1
|
Reeves RA, Wu Y, Hanna EL, Holmes RE, Chiaramonti AM, Nadeau EK, Lin Z, Westbrook PA, Hefter GD, Walsh RC, Barfield WR, Pellegrini VD. Cigarette Smoke Exposure Impairs Fracture Healing in a Rat Model: Preferential Impairment of Endochondral Over Membranous Healing. J Biomech Eng 2025; 147:011005. [PMID: 39382482 DOI: 10.1115/1.4066796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cigarette smoking adversely affects fracture repair, causing delayed healing or nonunion rates twice those seen in nonsmokers. PURPOSE We sought to investigate if cigarette smoke differentially affects intramembranous and endochondral healing of fractures. We hypothesize that healing via endochondral ossification will be preferentially impaired compared to intramembranous ossification. METHODS We utilized a bilateral femur fracture model in Sprague Dawley rats to examine effects of cigarette smoke exposure on healing of femur fractures, treated with either locked intramedullary nail or compression plating to induce endochondral and membranous ossification, respectively. Animals were exposed to tobacco smoke 30 days before and after surgery; evaluations included radiographs, histomorphometry, and micro-CT at 10 days, 1, 3, and 6 months postoperation, and biomechanical testing at 3 and 6 months. RESULTS Sixty-eight animals were randomized to control or exposure (two died perioperatively); 89% of femora achieved union when harvested at 3 or 6 months. Smoke exposure delayed cartilaginous callus formation and bone maturation in nailed fractures compared to plated fractures and controls in the same animals. Plated fractures in exposed animals exhibited little cartilage callus and healed like control animals. At 3 months, plated fractures were stiffer and stronger than nailed fractures in both groups. These differences vanished by 6 months. CONCLUSIONS Plated fractures healed more rapidly and completely than nailed fractures under both control and smoke-exposed conditions. CLINICAL RELEVANCE Using compression plating instead of IM nailing for closed long bone fractures may lead to better outcomes in patients who smoke compared to current results with nailing.
Collapse
Affiliation(s)
- Russell A Reeves
- David Geffen School of Medicine, Department of Radiology, University of California Los Angeles, 855 Tiverton Dr., Los Angeles, CA 90024
| | - Yongren Wu
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 212 Bioengineering Building, 68 President Street, Charleston, SC 29425; Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Bioengineering Building 227, 68 President Street, Charleston, SC 29425; Department of Orthopaedics, University of Tennessee College of Medicine, Chattanooga, TN 37403
| | - E Lex Hanna
- Department of Orthopaedics, University of Tennessee College of Medicine, Chattanooga, TN 37403
| | | | - Alexander M Chiaramonti
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Bioengineering Building 227, 68 President Street, Charleston, SC 29425
- Medical University of South Carolina
| | - Elizabeth K Nadeau
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Bioengineering Building 227, 68 President Street, Charleston, SC 29425
- Medical University of South Carolina
| | - Zilan Lin
- Department of Internal Medicine, Westchester Medical Center, Valhalla, NY 10595
- Westchester Medical Center
| | | | - Glenn D Hefter
- Zimmer Biomet, Warsaw, IN 46580
- Zimmer Biomet (United States)
| | - Ryan C Walsh
- Department of Medicine, Mount Auburn Hospital, Boston, MA 02138
- Mount Auburn Hospital
| | - William R Barfield
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Bioengineering Building 227, 68 President Street, Charleston, SC 29425
- Medical University of South Carolina
| | - Vincent D Pellegrini
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Bioengineering Building 227, 68 President Street, Charleston, SC 29425; Department of Orthopaedics, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756
| |
Collapse
|
2
|
Xiao B, Adjei-Sowah E, Benoit DSW. Integrating osteoimmunology and nanoparticle-based drug delivery systems for enhanced fracture healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102727. [PMID: 38056586 PMCID: PMC10872334 DOI: 10.1016/j.nano.2023.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA; Materials Science Program, University of Rochester, Rochester, NY 14623, USA; Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
3
|
Chen B, Benavente LP, Chittò M, Wychowaniec JK, Post V, D'Este M, Constant C, Zeiter S, Feng W, Moreno MG, Trampuz A, Wagemans J, Onsea J, Richards RG, Lavigne R, Moriarty TF, Metsemakers WJ. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J Control Release 2023; 364:159-173. [PMID: 37866403 DOI: 10.1016/j.jconrel.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Bacteriophage (phage) therapy has shown promise in treating fracture-related infection (FRI); however, questions remain regarding phage efficacy against biofilms, phage-antibiotic interaction, administration routes and dosing, and the development of phage resistance. The goal of this study was to develop a dual antibiotic-phage delivery system containing hydrogel and alginate microbeads loaded with a phage cocktail plus meropenem and evaluate efficacy against muti-drug resistant Pseudomonas aeruginosa. Two phages (FJK.R9-30 and MK.R3-15) displayed enhanced antibiotic activity against P. aeruginosa biofilms when tested in combination with meropenem. The antimicrobial activity of both antibiotic and phage was retained for eight days at 37 °C in dual phage and antibiotic loaded hydrogel with microbeads (PA-HM). In a mouse FRI model, phages were recovered from all tissues within all treatment groups receiving dual PA-HM. Moreover, animals that received the dual PA-HM either with or without systemic antibiotics had less incidence of phage resistance and less serum neutralization compared to phages in saline. The dual PA-HM could reduce bacterial load in soft tissue when combined with systemic antibiotics, although the infection was not eradicated. The use of alginate microbeads and injectable hydrogel for controlled release of phages and antibiotics, leads to the reduced development of phage resistance and lower exposure to the adaptive immune system, which highlights the translational potential of the dual PA-HM. However, further optimization of phage therapy and its delivery system is necessary to achieve higher bacterial killing activity in vivo in the future.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium; AO Research Institute Davos, Davos, Switzerland
| | - Luis Ponce Benavente
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | - Wenli Feng
- AO Research Institute Davos, Davos, Switzerland
| | - Mercedes González Moreno
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Lowen GB, Garrett KA, Moore-Lotridge SN, Uppuganti S, Guelcher SA, Schoenecker JG, Nyman JS. Effect of Intramedullary Nailing Patterns on Interfragmentary Strain in a Mouse Femur Fracture: A Parametric Finite Element Analysis. J Biomech Eng 2022; 144:051007. [PMID: 34802060 PMCID: PMC8822464 DOI: 10.1115/1.4053085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or nonunion. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.
