1
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 PMCID: PMC12051134 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Lopez-Ortiz AO, Eyo UB. Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem 2024; 168:3599-3614. [PMID: 37985374 PMCID: PMC11102936 DOI: 10.1111/jnc.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Glia have emerged as important architects of central nervous system (CNS) development and maintenance. While traditionally glial contributions to CNS development and maintenance have been studied independently, there is growing evidence that either suggests or documents that glia may act in coordinated manners to effect developmental patterning and homeostatic functions in the CNS. In this review, we focus on astrocytes, the most abundant glia in the CNS, and microglia, the earliest glia to colonize the CNS highlighting research that documents either suggestive or established coordinated actions by these glial cells in various CNS processes including cell and/or debris clearance, neuronal survival and morphogenesis, synaptic maturation, and circuit function, angio-/vasculogenesis, myelination, and neurotransmission. Some molecular mechanisms underlying these processes that have been identified are also described. Throughout, we categorize the available evidence as either suggestive or established interactions between microglia and astrocytes in the regulation of the respective process and raise possible avenues for further research. We conclude indicating that a better understanding of coordinated astrocyte-microglial interactions in the developing and mature brain holds promise for developing effective therapies for brain pathologies where these processes are perturbed.
Collapse
Affiliation(s)
- Aída Oryza Lopez-Ortiz
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Reid KM, Brown GC. LRPAP1 is released from activated microglia and inhibits microglial phagocytosis and amyloid beta aggregation. Front Immunol 2023; 14:1286474. [PMID: 38035103 PMCID: PMC10687467 DOI: 10.3389/fimmu.2023.1286474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1), also known as receptor associated protein (RAP), is an endoplasmic reticulum (ER) chaperone and inhibitor of LDL receptor related protein 1 (LRP1) and related receptors. These receptors have dozens of physiological ligands and cell functions, but it is not known whether cells release LRPAP1 physiologically at levels that regulate these receptors and cell functions. We used mouse BV-2 and human CHME3 microglial cell lines, and found that microglia released nanomolar levels of LRPAP1 when inflammatory activated by lipopolysaccharide or when ER stressed by tunicamycin. LRPAP1 was found on the surface of live activated and non-activated microglia, and anti-LRPAP1 antibodies induced internalization. Addition of 10 nM LRPAP1 inhibited microglial phagocytosis of isolated synapses and cells, and the uptake of Aβ. LRPAP1 also inhibited Aβ aggregation in vitro. Thus, activated and stressed microglia release LRPAP1 levels that can inhibit phagocytosis, Aβ uptake and Aβ aggregation. We conclude that LRPAP1 release may regulate microglial functions and Aβ pathology, and more generally that extracellular LRPAP1 may be a physiological and pathological regulator of a wide range of cell functions.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Platelet-Derived Drug Targets and Biomarkers of Ischemic Stroke-The First Dynamic Human LC-MS Proteomic Study. J Clin Med 2022; 11:jcm11051198. [PMID: 35268287 PMCID: PMC8911047 DOI: 10.3390/jcm11051198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Objective: The aim of this dynamic LC-MS (liquid chromatography and mass spectrometry) human platelet proteomic study was to identify the potential proteins candidates for biomarkers of acute ischemic stroke (AIS), their changes during the acute phase of stroke and to define potential novel drug targets. (2) Methods: A total of 32 patients (18–80 years old) were investigated that presented symptoms of AIS lasting less than 24 h from the onset, confirmed by neurological examination and/or new cerebral ischemia visualized in the CT (computed-tomography) scans. The analysis of platelet proteome was performed using LC-MS at baseline, and then on the third and seventh day from the onset of symptoms. The control group was demographically matched without any clinical signs of acute brain injury. (3) Results: The differences between platelets, at 24 h after first symptoms of stroke subjects and the control group included: β-amyloid A4 and amyloid-like protein 2, coactosin-like protein, thymidine phosphorylase 4 (TYMP-4), interferon regulatory factor 7 (IRF7), vitamin K-dependent protein S, histone proteins (H2A type 1 and 1-A, H2A types 2B and J, H2Av, -z, and -x), and platelet basic protein. The dynamic changes in the platelet protein concentration involved thrombospondin-1, thrombospondin-2, filamin A, B, and C. (4) Conclusions: This is the first human dynamic LC-MS proteomic study that differentiates platelet proteome in the acute phase of ischemic stroke in time series and compares the results with healthy controls. Identified proteins may be considered as future markers of ischemic stroke or therapeutic drug targets. Thymidine phosphorylase 4 (TYMP-4) holds promise as an interesting drug target in the management or prevention of ischemic stroke.
