1
|
Khaitin A. Calcium in Neuronal and Glial Response to Axotomy. Int J Mol Sci 2021; 22:ijms222413344. [PMID: 34948141 PMCID: PMC8706492 DOI: 10.3390/ijms222413344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrauma assumes an instant or delayed disconnection of axons (axotomy), which affects not only neurons, but surrounding glia as well. Not only mechanically injured glia near the site of disconnection, especially transection, is subjected to the damage, but also glia that is remote from the lesion site. Glial cells, which surround the neuronal body, in turn, support neuron survival, so there is a mutual protection between neuron and glia. Calcium signaling is a central mediator of all post-axotomy events, both in neuron and glia, playing a critical role in their survival/regeneration or death/degeneration. The involvement of calcium in post-axotomy survival of the remote, mechanically intact glia is poorly studied. The purpose of this review is to sum up the calcium-involving mechanisms in responses of neurons and glial cells to axotomy to show their importance and to give some suggestions for future research of remote glia in this context.
Collapse
Affiliation(s)
- Andrey Khaitin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
2
|
Fornaro M, Giovannelli A, Foggetti A, Muratori L, Geuna S, Novajra G, Perroteau I. Role of neurotrophic factors in enhancing linear axonal growth of ganglionic sensory neurons in vitro. Neural Regen Res 2020; 15:1732-1739. [PMID: 32209780 PMCID: PMC7437584 DOI: 10.4103/1673-5374.276338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1 (file # 864/2016-PR) on September 14, 2016.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduates Studies (CGS), Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL, USA
| | - Alessia Giovannelli
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Angelica Foggetti
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Giorgia Novajra
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| |
Collapse
|
3
|
Maia GH, Soares JI, Almeida SG, Leite JM, Baptista HX, Lukoyanova AN, Brazete CS, Lukoyanov NV. Altered serotonin innervation in the rat epileptic brain. Brain Res Bull 2019; 152:95-106. [DOI: 10.1016/j.brainresbull.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023]
|
4
|
Shahidi S, Mehrpour O, Sadeghian R, Soleimani Asl S, Komaki A. Alteration level of hippocampus BDNF expression and long-term potentiation upon microinjection of BRL15572 hydrochloride in a rat model of methamphetamine relapse. Brain Res Bull 2019; 148:18-24. [PMID: 30904722 DOI: 10.1016/j.brainresbull.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) relapse affects the function of the serotonergic system, which this system important for synaptic plasticity and brain-derived neurotrophic factor (BDNF) level. While there is a clear distribution of serotonin receptors in the reward and memory areas but the function of 5-HT1D receptor isn't known. This article assessed effects of BRL15572 hydrochloride (5-HT1D receptor antagonist) on behavior, long-term potentiation (LTP), and BDNF level in reinstated METH-rats. Conditioned place preference was induced by injecting METH (5 mg/kg; i.p.) or saline on the conditioning days. On the last day of extinction, they received priming METH [simultaneously with BRL (2 μg/5 μl; i.c.v.) or vehicle] or saline or saline + vehicle. Preference scores, LTP components and expression of BDNF were measured on the following day. The preference score of METH treatment increased dramatically more than the sham group and co-administration of BRL + METH couldn't decrease the preference score than the METH group. Also, METH treatment increased the population spike relative to the sham group, whereas the treatment METH + BRL attenuated this parameter than METH group. Furthermore, BDNF expression significantly increased in the METH group although it decreased markedly upon treatment with BRL. These results suggest that future studies should evaluate the potential of 5-HT1D antagonist for METH-reinstatement behaviors.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver, CO, USA
| | - Reihaneh Sadeghian
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
The effect of 3,4- methylenedioxymethamphetamine on expression of neurotrophic factors in hippocampus of male rats. Med J Islam Repub Iran 2018; 31:60. [PMID: 29445689 PMCID: PMC5804417 DOI: 10.14196/mjiri.31.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
Background: 3,4- methylenedioxymethamphetamine (MDMA) is a chemical derivative of amphetamine that can induce learning
and memory impairment. Due to the effect of neurotrophins on memory and learning, the impact of MDMA was evaluated on the
brain - derived neurotrophic factor (BDNF), neurotrophin- 4 (NT-4), and tropomyosin- related kinase B (Trk- β) expression in the
hippocampus.
Methods: In this study, 20 adult male Wistar rats (200-250 g) received saline (1 mL) or 10 mg/kg of MDMA intraperitoneally as
single or multiple injection for 2 consecutive days per week for 2 months. Expression of BDNF, Trk-β, and NT4 were assessed using
Western blotting and RT PCR methods.