Collapse
Affiliation(s)
- Gregory B. Lowen
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235
| | - Katherine A. Garrett
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232
| | - Stephanie N. Moore-Lotridge
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232;Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212
| | - Scott A. Guelcher
- Vanderbilt University, Department of Chemical and Biomolecular Engineering, 2201 West End Ave, Nashville, TN 37235; Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Division of Clinical Pharmacology, 1211 Medical Center Dr, Nashville, TN 37217
| | - Jonathan G. Schoenecker
- Vanderbilt University, Department of Pharmacology, 465 21 Ave South, 7124 Medical Research Building III, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, 1161 21 Ave S C-3322 Medical Center North, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Pediatrics, 2200 Children's Way, Suite 2404, Nashville, TN 37232
| | - Jeffry S. Nyman
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, TN 37232; Vanderbilt University Medical Center, Department of Orthopaedic Surgery, 1215 21 Ave. S., Suite 4200, Nashville, TN 37232; Vanderbilt University Medical Center, Vanderbilt Center for Bone Biology, 1211 Medical Center Dr., Nashville, TN 37212; Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24 Ave. S, Nashville, TN 37212
| |
Collapse
|
5
|
Menger MM, Stutz J, Ehnert S, Nussler AK, Rollmann MF, Herath SC, Braun BJ, Pohlemann T, Menger MD, Histing T. Development of an ischemic fracture healing model in mice. Acta Orthop 2022; 93:466-471. [PMID: 35478260 PMCID: PMC9047454 DOI: 10.2340/17453674.2022.2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/29/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE In fracture healing, ischemia caused by vascular injuries, chronic vascular diseases, and metabolic comorbidities is one of the major risk factors for delayed union and non-union formation. To gain novel insights into the molecular and cellular pathology of ischemic fracture healing, appropriate animal models are needed. Murine models are of particular interest, as they allow to study the molecular aspects of fracture healing due to the availability of both a large number of murine antibodies and gene-targeted animals. Thus, we present the development of an ischemic fracture healing model in mice. MATERIAL AND METHODS After inducing a mild ischemia by double ligature of the deep femoral artery in CD-1 mice, the ipsilateral femur was fractured by a 3-point bending device and stabilized by screw osteosynthesis. In control animals, the femur was fractured and stabilized without the induction of ischemia. The femora were analyzed at 2 and 5 weeks after fracture healing by means of radiology, biomechanics, histology, and histomorphometry. RESULTS The surgically induced ischemia delayed and impaired the process of fracture healing. This was indicated by a lower Goldberg score, decreased bending stiffness, and reduced bone callus formation in the ischemic animals when compared with the controls. INTERPRETATION We introduce a novel ischemic femoral fracture healing model in mice, which is characterized by delayed bone healing. In future, the use of this model may allow both the elucidation of the molecular aspects of ischemic fracture healing and the study of novel treatment strategies.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar; Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen.
| | - Janine Stutz
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar; Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg/Saar.
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen; Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen; Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen.
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen.
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen.
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg/Saar.
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar.
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen.
| |
Collapse
|
6
|
Flevas DA, Papageorgiou MG, Drakopoulos P, Lambrou GI. The Role of Immune System Cells in Fracture Healing: Review of the Literature and Current Concepts. Cureus 2021. [DOI: 10.7759/cureus.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Gunderson ZJ, Campbell ZR, McKinley TO, Natoli RM, Kacena MA. A comprehensive review of mouse diaphyseal femur fracture models. Injury 2020; 51:1439-1447. [PMID: 32362447 PMCID: PMC7323889 DOI: 10.1016/j.injury.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Complications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research.
