1
|
Wang F, Zhang G, Zhai Q. Role and mechanism of molecular hydrogen in the treatment of Parkinson's diseases. Front Neurosci 2025; 19:1576773. [PMID: 40336538 PMCID: PMC12055789 DOI: 10.3389/fnins.2025.1576773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a pathology that includes the aggregation of alpha-synuclein (α-syn), oxidative stress, and neuroinflammation. While existing treatments can alleviate motor symptoms, they have limited efficacy in slowing disease progression and improving non-motor symptoms. In recent years, molecular hydrogen has been recognized for its potential neuroprotective effects, attributed to its selective antioxidant and anti-inflammatory properties. While preclinical studies demonstrate promising results, clinical trials conducted thus far have yielded mixed outcomes, with some trials reporting limited or no therapeutic benefit. This review systematically analyzes the mechanisms of action of molecular hydrogen in PD and related neurodegenerative disorders, emphasizing its antioxidant, anti-inflammatory, and anti-apoptotic properties. By evaluating evidence from both preclinical and clinical studies, this paper explores the potential of molecular hydrogen to attenuate oxidative stress, modulate inflammatory responses, and inhibit apoptosis in neuronal cells, while also identifying key gaps in current research. As a novel neuroprotective agent, molecular hydrogen holds potential in PD and other neurodegenerative diseases, but further well-designed clinical trials are needed to validate its efficacy. Future studies should focus on elucidating the mechanisms through which hydrogen exerts its neuroprotective effects, particularly concerning α-syn aggregation and its clearance pathways, as well as Nrf2-mediated immunomodulation. Furthermore, large-scale, multicenter clinical trials are necessary to establish efficacy benchmarks and personalized delivery protocols.
Collapse
Affiliation(s)
- Fengjiao Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Guangjie Zhang
- Department of Medical Technology and Nursing, Laiwu Vocational and Technical College, Jinan, China
| | - Qingfeng Zhai
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Wu F, Liang T, Liu Y, Sun Y, Wang B. Hydrogen mitigates brain injury by prompting NEDD4-CX43- mediated mitophagy in traumatic brain injury. Exp Neurol 2024; 379:114876. [PMID: 38942265 DOI: 10.1016/j.expneurol.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Hydrogen (H2) has emerged as a potential therapeutic intervention for traumatic brain injury (TBI). However, the precise mechanism underlying H2's neuroprotective effects in TBI remain incompletely understood. METHODS TBI mouse model was induced using the controlled cortical impact (CCI) method, and a cell model was established by exposing astrocytes to lipopolysaccharide (LPS). Cell viability was detected by CCK-8 kits. Cell apoptosis was measured by flow cytometry. ELISA was used to detect cytokine quantification. Protein and gene expression was detected by western blot and RT-PCR analysis. Co-immunoprecipitation (CO-IP) were employed for protein-protein interactions. Morris water maze test and rotarod test were applied for TBI mice. RESULTS H2 treatment effectively inhibited the LPS-induced cell injury and cell apoptosis in astrocytes. NEDD4 expression was increased following H2 treatment coupled with enhanced mitophagy in LPS-treated astrocytes. Overexpression of NEDD4 and down-regulation of connexin 43 (CX43) mirrored the protective effects of H2 treatment in LPS-exposed astrocytes. NEDD4 interacts CX43 to regulates the ubiquitinated degradation of CX43. While overexpression of CX43 reversed the protective effects of H2 treatment in LPS-exposed astrocytes. In addition, H2 treatment significantly alleviated brain injury in TBI mouse model. CONCLUSION H2 promoted NEDD4-CX43 mediated mitophagy to protect brain injury induced by TBI, highlighting a novel pathway underlying the therapeutic effects of H2 in TBI.
Collapse
Affiliation(s)
- Fan Wu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China
| | - Tao Liang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Yang Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China.
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China.