Results: Our results revealed that the expression of BDNF, Trk- β, and NT4 proteins and genes significantly decreased in MDMA
groups compared to the sham group (p<0.05). Furthermore, the acute group showed the lowest expression of these proteins.
Conclusion: The results of the present study suggest that ecstasy administration may downregulate the expression of BDNF, Trk- β,
and NT-4 in hippocampus, which is more extensive in case of acute treatment. It seems that in the chronic group, hippocampus was
able to compensate the ecstasy- induced neurotoxicity.
Collapse
|
6
|
Sajadi A, Amiri I, Gharebaghi A, Komaki A, Asadbegi M, Shahidi S, Mehdizadeh M, Soleimani Asl S. Treadmill exercise alters ecstasy- induced long- term potentiation disruption in the hippocampus of male rats. Metab Brain Dis 2017; 32:1603-1607. [PMID: 28612273 DOI: 10.1007/s11011-017-0046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
3, 4-methylenedioxymethamphetamine (MDMA) or ecstasy is a derivative of amphetamine that leads to long term potentiation (LTP) disruption in the hippocampal dentate gyrus (DG). Exercise has been accepted as a treatment for the improvement of neurodegenerative disease. Herein, the effects of exercise on the MDMA- induced neurotoxicity were assessed. Male Wistar rats received intraperitoneal injection of MDMA (10 mg/kg) and exercised for one month on a treadmill (Simultaneously or asynchronously with MDMA). LTP and expression of BDNF were assessed using electrophysiology and western blotting methods, respectively. MDMA attenuated the field excitatory post-synaptic potential (fEPSP) slope in comparison with the control group, whereas treadmill exercise increased this parameter when compared to MDMA group. Furthermore, BDNF expression significantly decreased in MDMA group and treadmill exercise could increase that. In conclusion, results of this study suggest that synchronous exercise is able to improve MDMA-induced LTP changes through increase of BDNF expression in the hippocampus of rats.
Collapse
Affiliation(s)
- Azam Sajadi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Tsutsui-Kimura I, Yoshida T, Ohmura Y, Izumi T, Yoshioka M. Milnacipran remediates impulsive deficits in rats with lesions of the ventromedial prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu083. [PMID: 25522418 PMCID: PMC4376543 DOI: 10.1093/ijnp/pyu083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Deficits in impulse control are often observed in psychiatric disorders in which abnormalities of the prefrontal cortex are observed, including attention-deficit/hyperactivity disorder and bipolar disorder. We recently found that milnacipran, a serotonin/noradrenaline reuptake inhibitor, could suppress impulsive action in normal rats. However, whether milnacipran could suppress elevated impulsive action in rats with lesions of the ventromedial prefrontal cortex, which is functionally comparable with the human prefrontal cortex, remains unknown. METHODS Selective lesions of the ventromedial prefrontal cortex were made using quinolinic acid in rats previously trained on a 3-choice serial reaction time task. Sham rats received phosphate buffered saline. Following a period of recovery, milnacipran (0 or 10mg/kg/d × 14 days) was orally administered 60 minutes prior to testing on the 3-choice task. After 7 days of drug cessation, Western blotting, immunohistochemistry, electrophysiological analysis, and morphological analysis were conducted. RESULTS Lesions of the ventromedial prefrontal cortex induced impulsive deficits, and repeated milnacipran ameliorated the impulsive deficit both during the dosing period and after the cessation of the drug. Repeated milnacipran remediated the protein levels of mature brain-derived neurotrophic factor and postsynaptic density-95, dendritic spine density, and excitatory currents in the few surviving neurons in the ventromedial prefrontal cortex of ventromedial prefrontal cortex-lesioned rats. CONCLUSIONS The findings of this study suggest that milnacipran treatment could be a novel strategy for the treatment of psychiatric disorders that are associated with a lack of impulse control.