Collapse
Affiliation(s)
- Zachary J. Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachery R. Campbell
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Todd O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax
| |
Collapse
|
8
|
Collier CD, Hausman BS, Zulqadar SH, Din ES, Anderson JM, Akkus O, Greenfield EM. Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy. Bone Rep 2020; 12:100250. [PMID: 32090156 PMCID: PMC7025178 DOI: 10.1016/j.bonr.2020.100250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose The classic fracture model, described by Bonnarens and Einhorn in 1984, enlists a blunt guillotine to generate a closed fracture in a pre-stabilized rodent femur. However, in less experienced hands, this technique yields considerable variability in fracture pattern and requires highly-specialized equipment. This study describes a reproducible and low-cost model of mouse fracture healing using an open femoral osteotomy. Methods Femur fractures were produced in skeletally mature male and female mice using an open femoral osteotomy after intramedullary stabilization. Mice were recovered for up to 28 days prior to analysis with microradiographs, histomorphometry, a novel μCT methodology, and biomechanical torsion testing at weekly intervals. Results Eight mice were excluded due to complications (8/193, 4.1%), including unacceptable fracture pattern (2/193, 1.0%). Microradiographs showed progression of the fracture site to mineralized callus by 14 days and remodelling 28 days after surgery. Histomorphometry from 14 to 28 days revealed decreased cartilage area and maintained bone area. μCT analysis demonstrated a reduction in mineral surface from 14 to 28 days, stable mineral volume, decreased strut number, and increased strut thickness. Torsion testing at 21 days showed that fractured femurs had 61% of the ultimate torque, 63% of the stiffness, and similar twist to failure when compared to unfractured contralateral femurs. Conclusions The fracture model described herein, an open femoral osteotomy, demonstrated healing comparable to that reported using closed techniques. This simple model could be used in future research with improved reliability and reduced costs compared to the current options. This study characterized a simple and reproducible model of fracture healing in mice using an open femoral osteotomy. Analysis by x-ray, histomorphometry, µCT, and biomechanical testing demonstrated healing comparable to current models. This simple model could be used to increase investigation into fracture healing, delayed union, and non-union.
Collapse
Affiliation(s)
- C D Collier
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - B S Hausman
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - S H Zulqadar
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - E S Din
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - O Akkus
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - E M Greenfield
- Department of Orthopaedics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Sabater González M, Calvo Carrasco D. Advances in Exotic Animal Osteosynthesis. Vet Clin North Am Exot Anim Pract 2019; 22:441-450. [PMID: 31395324 DOI: 10.1016/j.cvex.2019.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exotic animal orthopedics has not incorporated the most recent progress made in small animal surgery or human medicine. Although minimally invasive osteosynthesis has been incorporated as a routinely used alternative in small animals, its use in exotic animals is still in its infancy. This article compliments the reviews of orthopedics in small mammals, birds, and reptiles in the previous issue. It reviews relevant recent studies performed in laboratory animals about new orthopedic materials and techniques showing potential to become incorporated into the routine orthopedic treatment of exotic animals in the coming years.
Collapse
|
10
|
Pinto DC, Fleischman JM, Crowder CM. Reply to Authors’ Response. J Forensic Sci 2019; 64:1590-1592. [DOI: 10.1111/1556-4029.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Deborrah C. Pinto
- Forensic Anthropology Division Harris County Institute of Forensic Sciences 1861 Old Spanish Trail Houston TX77054
| | - Julie M. Fleischman
- Forensic Anthropology Division Harris County Institute of Forensic Sciences 1861 Old Spanish Trail Houston TX77054
| | - Christian M. Crowder
- Dallas County Medical Examiner Office Southwestern Institute of Forensic Sciences 2355 N. Stemmons FWY Dallas TX75207
| |
Collapse
|
11
|
Bartnikowski M, Bartnikowski N, Woloszyk A, Matthys R, Glatt V. Genetic variation in mice affects closed femoral fracture pattern outcomes. Injury 2019; 50:639-647. [PMID: 30799099 DOI: 10.1016/j.injury.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to determine whether differences in structural and material properties of bone between different mouse strains influence the fracture patterns produced under experimental fracture conditions. Femurs of C57BL/6 (B6), C3H/HeJ (C3H), and DBA/2 (DBA) strains were evaluated using micro-computed tomography (μCT), measurements derived from radiographic images and mechanical testing to determine differences in the geometry and mechanical properties. A fracture device was used to create femoral fractures on freshly sacrificed animals using a range of kinetic energies (∼20-80mJ) which were classified as transverse, oblique, or comminuted. B6 femurs had the lowest bone volume/total volume (BV/TV) and bone mineral density (BMD), thinnest cortex, and had the most variable fracture patterns, with 77.5% transverse, 15% oblique, and 7.5% comminuted fractures. In contrast, C3H had the highest BV/TV, BMD, and thickest cortices, resulting in 97.5% transverse, 2.5% oblique, and 0% comminuted fractures. DBA had an intermediate BV/TV and thickness of cortices, with BMD similar to C3H, resulting in 92.9% transverse, 7.1% oblique, and 0% comminuted fractures. A binomial logistic regression confirmed that bone morphometry was the single strongest predictor of the resulting fracture pattern. This study demonstrated that the reproducibility of closed transverse femoral fractures was most influenced by the structural and material properties of the bone characteristics in each strain, rather than the kinetic energy or body weight of the mice. This was evidenced through geometric analysis of X-ray and μCT data, and further supported by the bone mineral density measurements from each strain, derived from μCT. Furthermore, this study also demonstrated that the use of lower kinetic energies was more than sufficient to reproducibly create transverse fractures, and to avoid severe tissue trauma. The creation of reproducible fracture patterns is important as this often dictates the outcomes of fracture healing, and those studies that do not control this potential variability could lead to a false interpretation of the results.