Collapse
|
5
|
Kolos EA, Korzhevskii DE. Changes in the Microglial Population during Spinal Cord Formation Indicate an Involvement of Microglia in the Regulation of Neuronogenesis and Synaptogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
7
|
Fujita Y, Yamashita T. Mechanisms and significance of microglia-axon interactions in physiological and pathophysiological conditions. Cell Mol Life Sci 2021; 78:3907-3919. [PMID: 33507328 PMCID: PMC11072252 DOI: 10.1007/s00018-021-03758-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the resident immune cells of the central nervous system, and are important for cellular processes. In addition to their classical roles in pathophysiological conditions, these immune cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Microglia have been shown to contact neurons at various points, including the dendrites, cell bodies, synapses, and axons, and support various developmental functions, such as neuronal survival, axon elongation, and maturation of the synaptic circuit. This review summarizes the current knowledge regarding the roles of microglia in brain development, with particular emphasis on microglia-axon interactions. We will review recent findings regarding the functions and signaling pathways involved in the reciprocal interactions between microglia and neurons. Moreover, as these interactions are altered in disease and injury conditions, we also discuss the effect and alteration of microglia-axon interactions in disease progression and the potential role of microglia in developmental brain disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Neuroprotective function of microglia in the developing brain. Neuronal Signal 2021; 5:NS20200024. [PMID: 33532089 PMCID: PMC7823182 DOI: 10.1042/ns20200024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and are important for immune processes. Besides their classical roles in pathological conditions, these cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Recent evidence revealed their role in healthy brain homeostasis, including the regulation of neurogenesis, cell survival, and synapse maturation and elimination, especially in the developing brain. In this review, we summarize the current state of knowledge on microglia in brain development, with a focus on their neuroprotective function. We will also discuss how microglial dysfunction may lead to the impairment of brain function, thereby contributing to disease development.
Collapse
|
9
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
10
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
11
|
A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder. Neurosci Biobehav Rev 2019; 107:360-369. [PMID: 31550452 DOI: 10.1016/j.neubiorev.2019.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to change synaptic plasticity. This review focuses on three components of synaptic plasticity: spine density, brain-derived neurotrophic factor (BDNF) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression. Their roles in addiction, stress, and development will be reviewed, as well as possible mechanisms by which microglia could regulate their function. Potential links between stress, vulnerability to addiction, and microglial activity will be explored.
Collapse
|
12
|
Activation of microglia in acute hippocampal slices affects activity-dependent long-term potentiation and synaptic tagging and capture in area CA1. Neurobiol Learn Mem 2019; 163:107039. [DOI: 10.1016/j.nlm.2019.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
13
|
Bray ER, Yungher BJ, Levay K, Ribeiro M, Dvoryanchikov G, Ayupe AC, Thakor K, Marks V, Randolph M, Danzi MC, Schmidt TM, Chaudhari N, Lemmon VP, Hattar S, Park KK. Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron 2019; 103:642-657.e7. [PMID: 31255486 DOI: 10.1016/j.neuron.2019.05.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.
Collapse
Affiliation(s)
- Eric R Bray
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Benjamin J Yungher
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcio Ribeiro
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gennady Dvoryanchikov
- Department of Physiology & Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kinjal Thakor
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Victoria Marks
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Randolph
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nirupa Chaudhari
- Department of Physiology & Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 767] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Rodríguez-Iglesias N, Sierra A, Valero J. Rewiring of Memory Circuits: Connecting Adult Newborn Neurons With the Help of Microglia. Front Cell Dev Biol 2019; 7:24. [PMID: 30891446 PMCID: PMC6411767 DOI: 10.3389/fcell.2019.00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
New neurons are continuously generated from stem cells and integrated into the adult hippocampal circuitry, contributing to memory function. Several environmental, cellular, and molecular factors regulate the formation of new neurons, but the mechanisms that govern their incorporation into memory circuits are less explored. Herein we will focus on microglia, the resident immune cells of the CNS, which modulate the production of new neurons in the adult hippocampus and are also well suited to participate in their circuit integration. Microglia may contribute to the refinement of brain circuits during development and exert a role in physiological and pathological conditions by regulating axonal and dendritic growth; promoting the formation, elimination, and relocation of synapses; modulating excitatory synaptic maturation; and participating in functional synaptic plasticity. Importantly, microglia are able to sense subtle changes in their environment and may use this information to differently modulate hippocampal wiring, ultimately impacting on memory function. Deciphering the role of microglia in hippocampal circuitry constant rewiring will help to better understand the influence of microglia on memory function.