| |
Collapse
|
3
|
Peng Z, Li XJ, Zhou Y, Zhang JT, Zhu Q, Sun JQ, Hang CH, Li W, Zhang QR, Zhuang Z. Hydrogen exerts neuroprotective effects after subarachnoid hemorrhage by attenuating neuronal ferroptosis and inhibiting neuroinflammation. Free Radic Biol Med 2024; 215:79-93. [PMID: 38447853 DOI: 10.1016/j.freeradbiomed.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Spontaneous subarachnoid hemorrhage (SAH), the third most common stroke subtype, is associated with high mortality and disability rates. Therefore, finding effective therapies to improve neurological function after SAH is critical. The objective of this study was to investigate the potential neuroprotective effects of hydrogen in the context of SAH, specifically, by examining its role in attenuating neuronal ferroptosis and inhibiting neuroinflammation, which are exacerbated by excess iron ions after SAH. METHODS Mice were exposed to chambers containing 3% hydrogen, and cells were cultured in incubators containing 60% hydrogen. Neurological function in mice was assessed using behavioral scores. Protein changes were detected using western blotting. Inflammatory factors were detected using enzyme linked immunosorbent assay. Probes, electron microscopy, and related kits were employed to detect oxidative stress and ferroptosis. RESULTS Hydrogen improved the motor function, sensory function, and cognitive ability of mice after SAH. Additionally, hydrogen facilitated Nuclear factor erythroid 2 -related factor 2 activation, upregulated Glutathione peroxidase 4, and inhibited Toll-like receptor 4, resulting in downregulation of inflammatory responses, attenuation of oxidative stress after SAH, and inhibition of neuronal ferroptosis. CONCLUSION Hydrogen exerts neuroprotective effects by inhibiting neuronal ferroptosis and attenuating neuroinflammation after SAH.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Neurosurgical Institute, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Nazari SE, Tarnava A, Khalili-Tanha N, Darroudi M, Khalili-Tanha G, Avan A, Khazaei M, LeBaron TW. Therapeutic Potential of Hydrogen-Rich Water on Muscle Atrophy Caused by Immobilization in a Mouse Model. Pharmaceuticals (Basel) 2023; 16:1436. [PMID: 37895907 PMCID: PMC10609871 DOI: 10.3390/ph16101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle atrophy is associated with poor quality of life and disability. Thus, finding a new strategy for the prevention and treatment of skeletal muscle atrophy is very crucial. This study aimed to investigate the therapeutic potential of hydrogen-rich water (HRW) on muscle atrophy in a unilateral hind limb immobilization model. Thirty-six male Balb/C mice were divided into control (without immobilization), atrophy, and atrophy + hydrogen-rich water (HRW). Unilateral hind limb immobilization was induced using a splint for 7 days (atrophy) and removed for 10 days (recovery). At the end of each phase, gastrocnemius and soleus muscle weight, limb grip strength, skeletal muscle histopathology, muscle fiber size, cross-section area (CSA), serum troponin I and skeletal muscle IL-6, TNF-α and Malondialdehyde (MDA), and mRNA expression of NF-κB, BAX and Beclin-1 were evaluated. Muscle weight and limb grip strength in the H2-treated group were significantly improved during the atrophy phase, and this improvement continued during the recovery period. Treatment by HRW increased CSA and muscle fiber size and reduced muscle fibrosis, serum troponin I, IL-6, TNF-α and MDA which was more prominent in the atrophy phase. These data suggest that HRW could improve muscle atrophy in an immobilized condition and could be considered a new strategy during rehabilitation.
Collapse
Affiliation(s)
- Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | | | - Nima Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Mahdieh Darroudi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran; (S.E.N.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| |
Collapse
|
5
|
Peng Z, Li XJ, Pang C, Zhang JT, Zhu Q, Sun JQ, Wang J, Cao BQ, Zhang YH, Lu Y, Li W, Hang CH, Zhuang Z. Hydrogen inhalation therapy regulates lactic acid metabolism following subarachnoid hemorrhage through the HIF-1α pathway. Biochem Biophys Res Commun 2023; 663:192-201. [PMID: 37141668 DOI: 10.1016/j.bbrc.2023.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The neuroprotective effects of hydrogen have been demonstrated, but the mechanism is still poorly understood. In a clinical trial of inhaled hydrogen in patients with subarachnoid hemorrhage (SAH), we found that hydrogen reduced the accumulation of lactic acid in the nervous system. There are no studies demonstrating the regulatory effect of hydrogen on lactate and in this study we hope to further clarify the mechanism by which hydrogen regulates lactate metabolism. In cell experiments, PCR and Western Blot showed that HIF-1α was the target related to lactic acid metabolism that changed the most before and after hydrogen intervention. HIF-1α levels were suppressed by hydrogen intervention treatment. Activation of HIF-1α inhibited the lactic acid-lowering effect of hydrogen. We have also demonstrated the lactic acid-lowering effect of hydrogen in animal studies. Our work clarifies that hydrogen can regulate lactate metabolism via the HIF-1αpathway, providing new insights into the neuroprotective mechanisms of hydrogen.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Cong Pang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China; Department of Neurosurgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Juan Wang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Bo-Qiang Cao
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yu-Hua Zhang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Zong Zhuang
- Department of Neurosurgery, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Chen JB, Kong XF, Mu F, Lu TY, Lu YY, Xu KC. Hydrogen therapy can be used to control tumor progression and alleviate the adverse events of medications in patients with advanced non-small cell lung cancer. Med Gas Res 2021; 10:75-80. [PMID: 32541132 PMCID: PMC7885710 DOI: 10.4103/2045-9912.285560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, targeted therapy, and immunotherapy are used against advanced non-small cell lung cancer. A clinically efficacious method for relieving the adverse events associated of such therapies is lacking. Fifty-eight adult patients were enrolled in our trial to relieve pulmonary symptoms or the adverse events of drugs. Twenty patients who refused drug treatment were assigned equally and randomly to a hydrogen (H2)-only group and a control group. According to the results of tumor-gene mutations and drug-sensitivity tests, 10, 18, and 10 patients were enrolled into chemotherapy, targeted therapy, and immunotherapy groups in which these therapies were combined with H2-therapy, respectively. Patients underwent H2 inhalation for 4–5 hours per day for 5 months or stopped when cancer recurrence. Before study initiation, the demographics (except for tumor-mutation genes) and pulmonary symptoms (except for moderate cough) of the five groups showed no significant difference. During the first 5 months of treatment, the prevalence of symptoms of the control group increased gradually, whereas that of the four treatment groups decreased gradually. After 16 months of follow-up, progression-free survival of the control group was lower than that of the H2-only group, and significantly lower than that of H2 + chemotherapy, H2 + targeted therapy, and H2 + immunotherapy groups. In the combined-therapy groups, most drug-associated adverse events decreased gradually or even disappeared. H2 inhalation was first discovered in the clinic that can be used to control tumor progression and alleviate the adverse events of medications for patients with advanced non-small cell lung cancer. This study was approved by the Ethics Committee of Fuda Cancer Hospital of Jinan University on December 7, 2018 (approval No. Fuda20181207), and was registered at ClinicalTrials.gov (Identifier: NCT03818347) on January 28, 2019.