Collapse
Affiliation(s)
- Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicole Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Vaida Glatt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Department of Orthopaedics, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
12
|
Dawson LA, Schanes PP, Kim P, Imholt FM, Qureshi O, Dolan CP, Yu L, Yan M, Zimmel KN, Falck AR, Muneoka K. Blastema formation and periosteal ossification in the regenerating adult mouse digit. Wound Repair Regen 2018; 26:263-273. [PMID: 30120800 DOI: 10.1111/wrr.12666] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Patrick Kim
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Connor P Dolan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ling Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mingquan Yan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katherine N Zimmel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Alyssa R Falck
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Williams JN, Li Y, Valiya Kambrath A, Sankar U. The Generation of Closed Femoral Fractures in Mice: A Model to Study Bone Healing. J Vis Exp 2018:58122. [PMID: 30176027 PMCID: PMC6128110 DOI: 10.3791/58122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone fractures impose a tremendous socio-economic burden on patients, in addition to significantly affecting their quality of life. Therapeutic strategies that promote efficient bone healing are non-existent and in high demand. Effective and reproducible animal models of fractures healing are needed to understand the complex biological processes associated with bone regeneration. Many animal models of fracture healing have been generated over the years; however, murine fracture models have recently emerged as powerful tools to study bone healing. A variety of open and closed models have been developed, but the closed femoral fracture model stands out as a simple method for generating rapid and reproducible results in a physiologically relevant manner. The goal of this surgical protocol is to generate unilateral closed femoral fractures in mice and facilitate a post-fracture stabilization of the femur by inserting an intramedullary steel rod. Although devices such as a nail or a screw offer greater axial and rotational stability, the use of an intramedullary rod provides a sufficient stabilization for consistent healing outcomes without producing new defects in the bone tissue or damaging nearby soft tissue. Radiographic imaging is used to monitor the progression of callus formation, bony union, and subsequent remodeling of the bony callus. Bone healing outcomes are typically associated with the strength of the healed bone and measured with torsional testing. Still, understanding the early cellular and molecular events associated with fracture repair is critical in the study of bone tissue regeneration. The closed femoral fracture model in mice with intramedullary fixation serves as an attractive platform to study bone fracture healing and evaluate therapeutic strategies to accelerate healing.
Collapse
Affiliation(s)
- Justin N Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
| | | | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine;
| |
Collapse
|
14
|
Zondervan RL, Vorce M, Servadio N, Hankenson KD. Fracture Apparatus Design and Protocol Optimization for Closed-stabilized Fractures in Rodents. J Vis Exp 2018. [PMID: 30176013 DOI: 10.3791/58186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The reliable generation of consistent stabilized fractures in animal models is essential for understanding the biology of bone regeneration and developing therapeutics and devices. However, available injury models are plagued by inconsistency resulting in wasted animals and resources and imperfect data. To address this problem of fracture heterogeneity, the purpose of the method described herein is to optimize fracture generation parameters specific to each animal and yield a consistent fracture location and pattern. This protocol accounts for variations in bone size and morphology that may exist between mouse strains and can be adapted to generate consistent fractures in other species, such as rat. Additionally, a cost-effective, adjustable fracture apparatus is described. Compared to current stabilized fracture techniques, the optimization protocol and new fracture apparatus demonstrate increased consistency in stabilized fracture patterns and locations. Using optimized parameters specific to the sample type, the described protocol increases the precision of induced traumas, minimizing the fracture heterogeneity typically observed in closed-fracture generation procedures.