Collapse
Affiliation(s)
| | | | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (Drs Tsutsui-Kimura, Yoshida, Ohmura, Izumi, and Yoshioka); Japan Society for the Promotion of Science, Tokyo, Japan (Dr Tsutsui-Kimura); Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan (Dr Tsutsui-Kimura).
| | | | | |
Collapse
|
8
|
Kasarpalkar NJ, Kothari ST, Dave UP. Brain-Derived Neurotrophic Factor in children with Autism Spectrum Disorder. Ann Neurosci 2014; 21:129-33. [PMID: 25452672 PMCID: PMC4248479 DOI: 10.5214/ans.0972.7531.210403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/25/2014] [Accepted: 09/14/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurobehavioral syndrome with no known biomarker so far for early detection. It has been challenging, both to classify typical autism and associate a suitable biomarker with clinical phenotype spectrum. Brain-derived neurotrophic factor (BDNF) has emerged as a key neurotrophin regulating synaptic plasticity, neuronal differentiation and survival. PURPOSE Recently, BDNF depletion is reported in neurodegenerative as well as in psychiatric disorders, associated with severity of neurological dysfunction. Role of BDNF as a biomarker in ASD is gaining significance. Pre-clinical results have linked BDNF depletion in autism and mental retardation, however, with conflicting findings. METHODS In view of this, a preliminary study was carried out to measure serum BDNF levels in 48 children with ASD and mental retardation, and 29 age-matched controls. RESULTS Serum BDNF levels were found significantly higher (p<0.001) in atypical autistic subjects (clinically milder phenotype) as compared to controls, but not in typical ASD cases (clinically severe phenotype). BDNF levels were significantly lower in females with typical/Rett Syndrome (p<0.05), but not in males with typical autism (p>0.1), as compared to controls. Lower BDNF levels indicate impairment in neuroprotective mechanism, while higher levels may imply a manifested protective response. CONCLUSION Our study highlights the differential BDNF response based on the severity of neurobehavioral deficit, indicating a possible neuroprotective role of this molecule and supporting its exploration in targeted therapy in ASD.
Collapse
Affiliation(s)
| | | | - Usha P Dave
- Haffkine Institute and Director- MILS International India, Mumbai
| |
Collapse
|
9
|
Brain-Derived Neurotrophic Factor-Transfected and Nontransfected 3T3 Fibroblasts Enhance Migratory Neuroblasts and Functional Restoration in Mice With Intracerebral Hemorrhage. J Neuropathol Exp Neurol 2012; 71:1123-36. [DOI: 10.1097/nen.0b013e3182779e96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Ádori C, Andó RD, Szekeres M, Gutknecht L, Kovács GG, Hunyady L, Lesch KP, Bagdy G. Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in dark agouti rat. J Comp Neurol 2011; 519:2353-78. [DOI: 10.1002/cne.22631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Walker EY, Barbour DL. Designing in vivo concentration gradients with discrete controlled release: a computational model. J Neural Eng 2010; 7:046013. [PMID: 20644248 PMCID: PMC2922513 DOI: 10.1088/1741-2560/7/4/046013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
Collapse
Affiliation(s)
- Edgar Y Walker
- Laboratory of Sensory Neuroscience and Neuroengineering, Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
12
|
Noristani HN, Olabarria M, Verkhratsky A, Rodríguez JJ. Serotonin fibre sprouting and increase in serotonin transporter immunoreactivity in the CA1 area of hippocampus in a triple transgenic mouse model of Alzheimer's disease. Eur J Neurosci 2010; 32:71-9. [PMID: 20576032 DOI: 10.1111/j.1460-9568.2010.07274.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that deteriorates cognitive functions and associated brain regions such as the hippocampus, being the primary cause of dementia. Serotonin (5-HT) is widely present in the hippocampus, being an important neurotransmitter involved in learning and memory. Although recent evidence suggests alterations in 5-HT neurotransmission in AD, it is not clear how hippocampal 5-HT innervation is modified. Here, we studied hippocampal 5-HT innervation by analysing: (i) the expression, density and distribution of 5-HT transporter (SERT)-immunoreactive fibres; (ii) the specific morphological characteristics of serotonergic fibres and their relation to amyloid plaques; and (iii) the total number of 5-HT neurons within the raphe nuclei in triple transgenic mouse model of AD. We used quantitative light microscopy immunohistochemistry comparing transgenic and non-transgenic animals of different ages (3, 6, 9, 12 and 18 months). The transgenic animals showed a significant increase in SERT fibres in the hippocampus in a subfield-, strata- and age-specific manner. The increase in SERT fibres was specific to the CA1 stratum lacunosum-moleculare. An increase in SERT fibres in transgenic animals was observed at 3 months (by 61%) and at 18 months (by 74%). No changes, however, were found in the total number of raphe 5-HT neurons at any age. Our results indicate that triple transgenic mice display changes in the expression of SERT and increased SERT fibres sprouting, which may account for imbalanced serotonergic neurotransmission associated with (or linked to) AD cognitive impairment.