Collapse
Affiliation(s)
- Noelia Rodríguez-Iglesias
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amanda Sierra
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
16
|
Konishi H, Kiyama H, Ueno M. Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci 2018; 77:18-25. [DOI: 10.1016/j.ijdevneu.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological DisordersBrain Research InstituteNiigata UniversityNiigata951‐8585Japan
| |
Collapse
|
17
|
Abstract
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Sean M. Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
18
|
Chen S, Tisch N, Kegel M, Yerbes R, Hermann R, Hudalla H, Zuliani C, Gülcüler GS, Zwadlo K, von Engelhardt J, Ruiz de Almodóvar C, Martin-Villalba A. CNS Macrophages Control Neurovascular Development via CD95L. Cell Rep 2018; 19:1378-1393. [PMID: 28514658 DOI: 10.1016/j.celrep.2017.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.
Collapse
Affiliation(s)
- Si Chen
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Nathalie Tisch
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Rosario Yerbes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Robert Hermann
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Hannes Hudalla
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Cecilia Zuliani
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Gülce Sila Gülcüler
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Klara Zwadlo
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
20
|
Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol 2017; 149-150:1-20. [DOI: 10.1016/j.pneurobio.2017.01.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
|
21
|
Li S, Gu X, Yi S. The Regulatory Effects of Transforming Growth Factor-β on Nerve Regeneration. Cell Transplant 2016; 26:381-394. [PMID: 27983926 DOI: 10.3727/096368916x693824] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGF-β) belongs to a group of pleiotropic cytokines that are involved in a variety of biological processes, such as inflammation and immune reactions, cellular phenotype transition, extracellular matrix (ECM) deposition, and epithelial-mesenchymal transition. TGF-β is widely distributed throughout the body, including the nervous system. Following injury to the nervous system, TGF-β regulates the behavior of neurons and glial cells and thus mediates the regenerative process. In the current article, we reviewed the production, activation, as well as the signaling pathway of TGF-β. We also described altered expression patterns of TGF-β in the nervous system after nerve injury and the regulatory effects of TGF-β on nerve repair and regeneration in many aspects, including inflammation and immune response, phenotypic modulation of neural cells, neurite outgrowth, scar formation, and modulation of neurotrophic factors. The diverse biological actions of TGF-β suggest that it may become a potential therapeutic target for the treatment of nerve injury and regeneration.
Collapse
|
22
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
23
|
Delpech JC, Wei L, Hao J, Yu X, Madore C, Butovsky O, Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun 2016; 57:79-93. [PMID: 27301858 PMCID: PMC5010940 DOI: 10.1016/j.bbi.2016.06.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022] Open
Abstract
Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Xiaoqing Yu
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Charlotte Madore
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oleg Butovsky
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Frost JL, Schafer DP. Microglia: Architects of the Developing Nervous System. Trends Cell Biol 2016; 26:587-597. [PMID: 27004698 DOI: 10.1016/j.tcb.2016.02.006] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
Abstract
Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
25
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
26
|
Manitz MP, Plümper J, Demir S, Ahrens M, Eßlinger M, Wachholz S, Eisenacher M, Juckel G, Friebe A. Flow cytometric characterization of microglia in the offspring of PolyI:C treated mice. Brain Res 2016; 1636:172-182. [PMID: 26872595 DOI: 10.1016/j.brainres.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The neuropathology of schizophrenia has been reported to be closely associated with microglial activation. In a previous study, using the prenatal PolyI:C schizophrenia animal model, we showed an increase in cell numbers and a reduction in microglial branching in 30-day-old PolyI:C descendants, which suggests that there is microglial activation during adolescence. To provide more information about the activation state, we aimed to examine the expression levels of Iba1, which was reported to be up-regulated in activated microglia. We used a flow cytometric approach and investigated CD11b and CD45, two additional markers for the identification of microglial cells. We demonstrated that intracellular staining against Iba1 can be used as a reliable flow cytometric method for identification of microglial cells. Prenatal PolyI:C treatment had long-term effects on CD11b and CD45 expression. It also resulted in a trend towards increased Iba1 expression. Imbalance in CD11b, CD45, and Iba1 expression might contribute to impaired synaptic surveillance and enhanced activation/inflammatory activity of microglia in adult offspring.