Collapse
Affiliation(s)
- Robert L Zondervan
- College of Osteopathic Medicine, Michigan State University; Department of Orthopaedic Surgery, University of Michigan Medical School
| | - Mitch Vorce
- Lymann Briggs College, Michigan State University
| | | | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School;
| |
Collapse
|
15
|
Histing T, Bremer P, Rollmann MF, Herath S, Klein M, Pohlemann T, Menger MD, Fritz T. A Minimally Invasive Model to Analyze Endochondral Fracture Healing in Mice Under Standardized Biomechanical Conditions. J Vis Exp 2018. [PMID: 29630050 DOI: 10.3791/57255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone healing models are necessary to analyze the complex mechanisms of fracture healing to improve clinical fracture treatment. During the last decade, an increased use of mouse models in orthopedic research was noted, most probably because mouse models offer a large number of genetically-modified strains and special antibodies for the analysis of molecular mechanisms of fracture healing. To control the biomechanical conditions, well-characterized osteosynthesis techniques are mandatory, also in mice. Here, we report on the design and use of a closed bone healing model to stabilize femur fractures in mice. The intramedullary screw, made of medical-grade stainless steel, provides through fracture compression an axial and rotational stability compared to the mostly used simple intramedullary pins, which show a complete lack of axial and rotational stability. The stability achieved by the intramedullary screw allows the analysis of endochondral healing. A large amount of callus tissue, received after stabilization with the screw, offers ideal conditions to harvest tissue for biochemical and molecular analyses. A further advantage of the use of the screw is the fact that the screw can be inserted into the femur with a minimally invasive technique without inducing damage to the soft tissue. In conclusion, the screw is a unique implant that can ideally be used in closed fracture healing models offering standardized biomechanical conditions.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University;
| | - Philipp Bremer
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Mika F Rollmann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Steven Herath
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University
| | - Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW In the process of bone fracture healing, inflammation is thought to be an essential process that precedes bone formation and remodeling. We review recent studies on bone fracture healing from an osteoimmunological point of view. RECENT FINDINGS Based on previous observations that many types of immune cells infiltrate into the bone injury site and release a variety of molecules, recent studies have addressed the roles of specific immune cell subsets. Macrophages and interleukin (IL)-17-producing γδ T cells enhance bone healing, whereas CD8+ T cells impair bone repair. Additionally, IL-10-producing B cells may contribute to bone healing by suppressing excessive and/or prolonged inflammation. Although the involvement of other cells and molecules has been suggested, the precise underlying mechanisms remain elusive. Accumulating evidence has begun to reveal the deeper picture of bone fracture healing. Further studies are required for the development of novel therapeutic strategies for bone fracture.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Calciolari E, Donos N, Mardas N. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls. J INVEST SURG 2016; 30:342-350. [DOI: 10.1080/08941939.2016.1241840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK
| | - Nikos Mardas
- Centre for Adult Oral Health, Barts and The London School of Dentistry & Hospital, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
18
|
Histing T, Menger MD, Pohlemann T, Matthys R, Fritz T, Garcia P, Klein M. An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice. J Vis Exp 2016. [PMID: 27911364 DOI: 10.3791/54472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University;
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | | | - Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Patric Garcia
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| |
Collapse
|
19
|
Haffner-Luntzer M, Kovtun A, Rapp AE, Ignatius A. Mouse Models in Bone Fracture Healing Research. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0037-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Dawson LA, Simkin J, Sauque M, Pela M, Palkowski T, Muneoka K. Analogous cellular contribution and healing mechanisms following digit amputation and phalangeal fracture in mice. ACTA ACUST UNITED AC 2016; 3:39-51. [PMID: 27499878 PMCID: PMC4857751 DOI: 10.1002/reg2.51] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
Abstract
Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration‐incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening. We show that cells of the periosteum respond to amputation and fracture by contributing both chondrocytes and osteoblasts to the endochondral ossification response. Based on our studies, we suggest that the amputation response represents an attempt at regeneration that ultimately fails due to the lack of a distal organizing influence that is present in fracture healing.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| | - Jennifer Simkin
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Biology University of Kentucky Lexington Kentucky 40506 USA
| | - Michelle Sauque
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Orthopedics University of Colorado Denver Aurora Colorado 80010 USA
| | - Maegan Pela
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Teresa Palkowski
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
21
|
Histing T, Heerschop K, Klein M, Scheuer C, Stenger D, Herath SC, Pohlemann T, Menger MD. Effect of Stabilization on the Healing Process of Femur Fractures in Aged Mice. J INVEST SURG 2016; 29:202-8. [PMID: 26891453 DOI: 10.3109/08941939.2015.1127448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The influence of mechanical stability on fracture healing has previously been studied in adult mice, but is poorly understood in aged animals. Therefore, we herein studied the effect of stabilization on the healing process of femur fractures in aged mice. METHODS Twenty-four 18-month-old CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw. In another 24 18-month-old mice, the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric, and protein expression analyses. RESULTS After 2 and 5 weeks of healing, the callus of nonstabilized fractures compared to stabilized fractures was significantly larger, containing a significantly smaller amount of osseous tissue and a higher amount of cartilaginous tissue. This was associated with a significantly lower biomechanical stiffness during the early phase of healing. However, during the late phase of fracture healing both nonstabilized and stabilized fractures showed a biomechanical stiffness of ∼40%. Of interest, Western blot analyses of callus tissue demonstrated that the expression of proteins related to angiogenesis, bone formation and remodeling, i.e. VEGF, CYR61, BMP-2, BMP-4, Col-2, Col-10, RANKL, OPG, did not differ between nonstabilized and stabilized fractures. CONCLUSION Nonstabilized fractures in aged mice show delayed healing and remodeling. This is not caused by an altered protein expression in the callus but rather by the excessive interfragmentary movements.