Collapse
Affiliation(s)
- H N Noristani
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
13
|
Koshimizu Y, Ohtomi M. Regulation of neurite extension by expression of LECT2 and neurotrophins based on findings in LECT2-knockout mice. Brain Res 2010; 1311:1-11. [PMID: 19917270 DOI: 10.1016/j.brainres.2009.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/04/2009] [Accepted: 11/04/2009] [Indexed: 12/12/2022]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) was first isolated as a chemotactic factor from phytohemagglutinin-activated human T-cell leukemia SKW-3 cells. LECT2 is expressed in various tissues, including in the brain, stomach and liver, but the functions of LECT2 in the brain remains unclear. To elucidate these functions, we investigated the influence of a deficiency of LECT2 on the morphology of cultured hippocampal neurons during neuronal development, and examined the expression of neurotrophins (NGF, BDNF, and NT-3) and their receptors (TrkA, TrkB, TrkC, and p75NTR) in these neurons. The extension of axons and dendrites in neurons from LECT2-knockout (LECT2-KO) mice was shorter than that in neurons from wild-type mice during culture and significantly less than that in wild-type mice after 4 days in culture. Moreover, neurons from LECT2-KO mice showed different expression of NGF, BDNF and NT-3 during culture compared to wild-type mice. Our results show that LECT2 regulates the extension of axons and dendrites and the expressions of NGF, BDNF and NT-3 during neuronal development.
Collapse
Affiliation(s)
- Yohei Koshimizu
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | | |
Collapse
|
14
|
Grider MH, Park D, Spencer DM, Shine HD. Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 2009; 87:3033-42. [PMID: 19530170 DOI: 10.1002/jnr.22140] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms by which extracellular guidance cues regulate axonal morphology are not fully understood. Recent findings suggest that increased activity of the protein kinase Akt promotes dendritic branching and elongation in hippocampal neurons. We tested whether expression of constitutively active Akt (CA-Akt) in primary sensory neurons would promote axonal branching and whether targeting CA-Akt to lipid rafts, common sites of Akt function, would differentially regulate axonal morphology. Biolistic transduction of sensory neurons induced a rapid expression of CA-Akt, resulting in increased axonal branching, cell hypertrophy, and growth cone expansion. Additionally, we found that targeting of CA-Akt to lipid rafts significantly potentiated growth cone expansion compared with expression of CA-Akt throughout the neuron. Because lipid rafts are concentrated within the growth cone, this finding suggests that signaling of expansion is likely regulated locally. We found that CA-Akt-mediated growth cone expansion, but not axonal branching, was attenuated by coexpression of dominant-negative Rac1. In contrast, blockade of mammalian target of rapamycin (mTOR) prevented axonal branching and hypertrophy in response to CA-Akt, but not growth cone expansion. These data indicate that Akt activity can regulate growth cone expansion via localized Rac1 signaling and regulate axonal branching and soma size via activation of mTOR.
Collapse
Affiliation(s)
- M H Grider
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
15
|
Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model. J Neuroimmunol 2009; 211:39-48. [PMID: 19362378 DOI: 10.1016/j.jneuroim.2009.03.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
A pregnant mouse model was used to compare the effect of IgG, administered E13-E18, from mothers of children with autistic disorder (MCAD), to controls (simple- and IgG-) on behavioral testing in offspring. Mice, exposed in-utero to MCAD-IgG, as adolescents, were more active during the first ten minutes of central field novelty testing and, as adults, displayed anxiety-like behavior on a component of the elevated plus maze and had a greater magnitude of startle following acoustic stimulation. On a social interaction paradigm, adult mice had alterations of sociability. Pilot studies of immune markers in MCAD IgG-exposed embryonic brains suggest evidence of cytokine and glial activation. These studies demonstrate that the transplacental passage of IgG from MCAD is capable of inducing long-term behavioral consequences.