Collapse
Affiliation(s)
- Ji-Bing Chen
- Fuda Cancer Hospital of Jinan University, Guangzhou; Fuda Cancer Institute, Guangzhou, Guangdong Province, China
| | - Xiao-Feng Kong
- Fuda Cancer Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Mu
- Fuda Cancer Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tian-Yu Lu
- Fuda Cancer Hospital of Jinan University, Guangzhou; Fuda Cancer Institute, Guangzhou, Guangdong Province, China
| | - You-Yong Lu
- Central Lab, Beijing Cancer Hospital, Beijing, China
| | - Ke-Cheng Xu
- Fuda Cancer Hospital of Jinan University, Guangzhou; Fuda Cancer Institute, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Chen W, Zhang HT, Qin SC. Neuroprotective Effects of Molecular Hydrogen: A Critical Review. Neurosci Bull 2021; 37:389-404. [PMID: 33078374 PMCID: PMC7954968 DOI: 10.1007/s12264-020-00597-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular hydrogen (H2) is a physiologically inert gas. However, during the last 10 years, increasing evidence has revealed its biological functions under pathological conditions. More specifically, H2 has protective effects against a variety of diseases, particularly nervous system disorders, which include ischemia/reperfusion injury, traumatic injury, subarachnoid hemorrhage, neuropathic pain, neurodegenerative diseases, cognitive dysfunction induced by surgery and anesthesia, anxiety, and depression. In addition, H2 plays protective roles mainly through anti-oxidation, anti-inflammation, anti-apoptosis, the regulation of autophagy, and preservation of mitochondrial function and the blood-brain barrier. Further, H2 is easy to use and has neuroprotective effects with no major side-effects, indicating that H2 administration is a potential therapeutic strategy in clinical settings. Here we summarize the H2 donors and their pharmacokinetics. Meanwhile, we review the effectiveness and safety of H2 in the treatment of various nervous system diseases based on preclinical and clinical studies, leading to the conclusion that H2 can be a simple and effective clinical therapy for CNS diseases such as ischemia-reperfusion brain injury, Parkinson's disease, and diseases characterized by cognitive dysfunction. The potential mechanisms involved in the neuroprotective effect of H2 are also analyzed.
Collapse
Affiliation(s)
- Wei Chen
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Shu-Cun Qin
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China.
| |
Collapse
|
8
|
Takeuchi S, Kumagai K, Toyooka T, Otani N, Wada K, Mori K. Intravenous Hydrogen Therapy With Intracisternal Magnesium Sulfate Infusion in Severe Aneurysmal Subarachnoid Hemorrhage. Stroke 2020; 52:20-27. [PMID: 33349011 DOI: 10.1161/strokeaha.120.031260] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Poor-grade subarachnoid hemorrhage still has a poor prognosis. This randomized controlled clinical trial evaluated intracisternal magnesium sulfate infusion combined with intravenous hydrogen therapy in patients with poor-grade subarachnoid hemorrhage. METHODS Thirty-seven patients with poor-grade subarachnoid hemorrhage were randomized to Mg+H2, Mg, and control groups. Mg and Mg+H2 groups received intracisternal magnesium sulfate infusion (2.5 mmol/L) at 20 mL/h for 14 days. Mg+H2 group also received intravenous hydrogen-rich solution infusion for 14 days. Primary outcome measures were occurrence of delayed cerebral ischemia and cerebral vasospasm. Secondary outcome measures were modified Rankin Scale and Karnofsky performance status at 3 and 12 months, Barthel index at 12 months, and serum and cerebrospinal fluid malondialdehyde and neuron-specific enolase. RESULTS Serum neuron-specific enolase levels were significantly lower in the Mg+H2 group from days 3 to 14 than in the control group. Cerebrospinal fluid neuron-specific enolase levels were also significantly lower in the Mg+H2 group from days 3 to 7 than in the control group. Incidences of cerebral vasospasm and delayed cerebral ischemia were significantly higher in the control group than in other groups. Modified Rankin Scale and Karnofsky performance status did not significantly differ between the three groups at 3 months. Modified Rankin Scale scores 0 to 2 were more common in the Mg and Mg+H2 groups at 1 year. Barthel index was higher in the Mg+H2 group than in the control group. CONCLUSIONS Intracisternal magnesium sulfate infusion started immediately after surgery reduces the incidence of cerebral vasospasm and delayed cerebral ischemia and improves clinical outcomes without complications in patients with poor-grade subarachnoid hemorrhage. Intracisternal magnesium sulfate infusion combined with intravenous hydrogen therapy decreases serum malondialdehyde and neuron-specific enolase and improves Barthel index, indicating hydrogen has additional effects. Registration: URL: https://www.umin.ac.jp/ctr/index.htm. Unique identifier: UMIN000014696.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.)
| | - Kosuke Kumagai
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.)