Collapse
Affiliation(s)
- T Histing
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - K Heerschop
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - M Klein
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - C Scheuer
- b Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar, Germany
| | - D Stenger
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - S C Herath
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - T Pohlemann
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - M D Menger
- b Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar, Germany
| |
Collapse
|
22
|
Histing T, Heerschop K, Klein M, Scheuer C, Stenger D, Holstein JH, Pohlemann T, Menger MD. Characterization of the healing process in non-stabilized and stabilized femur fractures in mice. Arch Orthop Trauma Surg 2016; 136:203-11. [PMID: 26602903 DOI: 10.1007/s00402-015-2367-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND Although a variety of suitable fracture models for mice exist, in many studies bone healing was still analyzed without fracture stabilization. Because there is little information whether the healing of non-stabilized fractures differs from that of stabilized fractures, we herein studied the healing process of non-stabilized compared to stabilized femur fractures. MATERIALS AND METHODS Twenty-one CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw allowing micromovements and endochondral healing. In another 22 mice the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric and protein expression analyses. RESULTS Non-stabilized femur fractures revealed a significantly lower biomechanical stiffness compared to stabilized fractures. During the early phase of fracture healing non-stabilized fractures demonstrated a significantly lower amount of osseous tissue and a higher amount of cartilage tissue. During the late phase of fracture healing both non-stabilized and stabilized fractures showed almost 100 % osseous callus tissue. However, in stabilized fractures remodeling was almost completed with lamellar bone while non-stabilized fractures still showed large callus with great amounts of woven bone, indicating a delay in bone remodeling. Of interest, western blot analyses of callus tissue demonstrated in non-stabilized fractures a significantly reduced expression of vascular endothelial growth factor and a slightly lowered expression of bone morphogenetic protein-2 and collagen-10. CONCLUSION Non-stabilized femur fractures in mice show a marked delay in bone healing compared to stabilized fractures. Therefore, non-stabilized fracture models may not be used to analyze the mechanisms of normal bone healing.
Collapse
Affiliation(s)
- T Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - K Heerschop
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - M Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - C Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - D Stenger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - J H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - T Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
23
|
Rochford ETJ, Sabaté Brescó M, Zeiter S, Kluge K, Poulsson A, Ziegler M, Richards RG, O'Mahony L, Moriarty TF. Monitoring immune responses in a mouse model of fracture fixation with and without Staphylococcus aureus osteomyelitis. Bone 2016; 83:82-92. [PMID: 26525592 DOI: 10.1016/j.bone.2015.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/21/2015] [Accepted: 10/11/2015] [Indexed: 12/30/2022]
Abstract
Post-traumatic bone fractures are commonly fixed with implanted devices to restore the anatomical position of bone fragments and aid in the healing process. Bacterial infection in this situation is a challenge for clinicians due to the need for aggressive antibiotic therapy, debridement of infected tissues, and the need to maintain fracture stability. The aim of this study was to monitor immune responses that occur during healing and during Staphylococcus aureus infection, in a clinically relevant murine model of fracture fixation. Skeletally mature C57bl/6 mice received a transverse osteotomy of the femur, which was treated with commercially available titanium fracture fixation plates and screws. In the absence of infection, healing of the fracture was complete within 35days and was characterized by elevated Interleukin (IL)-4 and Interferon-gamma secretion from bone-derived cells and expression of these same genes. In contrast, mice inoculated with S. aureus could not heal the fracture within the observation period and were found to develop typical signs of implant-associated bone infection, including biofilm formation on the implant and osteolysis of surrounding bone. The immune response to infection was characterized by a TH17-led bone response, and a pro-inflammatory cytokine-led Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β) soft tissue response, both of which were ineffectual in clearing implant related bone and soft tissue infections respectively. In this murine model, we characterize the kinetics of pro-inflammatory responses to infection, secondary to bone trauma and surgery. A divergent local immune polarization is evident in the infected versus non-infected animals, with the immune response ultimately unable to clear the S. aureus infection.
Collapse
Affiliation(s)
| | - Marina Sabaté Brescó
- AO Research Institute Davos, Switzerland; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | | | | | - Mario Ziegler
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | |
Collapse
|
24
|
Majuta LA, Longo G, Fealk MN, McCaffrey G, Mantyh PW. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor. Pain 2015; 156:157-165. [PMID: 25599311 DOI: 10.1016/j.pain.0000000000000017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain-related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti-nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains.
Collapse
Affiliation(s)
- Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
25
|
Klein M, Stieger A, Stenger D, Scheuer C, Holstein JH, Pohlemann T, Menger MD, Histing T. Comparison of healing process in open osteotomy model and open fracture model: Delayed healing of osteotomies after intramedullary screw fixation. J Orthop Res 2015; 33:971-8. [PMID: 25732349 DOI: 10.1002/jor.22861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
Murine osteotomy and fracture models have become the standard to study molecular mechanisms of bone healing. Because there is little information whether the healing of osteotomies differs from that of fractures, we herein studied in mice the healing of femur osteotomies compared to femur fractures. Twenty CD-1 mice underwent a standardized open femur osteotomy. Another 20 mice received a standardized open femur fracture. Stabilization was performed by an intramedullary screw. Bone healing was studied by micro-CT, biomechanical, histomorphometric and protein expression analyses. Osteotomies revealed a significantly lower biomechanical stiffness compared to fractures. Micro-CT showed a reduced bone/tissue volume within the callus of the osteotomies. Histomorphometric analyses demonstrated also a significantly lower amount of osseous tissue in the callus of osteotomies (26% and 88% after 2 and 5 weeks) compared to fractures (50% and 100%). This was associated with a delayed remodeling. Western blot analyses demonstrated comparable BMP-2 and BMP-4 expression, but higher levels of collagen-2, CYR61 and VEGF after osteotomy. Therefore, we conclude that open femur osteotomies in mice show a markedly delayed healing when stabilized less rigidly with an intramedullary screw. This should be considered when choosing a model for studying the mechanisms of bone healing in mice.