Collapse
Affiliation(s)
- Harvey S Singer
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | | | | | | | | | |
Collapse
|
16
|
Lu H, Li M, Song T, Qian Y, Xiao X, Chen X, Zhang P, Feng X, Parker T, Liu Y. Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro. Brain Res Bull 2008; 77:158-64. [PMID: 19875351 DOI: 10.1016/j.brainresbull.2008.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022]
Abstract
Poor survival and insufficient neuronal differentiation are the main obstacles to neural stem cell (NSC) transplantation therapy. Genetic modification of NSCs with neurotrophins is considered a promising approach to overcome these difficulties. In this study, the effects on survival, proliferation and neuronal differentiation of human fetal NSCs (hfNSCs) were observed after infection by a neurotrophin-3 (NT-3) recombinant retrovirus. The hfNSCs, from 12-week human fetal brains formed neurospheres, expressed the stem cell marker nestin and differentiated into the three main cell types of the nervous system. NT-3 recombinant retrovirus (Retro-NT-3) infected hfNSCs efficiently expressed NT-3 gene for at least 8 weeks, presented an accelerated proliferation, and therefore produced an increased number of neurospheres and after differentiation in vitro, contained a higher percentage of neuronal cells. Eight weeks after infection, 37.9+/-4.2% of hfNSCs in the Retro-NT-3 infection group expressed the neuronal marker, this was significantly higher than the control and mock infection groups. NT-3 transduced hfNSCs also displayed longer protruding neurites compared with other groups. Combined these results demonstrate that NT-3 modification promote the survival/proliferation, neuronal differentiation and growth of neurites of hfNSCs in vitro. This study proposes recombinant retrovirus mediated NT-3 modification may provide a promising means to resolve the poor survival and insufficient neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Haixia Lu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Brain-derived neurotrophic factor expression in the substantia nigra does not change after lesions of dopaminergic neurons. Neurotox Res 2008; 12:135-43. [PMID: 17967737 DOI: 10.1007/bf03033922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progressive and irreversible loss of specific neuronal cell populations is commonly seen in chronic neurodegenerative diseases such as Parkinson's disease (PD). Evidence is accumulating that apoptosis is a crucial cellular event responsible for the dysfunction and death of neurons in this disease. Thus, limiting apoptosis may prevent disease pathogenesis. Key to reducing apoptosis is the discovery of neuroprotective compounds that can be given to patients to minimize neuronal damage. In this manuscript, we reviewed the rationale of using an experimental strategy to provide neurotrophic support to injured neurons. Such rationale includes the increase of endogenous production of brain-derived neurotrophic factor (BDNF). BDNF is a potent inhibitor of apoptosis-mediated cell death and neurotoxin-induced degeneration of dopaminergic neurons. However, availability of BDNF may be reduced when dopaminergic neurons degenerate. Therefore, in this work, we have used several well-established neurotoxins for dopaminergic neurons, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 6-OH-dopamine (6-OHDA), and the HIV protein gp120, to examine whether degeneration of nigrostriatal fibers alters BDNF expression. Our data show that these neurotoxins do not decrease the levels of BDNF in the substantia nigra, suggesting that up-regulation of BDNF synthesis by pharmacological means may be a viable therapy to slow down the progress of PD and other neurodegenerative diseases.
Collapse
|
18
|
|
19
|
Abstract
Improving clinical tests are allowing us to more precisely classify autism spectrum disorders and diagnose them at earlier ages. This raises the possibility of earlier and potentially more effective therapeutic interventions. To fully capitalize on this opportunity, however, will require better understanding of the neurobiological changes underlying this devastating group of developmental disorders. It is becoming clear that the normal trajectory of neurodevelopment is altered in autism, with aberrations in brain growth, neuronal patterning and cortical connectivity. Changes to the structure and function of synapses and dendrites have also been strongly implicated in the pathology of autism by morphological, genetic and animal modeling studies. Finally, environmental factors are likely to interact with the underlying genetic profile, and foster the clinical heterogeneity seen in autism spectrum disorders. In this review we attempt to link the molecular pathways altered in autism to the neurodevelopmental and clinical changes that characterize the disease. We focus on signaling molecules such as neurotrophin, Reelin, PTEN and hepatocyte growth factor, neurotransmitters such as serotonin and glutamate, and synaptic proteins such as neurexin, SHANK and neuroligin. We also discuss evidence implicating oxidative stress, neuroglial activation and neuroimmunity in autism.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287. USA.