Collapse
Affiliation(s)
- Marie Pierre Manitz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Jennifer Plümper
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany
| | - Seray Demir
- Department of Neuroimmunology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Manuela Eßlinger
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Simone Wachholz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Astrid Friebe
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| |
Collapse
|
27
|
Prince D, Gu F, Parada I. Antiepileptogenic repair of excitatory and inhibitory synaptic connectivity after neocortical trauma. PROGRESS IN BRAIN RESEARCH 2016; 226:209-27. [DOI: 10.1016/bs.pbr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Risher ML, Sexton HG, Risher WC, Wilson WA, Fleming RL, Madison RD, Moore SD, Eroglu C, Swartzwelder HS. Adolescent Intermittent Alcohol Exposure: Dysregulation of Thrombospondins and Synapse Formation are Associated with Decreased Neuronal Density in the Adult Hippocampus. Alcohol Clin Exp Res 2015; 39:2403-13. [PMID: 26537975 PMCID: PMC4712076 DOI: 10.1111/acer.12913] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.
Collapse
Affiliation(s)
- Mary-Louise Risher
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Hannah G Sexton
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - W Christopher Risher
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Wilkie A Wilson
- Social Sciences Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Rebekah L Fleming
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Roger D Madison
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott D Moore
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - H Scott Swartzwelder
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Psychology and Neuroscience, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
29
|
Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harb Perspect Biol 2015; 7:a020545. [PMID: 26187728 DOI: 10.1101/cshperspect.a020545] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nervous system comprises a remarkably diverse and complex network of different cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in the spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS and highlight exciting new work in the field that has identified roles for these cells in CNS development, maintenance, and plasticity.
Collapse
|
30
|
Bilimoria PM, Stevens B. Microglia function during brain development: New insights from animal models. Brain Res 2014; 1617:7-17. [PMID: 25463024 DOI: 10.1016/j.brainres.2014.11.032] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/15/2022]
Abstract
The role of microglia in healthy brains is just beginning to receive notice. Recent studies have revealed that these phagocytic cells control the patterning and wiring of the developing central nervous system (CNS) by regulating, amongst many other processes, programmed cell death, activity-dependent synaptic pruning and synapse maturation. Microglia also play important roles in the mature brain and have demonstrated effects on behavior. Converging evidence from human and mouse studies together raise questions as to the role of microglia in disorders of brain development such as autism and, schizophrenia. In this review, we summarize a number of major findings regarding the role of microglia in brain development and highlight some key questions and avenues for future study. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Parizad M Bilimoria
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children׳s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children׳s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014; 45:168-82. [DOI: 10.1016/j.neubiorev.2014.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023]
|
32
|
Andresen L, Hampton D, Taylor-Weiner A, Morel L, Yang Y, Maguire J, Dulla CG. Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiol Dis 2014; 71:305-16. [PMID: 25158291 DOI: 10.1016/j.nbd.2014.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 11/15/2022] Open
Abstract
Developmental cortical malformations are associated with a high incidence of drug-resistant epilepsy. The underlying epileptogenic mechanisms, however, are poorly understood. In rodents, cortical malformations can be modeled using neonatal freeze-lesion (FL), which has been shown to cause in vitro cortical hyperexcitability. Here, we investigated the therapeutic potential of gabapentin, a clinically used anticonvulsant and analgesic, in preventing FL-induced in vitro and in vivo hyperexcitability. Gabapentin has been shown to disrupt the interaction of thrombospondin (TSP) with α2δ-1, an auxiliary calcium channel subunit. TSP/α2δ-1 signaling has been shown to drive the formation of excitatory synapses during cortical development and following injury. Gabapentin has been reported to have neuroprotective and anti-epileptogenic effects in other models associated with increased TSP expression and reactive astrocytosis. We found that both TSP and α2δ-1 were transiently upregulated following neonatal FL. We therefore designed a one-week GBP treatment paradigm to block TSP/α2δ-1 signaling during the period of their upregulation. GBP treatment prevented epileptiform activity following FL, as assessed by both glutamate biosensor imaging and field potential recording. GBP also attenuated FL-induced increases in mEPSC frequency at both P7 and 28. Additionally, GBP treated animals had decreased in vivo kainic acid (KA)-induced seizure activity. Taken together these results suggest gabapentin treatment immediately after FL can prevent the formation of a hyperexcitable network and may have therapeutic potential to minimize epileptogenic processes associated with developmental cortical malformations.