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.)
| | - Naoki Otani
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.)
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.)
| | - Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan (S.T., K.K., T.T., N.O., K.W., K.M.).,Department of Neurosurgery, Tokyo General Hospital, Japan (K.M.)
| |
Collapse
|
9
|
Neuroinflammation Mediated by NLRP3 Inflammasome After Intracerebral Hemorrhage and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:5130-5149. [PMID: 32856203 DOI: 10.1007/s12035-020-02082-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke; there is still a lack of effective treatment. Microglia are a major component of the innate immune system, and they respond to acute brain injury by activating and forming classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotype. The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is considered to be the main participant in neuroinflammation. Recent evidence has shown that NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. Furthermore, previous studies have reported that NLRP3 inflammasome is mainly present in microglia, so we speculate that its activation may be strongly associated with microglial polarization. Many scholars have investigated the role of brain injury caused by NLRP3 inflammasome after ICH, but the precise operating mechanisms remain uncertain. This review summarized the activation mechanism of NLRP3 inflammasome after ICH and the possible mechanism of NLRP3 inflammasome promoting neuroinflammation and aggravating nerve injury and discussed the relevant potential therapeutic targets.
Collapse
|
10
|
Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci 2020; 13:1441. [PMID: 32038143 PMCID: PMC6985445 DOI: 10.3389/fnins.2019.01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with poor clinical outcome. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves a key role in inflammatory response, which may lead to endothelial cell injury and blood-brain barrier (BBB) disruption. Hydrogen (H2) is considered a neuroprotective antioxidant. This study was set out to explore whether hydrogen inhalation protects against SAH induced endothelial cell injury, BBB disruption, microthrombosis and vasospasm in rats. Methods: One hundred eighty-two male SD rats were used for the study. SAH was induced by endovascular perforation. H2 at a concentration of 3.3% was inhaled beginning at 0.5 h after SAH for duration of 30, 60 or 120 min, followed by single administration or once daily administration for 3 days. The temporal expression of NLRP3 and ASC in the brain was determined, with the effect of hydrogen inhalation evaluated. In addition, brain water content, oxidative stress markers, inflammasome, apoptotic markers, microthrombosis, and vasospasm were evaluated at 24 or 72 h after SAH. Results: The expression of NLRP3 and ASC were upregulated after SAH associated with elevated expression of MDA, 8-OHdG, 4-HNE, HO-1, TLR4/NF-κB, inflammatory and apoptotic makers. Hydrogen inhalation reduced the expression of these inflammatory and apoptotic makers in the vessels, brain edema, microthrombi formation, and vasospasm in rats with SAH relative to control. Hydrogen inhalation also improved short-term and long-term neurological recovery after SAH. Conclusion: Hydrogen inhalation can ameliorate oxidative stress related endothelial cells injury in the brain and improve neurobehavioral outcomes in rats following SAH. Mechanistically, the above beneficial effects might be related to, at least in part, the inhibition of activation of ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ji-Kai Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Li Y, Pan XD, Du QQ, Tang M, Huang LL, Zhao R, Yan C. The antitumor activity and mechanism of MCL3 in G422 glioblastoma. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_46_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
LeBaron TW, Laher I, Kura B, Slezak J. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1. Can J Physiol Pharmacol 2019; 97:797-807. [PMID: 30970215 DOI: 10.1139/cjpp-2019-0067] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 217 - 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Hirayama M, Ito M, Minato T, Yoritaka A, LeBaron TW, Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2'-deoxyguanine in Parkinson's disease. Med Gas Res 2019; 8:144-149. [PMID: 30713666 PMCID: PMC6352570 DOI: 10.4103/2045-9912.248264] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Hyposmia is one of the earliest and the most common symptoms in Parkinson's disease (PD). The benefits of hydrogen water on motor deficits have been reported in animal PD models and PD patients, but the effects of hydrogen gas on PD patients have not been studied. We evaluated the effect of inhalation of hydrogen gas on olfactory function, non-motor symptoms, activities of daily living, and urinary 8-hydroxy-2'-deoxyguanine (8-OHdG) levels by a randomized, double-blinded, placebo-controlled, crossover trial with an 8-week washout period in 20 patients with PD. Patients inhaled either ~1.2-1.4% hydrogen-air mixture or placebo for 10 minutes twice a day for 4 weeks. Inhalation of low dose hydrogen did not significantly influence the PD clinical parameters, but it did increase urinary 8-OHdG levels by 16%. This increase in 8-OHdG is markedly less than the over 300% increase in diabetes, and is more comparable to the increase after a bout of strenuous exercise. Although increased reactive oxygen species is often associated with toxicity and disease, they also play essential roles in mediating cytoprotective cellular adaptations in a process known as hormesis. Increases of oxidative stress by hydrogen have been previously reported, along with its ability to activate the Nrf2, NF-κB pathways, and heat shock responses. Although we did not observe any beneficial effect of hydrogen in our short trial, we propose that the increased 8-OHdG and other reported stress responses from hydrogen may indicate that its beneficial effects are partly or largely mediated by hormetic mechanisms. The study was approved by the ethics review committee of Nagoya University Graduate School of Medicine (approval number 2015-0295). The clinical trial was registered at the University Hospital Medical Information Network (identifier UMIN000019082).