| | | |
Collapse
|
20
|
Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FPT, Lee DHS, Rabacchi SA, Murray M. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 2007; 22:262-78. [PMID: 18056009 DOI: 10.1177/1545968307308550] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design to examine recovery and repair after a lesion that interrupts the rubrospinal tract (RST). METHODS Rats received a lateral funiculotomy at C4 and NEP1-40 or vehicle was delivered to the cervical spinal cord for 4 weeks. Outcome measures included motor and sensory tests and immunohistochemistry. RESULTS Gait analysis showed recovery in the NEP1-40-treated group compared to operated controls, and a test of forelimb usage also showed a beneficial effect. The density of labeled RST axons increased ipsilaterally in the NEP1-40 group in the lateral funiculus rostral to the lesion and contralaterally in both gray and white matter. Thus, rubrospinal axons exhibited diminished dieback and/or growth up to the lesion site. This was accompanied by greater density of 5HT and calcitonin gene-related peptide axons adjacent to and into the lesion/matrix site in the NEP1-40 group. CONCLUSIONS NgR blockade after RST injury is associated with axonal growth and/or diminished dieback of severed RST axons up to but not into or beyond the lesion/matrix site, and growth of serotonergic and dorsal root axons adjacent to and into the lesion/matrix site. NgR blockade also supported partial recovery of function. The authors' results indicate that severed rubrospinal axons respond to NEP1-40 treatment but less robustly than corticospinal, raphe-spinal, or dorsal root axons.
Collapse
Affiliation(s)
- Y Cao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sulejczak D, Ziemlińska E, Czarkowska-Bauch J, Nosecka E, Strzalkowski R, Skup M. Focal Photothrombotic Lesion of the Rat Motor Cortex Increases BDNF Levels in Motor-Sensory Cortical Areas Not Accompanied by Recovery of Forelimb Motor Skills. J Neurotrauma 2007; 24:1362-77. [PMID: 17711398 DOI: 10.1089/neu.2006.0261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain infarct triggers neurodegeneration that often shades spontaneous plasticity, occurring in the areas related anatomically and functionally to the infarcted structures. Neurotrophins which promote neuronal survival and plasticity, may protect neurons and enhance remodeling of the remaining circuits, leading to restoration of function. In particular, the crucial role of brain-derived neurotrophic factor (BDNF) in cortical function is well documented. Since BDNF was implicated in the mechanism of postinfarct recovery, we investigated whether focal photothrombosis in the motor cortex of adult rats modifies cortical BDNF protein levels in a time- and region-dependent fashion. In parallel, we aimed to establish, which cortical cells respond with altered BDNF expression and whether these alterations are reflected by forelimb motor skill impairment and recovery, evaluated up to 1 month postinfarct. The distribution of BDNF protein was visualized immunohistochemically and BDNF tissue levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Ipsilateral to the infarct, an increase in BDNF levels occurred both in injured and neighboring regions already 24 h after photothrombosis. This increase was sustained up to postlesion day 7 in the motor cortex and reduced at 28 days. No BDNF changes were detected in homotopic regions of the contralateral cortex. The time-course of enhanced neurotrophic expression was paralleled by bilateral deficits in skilled reaching, which was the only clear and measurable motor impairment observed in the study. We conclude that the spontaneous increase of BDNF is not sufficient to protect neurons from degeneration in the lesion proximity whereas plasticity reported in the adjacent regions may be attributable to enhanced BDNF-related stimuli, which do not counteract the impairment of skilled reaching but might be, at least in part, responsible for the absence of deficits in other functional/behavioral tests.
Collapse
Affiliation(s)
- Dorota Sulejczak
- Nencki Institute of Experimental Biology [corrected] Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 2007; 207:203-17. [PMID: 17719577 PMCID: PMC3513343 DOI: 10.1016/j.expneurol.2007.06.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/16/2007] [Indexed: 01/09/2023]
Abstract
We sought to directly compare growth and myelination of local and supraspinal axons by implanting into the injured spinal cord Schwann cells (SCs) transduced ex vivo with adenoviral (AdV) or lentiviral (LV) vectors encoding a bifunctional neurotrophin molecule (D15A). D15A mimics actions of both neurotrophin-3 and brain-derived neurotrophic factor. Transduced SCs were injected into the injury center 1 week after a moderate thoracic (T8) adult rat spinal cord contusion. D15A expression and bioactivity in vitro; D15A levels in vivo; and graft volume, SC number, implant axon number and cortico-, reticulo-, raphe-, coerulo-spinal and sensory axon growth were determined for both types of vectors employed to transduce SCs. ELISAs revealed that D15A-secreting SC implants contained significantly higher levels of neurotrophin than non-transduced SC and AdV/GFP and LV/GFP SC controls early after implantation. At 6 weeks post-implantation, D15A-secreting SC grafts exhibited 5-fold increases in graft volume, SC number and myelinated axon counts and a 3-fold increase in myelinated to unmyelinated (ensheathed) axon ratios. The total number of axons within grafts of LV/GFP/D15A SCs was estimated to be over 70,000. Also 5-HT, DbetaH, and CGRP axon length was increased up to 5-fold within D15A grafts. In sum, despite qualitative differences using the two vectors, increased neurotrophin secretion by the implanted D15A SCs led to the presence of a significantly increased number of axons in the contusion site. These results demonstrate the therapeutic potential for utilizing neurotrophin-transduced SCs to repair the injured spinal cord.
