spleen cells into thymectomized MHC-matched allogeneic BALB/c recipients induced autoimmune-like cGVHD, although not in control syngeneic DBA/2 recipients. The donor-type CD4(+) T cells from the former but not the latter recipients induced autoimmune-like manifestations in secondary allogeneic BALB/c as well as syngeneic DBA/2 recipients. Transfer of donor-type CD4(+) T cells from secondary DBA/2 recipients with disease into syngeneic donor-type or allogeneic host-type tertiary recipients propagated autoimmune-like manifestations in both. Furthermore, TCR spectratyping revealed that the clonal expansion of the autoreactive CD4(+) T cells in cGVHD recipients was initiated by an alloimmune response. Finally, hybridoma CD4(+) T clones derived from DBA/2 recipients with disease proliferated similarly in response to stimulation by syngeneic donor-type or allogeneic host-type dendritic cells. These results demonstrate that the autoimmune-like manifestations in cGVHD can be mediated by a population of donor CD4(+) T cells in transplants that simultaneously recognize Ags presented by both donor and host APCs.
Collapse
Affiliation(s)
- Dongchang Zhao
- Department of Diabetes Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pericolini E, Gabrielli E, Bistoni G, Cenci E, Perito S, Chow SK, Riuzzi F, Donato R, Casadevall A, Vecchiarelli A. Role of CD45 signaling pathway in galactoxylomannan-induced T cell damage. PLoS One 2010; 5:e12720. [PMID: 20856869 PMCID: PMC2939064 DOI: 10.1371/journal.pone.0012720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022] Open
Abstract
Previously, we reported that Galactoxylomannan (GalXM) activates the extrinsic and intrinsic apoptotic pathways through an interaction with the glycoreceptors on T cells. In this study we establish the role of the glycoreceptor CD45 in GalXM-induced T cell apoptosis, using CD45(+/+) and CD45(-/-) cell lines, derived from BW5147 murine T cell lymphoma. Our results show that whereas CD45 expression is not required for GalXM association by the cells, it is essential for apoptosis induction. In CD45(+/+) cells, CD45 triggering by GalXM reduces the activation of Lck, ZAP70 and Erk1/2. Conversely, in CD45(-/-) cells, Lck was hyperphosphorylated and did not show any modulation after GalXM stimulation. On the whole, our findings provide evidence that the negative regulation of Lck activation occurs via CD45 engagement. This appears to be related to the capacity of GalXM to antagonize T cell activation and induce T cell death. Overall this mechanism may be responsible for the immune paralysis that follows GalXM administration and could explain the powerful immunosuppression that accompanies cryptococcosis.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Bistoni
- Department of Plastic and Reconstructive Surgery, University of Rome “La Sapienza” Medical School, Rome, Italy
| | - Elio Cenci
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Perito
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Francesca Riuzzi
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna Vecchiarelli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
9
|
Sinha S, Subramanian S, Emerson-Webber A, Lindner M, Burrows GG, Grafe M, Linington C, Vandenbark AA, Bernard CCA, Offner H. Recombinant TCR ligand reverses clinical signs and CNS damage of EAE induced by recombinant human MOG. J Neuroimmune Pharmacol 2010; 5:231-9. [PMID: 19789980 PMCID: PMC2866769 DOI: 10.1007/s11481-009-9175-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Increasing evidence suggests that in addition to T cell-dependent effector mechanisms, autoantibodies are also involved in the pathogenesis of MS, including demyelinating antibodies specific for myelin oligodendrocyte glycoprotein (MOG). Our previous studies have demonstrated that recombinant T cell receptor ligands (RTLs) are very effective for treating T cell-mediated experimental autoimmune encephalomyelitis (EAE). In order to expand the scope of RTL therapy in MS patients, it was of interest to study RTL treatment of EAE involving a demyelinating antibody component. Therefore, we evaluated the therapeutic effects of RTL551, specific for T cells reactive to mouse (m)MOG-35-55 peptide, on EAE induced with recombinant human (rh)MOG in C57BL/6 mice. We report that RTL551 therapy can reverse disease progression and reduce demyelination and axonal damage induced by rhMOG without suppressing the anti-MOG antibody response. This result suggests that T cell-mediated inflammation and associated blood-brain barrier dysfunction are the central contributors to EAE pathogenesis and that successful regulation of these key players restricts potential damage by demyelinating antibodies. The results of our study lend support for the use of RTL therapy for treatment of MS subjects whose disease includes inflammatory T cells as well as those with an additional antibody component.