Collapse
Affiliation(s)
- Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asako Yoritaka
- Department of Neurology, Juntendo University Koshigaya Hospital, Saitama, Japan
| | - Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Ropublic
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
15
|
Huang JL, Zhao BL, Manaenko A, Liu F, Sun XJ, Hu Q. Medical gases for stroke therapy: summary of progress 2015-2016. Med Gas Res 2017; 7:107-112. [PMID: 28744363 PMCID: PMC5510291 DOI: 10.4103/2045-9912.208516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a cerebrovascular disease with high mortality and morbidity. Despite extensive research, there are only a very limited number of therapeutic approaches suitable for treatment of stroke patients as yet. Mounting evidence has demonstrated that such gases as oxygen, hydrogen and hydrogen sulfide are able to provide neuroprotection after stroke. In this paper, we will focus on the recent two years’ progress in the development of gas therapies of stroke and in understanding the molecular mechanisms underlying protection induced by medical gases. We will also discuss the advantages and challenges of these approaches and provide information for future study.
Collapse
Affiliation(s)
- Jun-Long Huang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Bao-Lian Zhao
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Anatol Manaenko
- Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fan Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Jun Sun
- Department of Navy Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Dohi K, Satoh K, Miyamoto K, Momma S, Fukuda K, Higuchi R, Ohtaki H, Banks WA. Molecular hydrogen in the treatment of acute and chronic neurological conditions: mechanisms of protection and routes of administration. J Clin Biochem Nutr 2017; 61:1-5. [PMID: 28751802 PMCID: PMC5525017 DOI: 10.3164/jcbn.16-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress caused by reactive oxygen species is considered a major mediator of tissue and cell injuries in various neuronal conditions, including neurological emergencies and neurodegenerative diseases. Molecular hydrogen is well characterized as a scavenger of hydroxyl radicals and peroxynitrite. Recently, the neuroprotective effects of treatment with molecular hydrogen have been reported in both basic and clinical settings. Here, we review the effects of hydrogen therapy in acute neuronal conditions and neurodegenerative diseases. Hydrogen therapy administered in drinking water may be useful for the prevention of neurodegenerative diseases and for reducing the symptoms of acute neuronal conditions.
Collapse
Affiliation(s)
- Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.,Department of Emergency Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Rm 810A, Bldg 1 VAPSHCS/GRECC S-182, 1660 S, Columbian Way, Seattle, WA 98108, USA
| | - Kazue Satoh
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shusuke Momma
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenichiro Fukuda
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ryo Higuchi
- Department of Emergency, Disaster and Critical Care Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Williams A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Rm 810A, Bldg 1 VAPSHCS/GRECC S-182, 1660 S, Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
17
|
Xia J, Chen H, Yan J, Wu H, Wang H, Guo J, Zhang X, Zhang S, Zhao C, Chen Y. High-Purity Magnesium Staples Suppress Inflammatory Response in Rectal Anastomoses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9506-9515. [PMID: 28240546 DOI: 10.1021/acsami.7b00813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnesium-based materials are promising biodegradable implants, although the impact of magnesium on rectal anastomotic inflammation is poorly understood. Thus, we investigated the inflammatory effects of high-purity Mg staples in rectal anastomoses by in vivo luciferase reporter gene expression in transgenic mice, hematoxylin-eosin staining, immunohistochemistry, and Western blotting. As expected, strong IL-1β-mediated inflammation and inflammatory cell infiltration were observed 1 day after rectal anastomoses were stapled with high-purity Mg or Ti. However, inflammation and inflammatory cell infiltration decreased more robustly 4-7 days postoperation in tissues stapled with high-purity Mg. This rapid reduction in inflammation was confirmed by immunohistochemical analysis of IL-6 and TNF-α. Western blot also suggested that the reduced inflammatory response is due to suppressed TLR4/NF-κB signaling. In contrast, MCP-1, uPAR, and VEGF were abundantly expressed, in line with the notion that expression of these proteins is regulated by feedback between the VEGF and NF-κB pathways. In vitro expression of MCP-1, uPAR, and VEGF was also similarly high in primary rectal mucosal epithelial cells exposed to extracts from Mg staples, as measured by antibody array. Collectively, the results suggest that high-purity Mg staples suppress the inflammatory response during rectal anastomoses via TLR4/NF-κB and VEGF signaling.