Collapse
Affiliation(s)
- Lauren Andresen
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA; Neuroscience Program, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, SC201, Boston, MA, USA
| | - David Hampton
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA
| | | | - Lydie Morel
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, SC201, Boston, MA, USA
| |
Collapse
|
33
|
Ueno M, Yamashita T. Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr Opin Neurobiol 2014; 27:8-15. [PMID: 24607651 DOI: 10.1016/j.conb.2014.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/14/2022]
Abstract
The developing brain employs multi-step processes to construct neural circuitry. Recent studies have highlighted that microglia, traditionally known to be the resident immune cells in the brain, have essential roles in these processes, which range from neurogenesis to establishing synaptic connections. Microglia play bidirectional roles for maintaining proper circuitry: eliminating unnecessary cells, axons, and synapses, while supporting the neighboring ones. Although these processes are performed in different parts of the neuron, similar molecular mechanisms are possibly involved. This paper reviews recent progress on the knowledge of the roles of microglia in brain development, and further discusses the application of this knowledge in therapies for brain disorders and injuries.
Collapse
Affiliation(s)
- Masaki Ueno
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
34
|
Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 2014; 39:1551-7. [DOI: 10.1111/ejn.12508] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Lorena Pont-Lezica
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| | - Wouter Beumer
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| | - Hemmo Drexhage
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Marjan Versnel
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Alain Bessis
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| |
Collapse
|
35
|
Abstract
Synaptic plasticity critically depends on reciprocal interactions between neurons and glia. Among glial cells, microglia represent approximately 10% of the total brain cell population serve as the brain’s resident macrophage, and help to modulate neural activity. Because of their special role in the brain’s immune response, microglia are involved in the pathological progression of neurodegenerative disorders such as Alzheimer’s disease (AD). However, microglia also are surveyors of the brain’s health and continuously contact dendritic spines to regulate structural synaptic changes. This review summarizes our current understanding of neuronal-microglial signals that affect neural function at the synapse. Here, we examine the role of microglia in neuronal synapses in pathological brains and specifically focus on in vivo studies using 2-photon microscopy. Furthermore, because the role of microglia in AD progression is controversial, we outline the interaction between neurons and microglia in pathological conditions such as AD.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
36
|
Abstract
Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, MD C1-04, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
37
|
Béchade C, Cantaut-Belarif Y, Bessis A. Microglial control of neuronal activity. Front Cell Neurosci 2013; 7:32. [PMID: 23543873 PMCID: PMC3610058 DOI: 10.3389/fncel.2013.00032] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/13/2013] [Indexed: 01/27/2023] Open
Abstract
Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However, recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.
Collapse
Affiliation(s)
- Catherine Béchade
- Institut de Biologie, Ecole Normale Supérieure, Inserm U1025, CNRS UMR8197 Paris, France
| | | | | |
Collapse
|
38
|
Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, Steiner J, Connor TJ, Harkin A, Versnel MA, Drexhage HA. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012; 92:959-75. [PMID: 22875882 DOI: 10.1189/jlb.0212100] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction of monocyte/macrophage-related cytokines) in patients with bipolar disorder, major depressive disorder, and schizophrenia. These data are strengthened by observations in animal models, such as the MIA models, the chronic stress models, and the NOD mouse model. In these animal models of depressive-, anxiety-, and schizophrenia-like behavior, similar activations of microglia and circulating monocytes can be found. These animal models also make in-depth pathogenic studies possible and show that microglia activation impacts neuronal development and function in brain areas congruent with the altered depressive and schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012; 33:191-206. [PMID: 22322212 DOI: 10.1016/j.neuro.2012.01.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
Microglia are a heterogenous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
40
|
Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012; 31:170-7. [PMID: 22285841 DOI: 10.1016/j.matbio.2012.01.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.