Collapse
Affiliation(s)
- Sushmita Sinha
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
| | - Sandhya Subramanian
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - Ashley Emerson-Webber
- Multiple Sclerosis Research Group, Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, 3800, Australia
| | - Maren Lindner
- Division of Clinical Neurosciences, Glasgow University, Glasgow G12 9PP, UK
| | - Gregory G. Burrows
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - Marjorie Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239
| | | | - Arthur A. Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Claude C. A. Bernard
- Multiple Sclerosis Research Group, Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, 3800, Australia
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239
- Tykeson Multiple Sclerosis Research Laboratory, Oregon Health & Science University, Portland, OR 97239
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
10
|
Sinha S, Miller L, Subramanian S, McCarty OJT, Proctor T, Meza-Romero R, Huan J, Burrows GG, Vandenbark AA, Offner H. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 225:52-61. [PMID: 20546940 DOI: 10.1016/j.jneuroim.2010.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022]
Abstract
Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. We evaluated effects of RTL401 (I-A(s) alpha1beta1+PLP-139-151) on splenocytes from SJL/J mice with EAE to study RTL-T cell tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-alpha1beta1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate a novel pathway of T cell regulation by RTL-bound APCs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD11b Antigen/metabolism
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Ligands
- Macrophages/drug effects
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/metabolism
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- Protein Binding/drug effects
- Protein Binding/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Recombinant Proteins/therapeutic use
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Sushmita Sinha
- Neuroimmunology Research R&D-31, Portland VA Medical Center, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cytokine switch and bystander suppression of autoimmune responses to multiple antigens in experimental autoimmune encephalomyelitis by a single recombinant T-cell receptor ligand. J Neurosci 2009; 29:3816-23. [PMID: 19321778 DOI: 10.1523/jneurosci.5812-08.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recombinant T-cell receptor ligands (RTLs) can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner, and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). Antigen specificity of RTL raises the question as to whether this treatment would be successful in MS patients where target antigens are unknown. Using spinal cord homogenate or combinations of two different peptides to induce disease, we found that treatment with single RTL could reverse EAE as long as targeted T-cells were present. Therapy with three different RTLs each caused a significant reduction in IL-17 and increases in IL-10 and IL-13 in peptide-activated splenocytes, reduced proliferation of both cognate and bystander specificities of lymph node cells, and reduced inflammatory lesions and secreted IL-17 and IL-2 from peptide-activated spinal cord cells. These results show that treatment with single RTLs can induce a cytokine switch in cognate T-cells that inhibits both the target and bystander T-cells, providing new evidence for the potential applicability of RTL therapy in MS.
Collapse
|
12
|
Link JM, Rich CM, Korat M, Burrows GG, Offner H, Vandenbark AA. Monomeric DR2/MOG-35-55 recombinant TCR ligand treats relapses of experimental encephalomyelitis in DR2 transgenic mice. Clin Immunol 2007; 123:95-104. [PMID: 17257899 DOI: 10.1016/j.clim.2006.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 11/01/2006] [Accepted: 12/05/2006] [Indexed: 11/25/2022]
Abstract
Treatment of human autoimmune diseases such as multiple sclerosis (MS) will likely require agents that can prevent or reverse the inflammatory process that results in clinical relapses and disease progression. We evaluated the ability of a newly designed monomeric recombinant TCR ligand (RTL342M) containing HLA-DR2 peptide-binding domains covalently linked to MOG-35-55 peptide to prevent and treat both the initial episode and subsequent relapses of experimental autoimmune encephalomyelitis (EAE) in HLA-DR2 transgenic mice. Single doses of RTL342M given either i.v. or s.c. to HLA-DR2 mice produced a rapid (within 24 h) and dose-dependent reversal of clinical signs of paralytic EAE, and even a single dose < or = 2 microg could produce a significant treatment effect. Multiple daily doses were even more effective than the same total amount of RTL given as a single dose. By establishing the minimal effective dose, we determined that RTLs may be 50 times more potent than molar equivalent doses of myelin peptide alone. RTL342M given prior to induction of EAE prevented disease in most mice, and the remainder could be successfully retreated with RTL. Most important for clinical application, RTL342M was highly effective for treating EAE relapses when given periodically prior to the relapse or even after relapses had occurred. These data demonstrate the rapid and potent clinical effects of RTL342M at disease onset and during relapses in EAE and establish important principles governing the application of this novel approach as a possible therapy for patients with MS.
Collapse
Affiliation(s)
- Jason M Link
- Portland V.A. Medical Center, Neuroimmunology Research R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Fontenot AP, Keizer TS, McCleskey M, Mack DG, Meza-Romero R, Huan J, Edwards DM, Chou YK, Vandenbark AA, Scott B, Burrows GG. Recombinant HLA-DP2 binds beryllium and tolerizes beryllium-specific pathogenic CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3874-83. [PMID: 16951350 DOI: 10.4049/jimmunol.177.6.3874] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic beryllium disease is a lung disorder caused by beryllium exposure in the workplace and is characterized by granulomatous inflammation and the accumulation of beryllium-specific, HLA-DP2-restricted CD4+ T lymphocytes in the lung that proliferate and secrete Th1-type cytokines. To characterize the interaction among HLA-DP2, beryllium, and CD4+ T cells, we constructed rHLA-DP2 and rHLA-DP4 molecules consisting of the alpha-1 and beta-1 domains of the HLA-DP molecules genetically linked into single polypeptide chains. Peptide binding to rHLA-DP2 and rHLA-DP4 was consistent with previously published peptide-binding motifs for these MHC class II molecules, with peptide binding dominated by aromatic residues in the P1 pocket. 9Be nuclear magnetic resonance spectroscopy showed that beryllium binds to the HLA-DP2-derived molecule, with no binding to the HLA-DP4 molecule that differs from DP2 by four amino acid residues. Using beryllium-specific CD4+ T cell lines derived from the lungs of chronic beryllium disease patients, beryllium presentation to those cells was independent of Ag processing because fixed APCs were capable of presenting BeSO4 and inducing T cell proliferation. Exposure of beryllium-specific CD4+ T cells to BeSO4 -pulsed, plate-bound rHLA-DP2 molecules induced IFN-gamma secretion. In addition, pretreatment of beryllium-specific CD4+ T cells with BeSO4-pulsed, plate-bound HLA-DP2 blocked proliferation and IL-2 secretion upon re-exposure to beryllium presented by APCs. Thus, the rHLA-DP2 molecules described herein provide a template for engineering variants that retain the ability to tolerize pathogenic CD4+ T cells, but do so in the absence of the beryllium Ag.
Collapse
Affiliation(s)
- Andrew P Fontenot
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|