Collapse
Affiliation(s)
- Jiazeng Xia
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Hui Chen
- Department of Pathology, Nanjing General Hospital , Jiangsu 210002, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, People's Republic of China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Hao Wang
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Jian Guo
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Company Ltd. , 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu 215513, People's Republic of China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yigang Chen
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University , Jiangsu 214002, People's Republic of China
| |
Collapse
|
18
|
Yan WM, Zhang L, Chen T, Zhao GH, Long P, An J, Zhang ZM. Effects of hydrogen-rich saline on endotoxin-induced uveitis. Med Gas Res 2017; 7:9-18. [PMID: 28480027 PMCID: PMC5402351 DOI: 10.4103/2045-9912.202905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The therapeutic effects of hydrogen-rich saline (HRS) have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU). In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX) group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS) to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS). Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration). Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH) and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS (P > 0.05), while DEX significantly reduced the inflammation reflected by the above two indicators (P < 0.05). The impaired retinal function of mild EIU induced by 1/8 mg/kg of LPS, showed by delay of peak time of b-wave of Dark adapted 3.0 electroretinogram, was not significantly restored by HRS (P > 0.05), while DEX had an obvious therapeutic effect (P < 0.05). However, HRS exerted an inhibition trend on elevation of protein in AqH of EIU induced by 1 mg/kg of LPS, and significantly reduced the increasing amount of protein in AqH of mild EIU induced by 1/8 mg/kg of LPS (P < 0.05). In conclusion, HRS could not obviously mitigate EIU in rats, while it could inhibit the elevation of AqH protein.
Collapse
Affiliation(s)
- Wei-ming Yan
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| | - Lei Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| | - Tao Chen
- Department of Health Service, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| | - Guan-hua Zhao
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| | - Pan Long
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zuo-ming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, Fourth Military University, Xi’an, Shaanxi Province, China
| |
Collapse
|
19
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis 2016; 7:e2416. [PMID: 27735947 PMCID: PMC5133967 DOI: 10.1038/cddis.2016.292] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that sirtuin 1 (SIRT1) is implicated in a wide range of cellular functions, such as oxidative stress, inflammation and apoptosis. The aim of this study was to investigate the change of SIRT1 in the brain after subarachnoid hemorrhage (SAH) and its role on SAH-induced early brain injury (EBI). In the first set of experiments, rats were randomly divided into sham group and SAH groups at 2, 6, 12, 24, 48 and 72 h. The expression of SIRT1 was evaluated by western blot analysis, immunohistochemistry and immunofluorescence. In another set of experiments, SIRT1-specific inhibitor (sirtinol) and activator (activator 3) were exploited to study the role of SIRT1 in SAH-induced EBI. It showed that the protein level of SIRT1 was markedly elevated at the early stage of SAH and peaked at 24 h after SAH. The expression of SIRT1 could be observed in neurons and microglia, and the enhanced SIRT1 was mainly located in neurons after SAH. Administration of sirtinol inhibited the expression and activation of SIRT1 pathways after SAH, while activator 3 enhanced the expression and activation of SIRT1 pathways after SAH. In addition, inhibition of SIRT1 could exacerbate forkhead transcription factors of the O class-, nuclear factor-kappa B- and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis, leading to aggravated brain injury after SAH. In contrast, activator 3 treatment could reduce forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative damage, neuroinflammation and neuronal apoptosis to protect against EBI. These results suggest that SIRT1 plays an important role in neuroprotection against EBI after SAH by deacetylation and subsequent inhibition of forkhead transcription factors of the O class-, nuclear factor-kappa B-, and p53-induced oxidative, inflammatory and apoptotic pathways. SIRT1 might be a new promising molecular target for SAH.
Collapse
|
21
|
The effect of subarachnoid erythrocyte lysate on brain injury: a preliminary study. Biosci Rep 2016; 36:BSR20160100. [PMID: 27279653 PMCID: PMC4945991 DOI: 10.1042/bsr20160100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/08/2016] [Indexed: 02/01/2023] Open
Abstract
We found that more severe brain injury was caused by subarachnoid erythrocyte lysate, and inflammation associated with Prx2 might be involved in mechanism of brain injury. Abundant erythrocytes remain and lyse partially in the subarachnoid space after severe subarachnoid haemorrhage (SAH). But the effect of subarachnoid erythrocyte lysate on brain injury is still not completely clear. In this study, autologous erythrocytes (the non-lysate group) and their lysate (the lysate group) were injected separately into the cistern magna of rabbits to induce a model of experimental SAH, although the control group received isotonic sodium chloride solution instead of erythrocyte solution. Results showed that vasospasm of the basilar artery was observed at 72 h after experimental SAH, but there was no significant difference between the non-lysate group and the lysate group. Brain injury was more severe in the lysate group than in the non-lysate group. Meanwhile, the levels of peroxiredoxin 2 (Prx2), IL-6 and TNF-α in brain cortex and in CSF were significantly higher in the lysate group than those in the non-lysate group. These results demonstrated that brain injury was more likely to be caused by erythrocyte lysate than by intact erythrocytes in subarachnoid space, and inflammation response positively correlated with Prx2 expression might be involved in mechanism of brain injury after SAH.