Collapse
Affiliation(s)
- W Christopher Risher
- Cell Biology Department, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
41
|
Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A. Physiological roles of microglia during development. J Neurochem 2011; 119:901-8. [PMID: 21951310 DOI: 10.1111/j.1471-4159.2011.07504.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In all the species examined thus far, the behavior of microglia during development appears to be highly stereotyped. This reproducibility supports the notion that these cells have a physiological role in development. Microglia are macrophages that migrate from the yolk sac and colonize the central nervous system early during development. The first invading yolk-sac macrophages are highly proliferative and their role has not yet been addressed. At later developmental stages, microglia can be found throughout the brain and tend to preferentially reside at specific locations that are often associated with known developmental processes. Thus, it appears that microglia concentrate in areas of cell death, in proximity of developing blood vessels, in the marginal layer, which contains developing axon fascicles, and in close association with radial glial cells. This review describes the main features of brain colonization by microglia and discusses the possible physiological roles of these cells during development.
Collapse
Affiliation(s)
- Lorena Pont-Lezica
- Institut de Biologie de l'Ecole Normale Supérieure, INSERM 1024 - CNRS 8197, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Ueno M, Yamashita T. Strategies for regenerating injured axons after spinal cord injury - insights from brain development. Biologics 2011; 2:253-64. [PMID: 19707358 PMCID: PMC2721354 DOI: 10.2147/btt.s2715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axonal regeneration does not occur easily after an adult central nervous system (CNS) injury. Various attempts have partially succeeded in promoting axonal regeneration after the spinal cord injury (SCI). Interestingly, several recent therapeutic concepts have emerged from or been tightly linked to the researches on brain development. In a developing brain, remarkable and dynamic axonal elongation and sprouting occur even after the injury; this finding is essential to the development of a therapy for SCI. In this review, we overview the revealed mechanism of axonal tract formation and plasticity in the developing brain and compare the differences between a developing brain and a lesion site in an adult brain. One of the differences is that mature glial cells participate in the repair process in the case of adult injuries. Interestingly, these cells express inhibitory molecules that impede axonal regeneration such as myelin-associated proteins and the repulsive guidance molecules found originally in the developing brain for navigating axons to specific routes. Some reports have clearly elucidated that any treatment designed to suppress these inhibitory cues is beneficial for promoting regeneration and plasticity after an injury. Thus, understanding the developmental process will provide us with an important clue for designing therapeutic strategies for recovery from SCI.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | |
Collapse
|
43
|
Leach JB, Achyuta AKH, Murthy SK. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology. FRONTIERS IN NEUROENGINEERING 2010; 2:18. [PMID: 20161810 PMCID: PMC2821180 DOI: 10.3389/neuro.16.018.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.
Collapse
Affiliation(s)
- Jennie B. Leach
- Department of Chemical and Biochemical Engineering, University of MarylandBaltimore, MD, USA
| | | | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
44
|
Abstract
Cytokines are pleotrophic proteins that coordinate the host response to infection as well as mediate normal, ongoing signaling between cells of nonimmune tissues, including the nervous system. As a consequence of this dual role, cytokines induced in response to maternal infection or prenatal hypoxia can profoundly impact fetal neurodevelopment. The neurodevelopmental roles of individual cytokine signaling pathways are being elucidated through gain- and loss-of-function studies in cell culture and model organisms. We review this work with a particular emphasis on studies where cytokines, their receptors, or components of their signaling pathways have been altered in vivo. The extensive and diverse requirements for properly regulated cytokine signaling during normal nervous system development revealed by these studies sets the foundation for ongoing and future work aimed at understanding how cytokines induced normally and pathologically during critical stages of fetal development alter nervous system function and behavior later in life.