Collapse
Affiliation(s)
- Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Andrea Stieger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - David Stenger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Jörg H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| |
Collapse
|
26
|
Chaubey A, Grawe B, Meganck JA, Dyment N, Inzana J, Jiang X, Connolley C, Awad H, Rowe D, Kenter K, Goldstein SA, Butler D. Structural and biomechanical responses of osseous healing: a novel murine nonunion model. J Orthop Traumatol 2013; 14:247-57. [PMID: 23989900 PMCID: PMC3828495 DOI: 10.1007/s10195-013-0269-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the biological mechanisms of why certain fractures are at risk for delayed healing or nonunion requires translational animal models that take advantage of transgenic and other genetic manipulation technologies. Reliable murine nonunion models can be an important tool to understand the biology of nonunion. In this study, we report the results of a recently established model for creating critical defects that lead to atrophic nonunions based on a unique fracture fixation technique. Materials and methods Subcritical (0.6 mm long) and critical (1.6 mm long) defects were created in femurs of 10-week-old double transgenic (Col1/Col2) mice and stabilized using a custom-designed plate and four screws. Four groups were used: normal, sham, subcritical, and critical. Histology (n = 3 for each group) was analyzed at 2 and 5 weeks, and micro-computed tomography (μCT) and torsional biomechanics (n = 12 for each group) were analyzed at 5 weeks. Results Subcritical defects showed healing at 2 weeks and were completely healed by 5 weeks, with biomechanical properties not significantly different from normal controls. However, critical defects showed no healing by histology or μCT. These nonunion fractures also displayed no torsional stiffness or strength in 10 of 12 cases. Conclusions Our murine fracture model creates reproducible and reliable nonunions and can serve as an ideal platform for studying molecular pathways to contrast healing versus nonhealing events and for evaluating innovative therapeutic approaches to promote healing of a challenging osseous injury. Electronic supplementary material The online version of this article (doi:10.1007/s10195-013-0269-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aditya Chaubey
- Biomedical Engineering Program, School of Energy, Environmental and Biological and Medical Engineering, University of Cincinnati, 2901 Woodside Dr, Cincinnati, OH, 45221-0048, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Eardley WGP, Watts SA, Clasper JC. Modelling for conflict: the legacy of ballistic research and current extremity in vivo modelling. J ROY ARMY MED CORPS 2013; 159:73-83. [PMID: 23720587 DOI: 10.1136/jramc-2013-000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extremity ballistic injury is unique and the literature intended to guide its management is commonly misinterpreted. In order to care for those injured in conflict and conduct appropriate research, clinicians must be able to identify key in vivo studies, understand their weaknesses and desist the propagation of miscited and misunderstood ballistic dogma. This review provides the only inclusive critical overview of key studies of relevance to military extremity injury. In addition, the non-ballistic studies of limb injury, stabilisation and contamination that will form the basis from which future small animal extremity studies are constructed are presented. With an awareness of the legacy of military wound models and an insight into available generic models of extremity injury and contamination, research teams are well placed to optimise future military extremity injury management.
Collapse
Affiliation(s)
- William G P Eardley
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Institute of Research and Development, Birmingham, UK.
| | | | | |
Collapse
|
28
|
Tasoglu S, Gurkan UA, Wang S, Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev 2013; 42:5788-808. [PMID: 23575660 PMCID: PMC3865707 DOI: 10.1039/c3cs60042d] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development.
Collapse
Affiliation(s)
- Savas Tasoglu
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Atakan Gurkan
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - ShuQi Wang
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Shah K, Majeed Z, Jonason J, O'Keefe RJ. The role of muscle in bone repair: the cells, signals, and tissue responses to injury. Curr Osteoporos Rep 2013; 11:130-5. [PMID: 23591779 PMCID: PMC3698863 DOI: 10.1007/s11914-013-0146-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bone repair is a complicated process that includes many types of cells, signaling molecules, and growth factors. Fracture healing involves a temporally and spatially regulated biologic process that involves recruitment of stem cells to the injury site, tissue specific differentiation, angiogenesis, and remodeling. In light of its proximity to bone and abundant vascularity, muscle is an important potential source of cells and signals for bone healing. More complete understanding of the role of muscle in bone formation and repair will provide new therapeutic approaches to enhance fracture healing. Recent studies establish that muscle-derived stem cells are able to differentiate into cartilage and bone and can directly participate in fracture healing. The role of muscle-derived stem cells is particularly important in fractures associated with more severe injury to the periosteum. Sarcopenia is a serious consequence of aging, and studies show a strong association between bone mass and lean muscle mass. Muscle anabolic agents may improve function and reduce the incidence of fracture with aging.