Collapse
|
22
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
24
|
Xie GB, Wang CX, Zhou CH, Li H, Zhang XS, Zhou XM, Zhang L, Hang CH, Zhou ML, Shi JX. Expression of Cytoplasmic Gelsolin in Rat Brain After Experimental Subarachnoid Hemorrhage. Cell Mol Neurobiol 2015; 35:723-31. [PMID: 25744577 PMCID: PMC11486246 DOI: 10.1007/s10571-015-0168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Convincing evidence indicates that apoptosis contributes to the unfavorable prognosis of subarachnoid hemorrhage (SAH), a significant cause of morbidity and case fatality throughout the world. Gelsolin (GSN) is a Ca(2+)-dependent actin filament severing, capping, and nucleating protein, as well as multifunctional regulator of cell structure and metabolism, including apoptosis. In the present study, we intended to investigate the expression pattern and cell distribution of GSN in rat brain after experimental SAH. GSN expression was examined in sham group and at 3, 6, 12 h, day 1 (1 day), 2, 3, 5, and 7 days after SAH by Western blot analysis as well as real-time polymerase chain reaction. Immunohistochemistry and immunofluorescence were performed to detect the localization of GSN. The level of GSN protein expression was significantly decreased in SAH group and reached a bottoming point on 1 day after SAH. GSN mRNA level was significantly decreased in SAH groups in comparison with the sham group, and reached a minimum value at 12 h after SAH. Immunohistochemistry showed that GSN was constitutively and obviously expressed in the cortex of the normal rat brain and significantly decreased in the rat cortex after SAH. In addition, immunofluorescence results revealed that GSN expression could be found in both neurons and microglias, as well as in glialfibrillary acidic protein-positive astrocytes. The decreased expression of GSN could mainly be found in neurons and astrocytes as well, and GSN-positive microglias showed different cell morphological characteristics. Interestingly, the protein and gene levels of GSN seemed to be constant in the rat hippocampus of sham and SAH groups. These findings suggested a potential role of GSN in the pathophysiology of the brain at the early stage of SAH.
Collapse
Affiliation(s)
- Guang-bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Chen-hui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Hua Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Xiang-sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Xiao-ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Chun-hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 Jiangsu Province China
| |
Collapse
|
25
|
Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, Zhao Q, Zhang J, Sheng J. Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-κB Pathway and NLRP3 Inflammasome. Mol Neurobiol 2015; 53:3462-3476. [PMID: 26091790 DOI: 10.1007/s12035-015-9242-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/26/2015] [Indexed: 01/10/2023]
Abstract
Early brain injury (EBI), highlighted with inflammation and apoptosis, occurring within 72 h after subarachnoid hemorrhage (SAH), is associated with the prognosis of SAH. Recent studies have revealed that hydrogen-rich saline (HS) exerted multiple neuroprotective properties in many neurological diseases including SAH, involved to anti-oxidative and anti-apoptotic effect. We have previously reported that HS could attenuate neuronal apoptosis as well as vasospasm. However, the underlying mechanism of HS on inflammation in SAH-induced EBI remains unclear. In this study, we explored the influence of HS on nuclear factor-κB (NF-κB) pathway and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome at early stage after SAH, by injecting HS intraperitoneally to SAH rats. One hundred and twenty-nine SD rats were randomly divided into four groups: sham group, SAH group, SAH+vehicle group, and SAH+HS group. SAH model was conducted using endovascular perforation method; all rats were sacrificed at 24 h after SAH. Protein level of pIκBα, cytosolic and nuclear p65, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, interleukin-1β (IL-1β), and cleaved caspase-3 were measured by western blot. mRNA level of IL-1β, interleukin-6 (IL-6), tumor necrosis factor-c (TNF-α) were evaluated by RT-PCR. Cellular injury and death was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Nissl staining, respectively. Our results showed that pIκBα, nuclear p65, NLRP3, ASC, caspase-1, IL-1β, cleaved caspase-3 proteins, as well as the mRNA of IL-1β, IL-6, and TNF-ɑ increased at 24 h after SAH, while cytosolic p65 decreased. TUNEL and Nissl staining presented severe cellular injury at 24 h post-SAH. However, after HS administration, the changes mentioned above were reversed. In conclusion, HS may inhibit inflammation in EBI and improve neurobehavioral outcome after SAH, partially via inactivation of NF-κB pathway and NLRP3 inflammasome. Graphical Abstract Schematic representation of the mechanism of HS-mediated anti-inflammatory effect in EBI after SAH. The NF-κB inflammatory pathway and NLRP3 inflammasome are involved in the anti-neuroinflammatory effect of HS post-SAH. SAH-induced oxidative stress enhances the activation of NF-κB, thus promoting the translocation of p65 subunit into nucleus and increasing the mRNA level of its downstream proinflammatory cytokines (IL-1β, IN-6, TNF-α) and NLRP3. Elevated expression of NLRP3 mRNA increases the assembly of NLRP3 inflammasome. In addition, oxidative stress after SAH stimulates the activation of NLRP3 inflammasome, therefore, promoting caspase-1 activation and the cleavage of pro-IL-1β into mature IL-1β. Finally, activation of NF-κB pathway and NLRP3 inflammasome contribute to the inflammation response and cellular injury in EBI after SAH. HS treatment reversed the detrimental effect mentioned above via inactivation of NF-κB pathway and NLRP3 inflammasome. NF-κB nuclear factor-κB, IκB inhibitor of NF-κB, IKK Iκ kinase, NLRP3 nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3, ASC apoptosis-associated speck-like protein containing a caspase recruitment domain.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sheng Tu
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xuejun Sun
- Department of Diving Medicine, The Second Military Medical University, Shanghai, 200433, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiong Zhao
- Department of Thoracic Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China. .,Brain Research Institute, Zhejiang University, Hangzhou, 310009, China.