Collapse
Affiliation(s)
- Benjamin E Deverman
- Division of Biology, California Institute of Technology, 1200 East California Boulevard M/C 216-76, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Yu K, Ge J, Summers JB, Li F, Liu X, Ma P, Kaminski J, Zhuang J. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One 2008; 3:e2470. [PMID: 18575624 PMCID: PMC2430538 DOI: 10.1371/journal.pone.0002470] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 05/16/2008] [Indexed: 01/30/2023] Open
Abstract
Background Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. Methods and Findings The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-β expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-β in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. Conclusions Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair.
Collapse
Affiliation(s)
- Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - James Bradley Summers
- Department of Radiology, University of South Alabama, Mobile, Alabama, United States of America
| | - Fan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ping Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph Kaminski
- Department of Radiology, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (JK); (JZ)
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail: (JK); (JZ)
| |
Collapse
|
46
|
Imai M, Watanabe M, Suyama K, Osada T, Sakai D, Kawada H, Matsumae M, Mochida J. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J Neurosurg Spine 2008; 8:58-66. [PMID: 18173348 DOI: 10.3171/spi-08/01/058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Inhibition of remyelination is part of the complex problem of persistent dysfunction after spinal cord injury (SCI), and residual myelin debris may be a factor that inhibits remyelination. Phagocytosis by microglial cells and by macrophages that migrate from blood vessels plays a major role in the clearance of myelin debris. The object of this study was to investigate the mechanisms underlying the failure of significant remyelination after SCI. METHODS The authors investigated macrophage recruitment and related factors in rats by comparing a contusion model (representing contusive SCI with residual myelin debris and failure of remyelination) with a model consisting of chemical demyelination by lysophosphatidylcholine (representing multiple sclerosis with early clearance of myelin debris and remyelination). The origin of infiltrating macrophages was investigated using mice transplanted with bone marrow cells from green fluorescent protein-transfected mice. The changes in levels of residual myelin debris and the infiltration of activated macrophages in demyelinated lesions were investigated by immunostaining at 2, 4, and 7 days postinjury. To investigate various factors that might be involved, the authors also investigated gene expression of macrophage chemotactic factors and adhesion factors. RESULTS Activated macrophages coexpressing green fluorescent protein constituted the major cell population in the lesions, indicating that the macrophages in both models were mainly derived from the bone marrow, and that very few were derived from the intrinsic microglia. Immunostaining showed that in the contusion model, myelin debris persisted for a long period, and the infiltration of macrophages was significantly delayed. Among the chemotactic factors, the levels of monocyte chemoattractant protein-1 and granulocyte-macrophage colony-stimulating factor were lower in the contusion model at 2 and 4 days postinjury. CONCLUSIONS The results suggest that the delayed infiltration of activated macrophages is related to persistence of myelin debris after contusive SCI, resulting in the inhibition of remyelination.
Collapse
Affiliation(s)
- Masaaki Imai
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008; 209:294-301. [PMID: 17617407 PMCID: PMC2268907 DOI: 10.1016/j.expneurol.2007.05.014] [Citation(s) in RCA: 770] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022]
Abstract
Spinal cord and brain injuries lead to complex cellular and molecular interactions within the central nervous system in an attempt to repair the initial tissue damage. Many studies have illustrated the importance of the glial cell response to injury, and the influences of inflammation and wound healing processes on the overall morbidity and permanent disability that result. The abortive attempts of neuronal regeneration after spinal cord injury are influenced by inflammatory cell activation, reactive astrogliosis and the production of both growth promoting and inhibitory extracellular molecules. Despite the historical perspective that the glial scar was a mechanical barrier to regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Unlike myelin associated inhibitory molecules, which remain at largely static levels before and after central nervous system trauma, inhibitory extracellular matrix molecules are dramatically upregulated during the inflammatory stages after injury providing a window of opportunity for the delivery of candidate therapeutic interventions. While high dose methylprednisolone steroid therapy alone has not proved to be the solution to this difficult clinical problem, other strategies for modulating inflammation and changing the make up of inhibitory molecules in the extracellular matrix are providing robust evidence that rehabilitation after spinal cord and brain injury has the potential to significantly change the outcome for what was once thought to be permanent disability.