Collapse
Affiliation(s)
- Kevin L. Golden
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | - Martin Oudega
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Patrick M. Wood
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Corresponding author: , Tel. (305) 243-4596, Fax (305) 243-3923, Lois Pope LIFE Center, P.O Box 016960, Mail locator R-48, Miami, FL 33101
| |
Collapse
|
23
|
Nosheny RL, Ahmed F, Yakovlev A, Meyer EM, Ren K, Tessarollo L, Mocchetti I. Brain-derived neurotrophic factor prevents the nigrostriatal degeneration induced by human immunodeficiency virus-1 glycoprotein 120 in vivo. Eur J Neurosci 2007; 25:2275-84. [PMID: 17445226 DOI: 10.1111/j.1460-9568.2007.05506.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoprotein 120 (gp120) from the T-tropic strain of the human immunodeficiency virus type 1 has been shown to cause neuronal apoptosis through activation of the chemokine receptor CXCR4. Therefore, reducing CXCR4 expression may prevent gp120-mediated apoptosis. Brain-derived neurotrophic factor (BDNF) is known to reduce both gp120 neurotoxicity and CXCR4 expression in vitro. The scope of this work is to establish whether BDNF is neuroprotective against gp120 in vivo and, if so, whether this effect correlates with its ability to down-regulate CXCR4. Serotype 2 adeno-associated viral vector encoding for BDNF (rAAV-BDNF) or control vector was microinjected into the striata of adult rats. Two weeks later gp120 was injected into the same striatum, and apoptosis determined. Pretreatment with rAAV-BDNF prior to gp120 microinjection prevented caspase-3 activation as well as in situ terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling in the striatum and substantia nigra. In addition, rAAV-BDNF reversed the loss of tyrosine hydroxylase immunoreactivity induced by gp120 in both areas. CXCR4 expression was then determined by immunohistochemistry and RT-PCR, and found to be decreased in striata of rAAV-BDNF-treated rats. Conversely, BDNF heterozygous mice exhibited an increase in CXCR4 mRNA levels compared to wild-type littermates. Our data suggest that down-regulation of CXCR4 expression may contribute to the neuroprotective activity of BDNF against gp120 toxicity in the basal ganglia.
Collapse
Affiliation(s)
- Rachel L Nosheny
- Department of Neuroscience, Georgetown University, EP04, New Research Building, 3970 Reservoir Road, NW Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ramer LM, McPhail LT, Borisoff JF, Soril LJJ, Kaan TKY, Lee JHT, Saunders JWT, Hwi LPR, Ramer MS. Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J Neurosci 2007; 27:5812-22. [PMID: 17522325 PMCID: PMC6672770 DOI: 10.1523/jneurosci.0491-07.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dorsal root injury (DRI) disrupts the flow of sensory information to the spinal cord. Although primary afferents do not regenerate to their original targets, spontaneous recovery can, by unknown mechanisms, occur after DRI. Here, we show that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), but not nerve growth factor or neurotrophin-4, are upregulated in the spinal gray matter after DRI. Because endogenous BDNF and NT-3 have well established roles in synaptic and axonal plasticity, we hypothesized that they contributed to spontaneous recovery after DRI. We first developed a model of DRI-induced mechanosensory dysfunction: rat C7/8 DRI produced a deficit in low-threshold cutaneous mechanosensation that spontaneously improved within 10 d but did not recover completely. To determine the effects of endogenous BDNF and NT-3, we administered TrkB-Fc or TrkC-Fc fusion proteins throughout the recovery period. To our surprise, TrkB-Fc stimulated complete recovery of mechanosensation by 6 d after DRI. It also stimulated mechanosensory axon sprouting but prevented deafferentation-induced serotonergic sprouting. TrkC-Fc had no effect on low-threshold mechanosensory behavior or axonal plasticity. There was no mechanosensory improvement with single-bolus TrkB-Fc infusions at 10 d after DRI (despite significantly reducing rhizotomy-induced cold pain), indicating that neuromodulatory effects of BDNF did not underlie mechanosensory recovery. Continuous infusion of the pan-neurotrophin antagonist K252a also stimulated behavioral and anatomical plasticity, indicating that these effects of TrkB-Fc treatment occurred independent of signaling by other neurotrophins. These results illustrate a novel, plasticity-suppressing effect of endogenous TrkB ligands on mechanosensation and mechanosensory primary afferent axons after spinal deafferentation.