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.,Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
26
|
Shen M, Zhang H, Yu C, Wang F, Sun X. A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine. Med Gas Res 2014; 4:17. [PMID: 25905011 PMCID: PMC4406336 DOI: 10.1186/2045-9912-4-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/28/2014] [Indexed: 01/29/2023] Open
Abstract
Hydrogen is the most abundant chemical element in the Universe, but is seldom regarded as a therapeutic agent. Recent evidence has shown that hydrogen is a potent antioxidative, antiapoptotic and anti-inflammatory agent and so may have potential medical applications in cells, tissues and organs. There are several methods to administer hydrogen, such as inhalation of hydrogen gas, aerosol inhalation of a hydrogen-rich solution, drinking hydrogen dissolved in water, injecting hydrogen-rich saline (HRS) and taking a hydrogen bath. Drinking hydrogen solution (saline/pure water/other solutions saturated with hydrogen) may be more practical in daily life and more suitable for daily consumption. This review summarizes the findings of recent studies on the use of hydrogen in emergency and critical care medicine using different disease models.
Collapse
Affiliation(s)
- Meihua Shen
- Department of Emergency, Shanghai Provincial Crops Hospital, Chinese People's Armed Police Forces, 831HongXu Road, Shanghai, 201103 PR China
| | - Hongying Zhang
- Department of Quality Management, General Hospital, Chinese Armed Police Force, 69YongDing Road, Beijing, 100039 PR China
| | - Congjun Yu
- Department of Emergency, Shanghai Provincial Crops Hospital, Chinese People's Armed Police Forces, 831HongXu Road, Shanghai, 201103 PR China
| | - Fan Wang
- Department of Medical Abministration, General Hospital, Chinese Armed Police Force, 69YongDing Road, Beijing, 100039 PR China
| | - Xuejun Sun
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, 800XiangYin Road, Shanghai, 200433 PR China
| |
Collapse
|
27
|
Takeuchi S, Mori K, Arimoto H, Fujii K, Nagatani K, Tomura S, Otani N, Osada H, Wada K. Effects of intravenous infusion of hydrogen-rich fluid combined with intra-cisternal infusion of magnesium sulfate in severe aneurysmal subarachnoid hemorrhage: study protocol for a randomized controlled trial. BMC Neurol 2014; 14:176. [PMID: 25201463 PMCID: PMC4172868 DOI: 10.1186/s12883-014-0176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background The failures of recent studies intended to prevent cerebral vasospasm have moved the focus of research into delayed cerebral ischemia away from cerebral artery constriction towards other mechanisms. Recent accumulating evidence has suggested that early brain injury is also involved in the development of delayed cerebral ischemia, and that hydrogen can prevent early brain injury. Therefore, we have established a combination therapy of intravenous hydrogen infusion and intra-cisternal magnesium sulfate infusion for the treatment of both early brain injury and cerebral vasospasm. The present randomized controlled clinical trial is designed to investigate the effects of this novel therapeutic strategy on the occurrence of cerebral vasospasm, delayed cerebral ischemia, and clinical outcomes after high-grade subarachnoid hemorrhage. Methods This study is a randomized, double-blind, placebo-controlled design to be conducted in two hospitals. A total of 450 patients with high-grade subarachnoid hemorrhage will be randomized to one of three arms: (i) Mg + H2 group, (ii) Mg group, and (iii) control group. Patients who are assigned to the Mg + H2 group will receive intra-cisternal magnesium sulfate infusion (2.5 mmol/L) at 20 mL/h for 14 days and intravenous hydrogen-rich fluid infusion (200 mL) twice a day for 14 days. Patients who are assigned to the Mg group will receive intra-cisternal magnesium sulfate infusion (2.5 mmol/L) at 20 mL/h for 14 days and intravenous normal glucose-electrolyte solution (200 mL) without added hydrogen twice a day for 14 days. Patients who are assigned to the control group will receive intra-cisternal Ringer solution without magnesium sulfate at 20 mL/h for 14 days and intravenous normal glucose-electrolyte solution (200 mL) without added hydrogen twice a day for 14 days. Primary outcome measures will be occurrence of delayed cerebral ischemia and cerebral vasospasm. Secondary outcome measures will be modified Rankin scale score at 3, 6, and 12 months and biochemical markers. Discussion The present protocol for a randomized, placebo-controlled study of intravenous hydrogen therapy with intra-cisternal magnesium infusion is expected to establish the efficacy and safety of this therapeutic strategy. Trial registration UMIN-CTR: UMIN000014696
Collapse
|
28
|
Hydrogen gas presents a promising therapeutic strategy for sepsis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:807635. [PMID: 24829918 PMCID: PMC4009185 DOI: 10.1155/2014/807635] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023]
Abstract
Sepsis is characterized by a severe inflammatory response to infection. It remains a major cause of morbidity and mortality in critically ill patients despite developments in monitoring devices, diagnostic tools, and new therapeutic options. Recently, some studies have found that molecular hydrogen is a new therapeutic gas. Our studies have found that hydrogen gas can improve the survival and organ damage in mice and rats with cecal ligation and puncture, zymosan, and lipopolysaccharide-induced sepsis. The mechanisms are associated with the regulation of oxidative stress, inflammatory response, and apoptosis, which might be through NF- κ B and Nrf2/HO-1 signaling pathway. In this paper, we summarized the progress of hydrogen treatment in sepsis.
Collapse
|