Collapse
Affiliation(s)
- Michael T Fitch
- Department of Emergency Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
48
|
Kaur C, Dheen ST, Ling EA. From blood to brain: amoeboid microglial cell, a nascent macrophage and its functions in developing brain. Acta Pharmacol Sin 2007; 28:1087-96. [PMID: 17640468 DOI: 10.1111/j.1745-7254.2007.00625.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amoeboid microglial cells (AMC) in the developing brain are active macrophages. The macrophagic nature of these cells has been demonstrated by many methods, such as the localization of various hydrolytic enzymes and the presence of complement type 3 surface receptors in them. More importantly is the direct visualization of these cells engaged in the phagocytosis of degenerating cells at the ultrastructural level. Further evidence of them being active macrophages is the avid internalization of tracers administered by the intravenous or intraperitoneal routes in developing rats. The potential involvement of AMC in immune functions is supported by the induced expression of major histocompatibility complex class I and II antigens on them when challenged by lipopolysaccharide or interferon-gamma. Immunosuppressive drugs, such as glucocorticoids and immune function-enhancing drugs like melatonin, affect the expression of surface receptors and antigens and the release of cytokines by AMC. Recent studies in our laboratory have shown the expression of insulin-like growth factors, endothelins, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and N-methyl-D-asparate receptors. This along with the release of chemokines, such as stromal derived factor-1a and monocyte chemoattractant protein-1, suggests multiple functional roles of AMC in early brain development.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | |
Collapse
|
49
|
Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 2007; 4:7. [PMID: 17291356 PMCID: PMC1805428 DOI: 10.1186/1742-2094-4-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/11/2007] [Indexed: 02/07/2023] Open
Abstract
Progranulin (PGRN) is a pleiotropic protein that has gained the attention of the neuroscience community with recent discoveries of mutations in the gene for PGRN that cause frontotemporal lobar degeneration (FTLD). Pathogenic mutations in PGRN result in null alleles, and the disease is likely the result of haploinsufficiency. Little is known about the normal function of PGRN in the central nervous system apart from a role in brain development. It is expressed by microglia and neurons. In the periphery, PGRN is involved in wound repair and inflammation. High PGRN expression has been associated with more aggressive growth of various tumors. The properties of full length PGRN are distinct from those of proteolytically derived peptides, referred to as granulins (GRNs). While PGRN has trophic properties, GRNs are more akin to inflammatory mediators such as cytokines. Loss of the neurotrophic properties of PGRN may play a role in selective neuronal degeneration in FTLD, but neuroinflammation may also be important. Gene expression studies suggest that PGRN is up-regulated in a variety of neuroinflammatory conditions, and increased PGRN expression by microglia may play a pivotal role in the response to brain injury, neuroinflammation and neurodegeneration.
Collapse
|
50
|
Cáceres M, Suwyn C, Maddox M, Thomas JW, Preuss TM. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. ACTA ACUST UNITED AC 2006; 17:2312-21. [PMID: 17182969 DOI: 10.1093/cercor/bhl140] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thrombospondins are extracellular-matrix glycoproteins implicated in the control of synaptogenesis and neurite growth. Previous microarray studies suggested that one gene of this family, thrombospondin 4 (THBS4), was upregulated during human brain evolution. Using independent techniques to examine thrombospondin expression patterns in adult brain samples, we report approximately 6-fold and approximately 2-fold greater expression of THBS4 and THBS2 messenger RNA (mRNA), respectively, in human cerebral cortex compared with chimpanzees and macaques, with corresponding differences in protein levels. In humans and chimpanzees, thrombospondin expression differences were observed in the forebrain (cortex and caudate), whereas the cerebellum and most nonbrain tissues exhibited similar levels of the 2 mRNAs. Histological examination revealed THBS4 mRNA and protein expression in numerous pyramidal and glial cells in the 3 species but humans also exhibited very prominent immunostaining of the synapse-rich cortical neuropil. In humans, additionally, THBS4 antibodies labeled beta-amyloid containing plaques in Alzheimer's cases and some control cases. This is the first detailed characterization of gene-expression changes in human evolution that involve specific brain regions, including portions of cerebral cortex. Increased expression of thrombospondins in human brain evolution could result in changes in synaptic organization and plasticity, and contribute to the distinctive cognitive abilities of humans, as well as to our unique vulnerability to neurodegenerative disease.
Collapse
Affiliation(s)
- Mario Cáceres
- Division of Neuroscience and Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|