Collapse
Affiliation(s)
- Leanne M. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Lowell T. McPhail
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jaimie F. Borisoff
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Neil Squire Society, Vancouver, British Columbia, Canada V5M 4L9
| | - Lesley J. J. Soril
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy K. Y. Kaan
- Neurorestoration Group, King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jae H. T. Lee
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - James W. T. Saunders
- University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada V5Z 4E3, and
| | - Lucy P. R. Hwi
- University of Manitoba Faculty of Medicine, Undergraduate Medical Education, Winnipeg, Manitoba, Canada R3E 3P5
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
25
|
Nishimura K, Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, Toyota T, Takei N, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya K, Sugihara GI, Suda S, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N. Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Commun 2007; 356:200-6. [PMID: 17349978 DOI: 10.1016/j.bbrc.2007.02.135] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 02/20/2007] [Indexed: 12/14/2022]
Abstract
Autism is a severe neurodevelopmental disorder defined by social and communication deficits and ritualistic-repetitive behaviors that are detectable in early childhood. Brain-derived neurotrophic factor (BDNF) plays a critical role in the pathogenesis of autism. In this study, we examined the SNP- and haplotypic-association of BDNF with autism in a trios-based association study (the Autism Genetic Resource Exchange). We also examined the expression of BDNF mRNA in the peripheral blood lymphocytes of drug-naïve autism patients and control subjects. In the TDT of autism trios, the SNP haplotype combinations showed significant associations in the autism group. BDNF expression in the drug-naïve autistic group was found to be significantly higher than in the control group. We suggest that BDNF has a possible role in the pathogenesis of autism through its neurotrophic effects on the serotonergic system.
Collapse
Affiliation(s)
- Katsuhiko Nishimura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghosh A, Yue Y, Long C, Bostick B, Duan D. Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 2007; 15:750-5. [PMID: 17264855 PMCID: PMC2581720 DOI: 10.1038/sj.mt.6300081] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Limited packaging capacity has hampered adeno-associated virus (AAV)-mediated gene therapy for many common genetic diseases such as cystic fibrosis (CF) and Duchenne muscular dystrophy (DMD). Trans-splicing AAV (tsAAV) vectors double AAV packaging capacity but their transduction efficiency has been too low to be useful. We have recently overcome this hurdle by rational vector design. We have shown that a pair of optimized mini-dystrophin tsAAV vectors can reach the same transduction efficiency as that of a single AAV vector after local injection in dystrophic muscle. However, global gene transfer is required to treat diseases like DMD. To test whether systemic delivery can be achieved with tsAAV vectors, we generated a set of optimized alkaline phosphatase (AP) tsAAV vectors. We delivered AAV serotype 9 pseudotyped AP tsAAV intravenously to newborn mice. Six weeks later, we observed high-level transduction in all body skeletal muscle and the heart, the tissues that are affected in DMD. We also detected efficient transduction in the lung, the primary organ affected in CF. Our results provide the first evidence of whole-body transduction with tsAAV vectors and further raise the hope of tsAAV gene therapy for DMD and CF.
Collapse
Affiliation(s)
- Arkasubhra Ghosh
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Chun Long
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Brian Bostick
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
27
|
Grider MH, Chen Q, Shine HD. Semi-automated quantification of axonal densities in labeled CNS tissue. J Neurosci Methods 2006; 155:172-9. [PMID: 16469388 DOI: 10.1016/j.jneumeth.2005.12.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 12/19/2005] [Accepted: 12/22/2005] [Indexed: 11/24/2022]
Abstract
Current techniques used to quantify axons often rely upon manual quantification or potentially expensive commercially available programs for automated quantification. We describe a computerized method for the detection and quantification of axons in the rat CNS using readily available free software. Feature J, a java-based plug-in to the imaging software NIH Image J, faithfully detects linear structures such as axons in confocal or bright-field images using a Hessian-based algorithm. We validated the method by comparing values obtained by manual and automated analyses of axons induced to grow in response to neurotrophin over-expression in the rat spinal cord. We also demonstrated that the program can be used to quantify neurotrophin-induced growth of lesioned serotonergic axons in the rat cortex, where manual measurement would be impractical due to dense axonal growth. The use of this software suite provided faster and less biased quantification of labeled axons in comparison to manual measurements at no cost.
Collapse
Affiliation(s)
- Michael H Grider
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|