Collapse
Affiliation(s)
- Krupa Shah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Box 665, 601 Elmwood Avenue, Rochester, NY 14692, USA
| | | | | | | |
Collapse
|
30
|
Liu K, Li D, Huang X, Lv K, Ongodia D, Zhu L, Zhou L, Li Z. A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. J Surg Res 2013; 183:493-502. [PMID: 23522461 DOI: 10.1016/j.jss.2013.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND As a model animal, the mouse has already been widely used in bone-related research. However, there is a lack of ideal long bone segmental defect mouse model. Since external fixation has disadvantages of heavy weight, penetrating the skin, and hampering mobility, an internal fixation device is probably more preferable to maintain the segmental bone defect. The aim of this study was to establish a simple, reproducible, and standardized murine critical-size defect model through designing an internal fixation system, verifying its adaptability, and investigating the critical size of femoral segmental defect. METHODS By utilizing computer-aided measuring and processing system, anatomical data of adult C57BL/6 mouse femur was obtained, and a plate-bolts system was designed for rigid fixation. The plate and screws were fixed in 67 mice and 1.5 or 2.0 mm defect gaps were created in the femoral midshaft. Compression and three-point bending of bone-implant construct were tested in mice at 0, 2, 5, and 12 wk postoperative to test the biomechanical stability. X-ray, micro-computed tomography, and histology were used to investigate the defect healing process. RESULTS The plate- and screws-fitted mouse femur and unilateral or bilateral operation had seemingly no adverse impact on the mouse in general. Mechanical tests indicated that there were no significant differences between the bone-implant construct and intact femur in compression and three-point bending loading. Micro-computed tomography scanning showed the bone mineral density had not been affected by the implantation of fixation device. There was no union of the 2.0 mm segmental defect in 12-wk period. CONCLUSION Using the specifically designed rigid internal fixation device, a segmental defect size of 2.0 mm in C57BL/6 mouse femur will show nonunion and can serve as a critical defect size for bone tissue engineering and bone regeneration research.
Collapse
Affiliation(s)
- Kai Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Histing T, Kuntz S, Stenger D, Scheuer C, Garcia P, Holstein JH, Klein M, Pohlemann T, Menger MD. Delayed fracture healing in aged senescence-accelerated P6 mice. J INVEST SURG 2012; 26:30-5. [PMID: 23273143 DOI: 10.3109/08941939.2012.687435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Osteoporosis is characterized by poor bone quality. However, it is still controversially discussed whether osteoporosis compromises fracture healing. Herein, we studied whether the course of healing of a femur fracture is affected by osteoporosis or age. METHODS Using the senescence-accelerated osteoporotic mouse, strain P6 (SAMP6), and a closed femur fracture model, we studied the process of fracture healing in 5- and 10-month-old animals, including biomechanical, histomorphometric, and protein biochemical analysis. RESULTS In five-month-old osteoporotic SAMP6 mice, bending stiffness, callus size, and callus tissue distribution as well as the concentrations of the bone formation marker osteocalcin and the bone resorption markers tartrate-resistant acid phosphatase form 5b (TRAP) and deoxypyridinoline (DPD) did not differ from that of non-osteoporotic, senescence-resistant, strain 1 (SAMR1) controls. In contrast, femur fractures in 10-month-old SAMP6 mice showed a significantly reduced bending stiffness and an increased callus size compared to fractures in age-matched SAMR1 controls. This indicates a delayed fracture healing in advanced age SAMP6 mice. The delay of fracture healing was associated with higher concentrations of TRAP and DPD. Significant differences in osteocalcin concentrations were not found between SAMP6 animals and SAMR1 controls. CONCLUSION In conclusion, the present study indicates that fracture healing in osteoporotic SAMP6 mice is not affected in five-month-old animals, but delayed in animals with an age of 10 months. This is most probably due to the increased osteoclast activity in advanced age SAMP6 animals.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Montijo HE, Kellam JF, Gettys FK, Starman JS, Nelson MAJKJ, Bayoumi EM, Bosse MJ, Gruber HE. Utilization of the AO LockingRatNail in a Novel Rat Femur Critical Defect Model. J INVEST SURG 2012; 25:381-6. [DOI: 10.3109/08941939.2012.655370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Histing T, Klein M, Stieger A, Stenger D, Steck R, Matthys R, Holstein JH, Garcia P, Pohlemann T, Menger MD. A new model to analyze metaphyseal bone healing in mice. J Surg Res 2012; 178:715-21. [DOI: 10.1016/j.jss.2012.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
|
34
|
Savaridas T, Wallace RJ, Muir AY, Salter DM, Simpson AHRW. The development of a novel model of direct fracture healing in the rat. Bone Joint Res 2012; 1:289-96. [PMID: 23610660 PMCID: PMC3626205 DOI: 10.1302/2046-3758.111.2000087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022] Open
Abstract
Objectives Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. Methods A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then in vivo in ten Sprague-Dawley
rats. Controls had osteotomies stabilised with a uniaxial external
fixator that used the same surgical approach and relied on the same
number and diameter of screw holes in bone. Results Fracture healing occurred without evidence of external callus
on plain radiographs. At six weeks after fracture fixation, the
mean stress at failure in a four-point bending test was 24.65 N/mm2 (sd 6.15).
Histology revealed ‘cutting-cones’ traversing the fracture site.
In controls where a uniaxial external fixator was used, bone healing
occurred via external callus formation. Conclusions A simple, reproducible model of direct fracture healing in rat
tibia that mimics clinical practice has been developed for use in
future studies of direct fracture healing.
Collapse
Affiliation(s)
- T Savaridas
- Northern Deanery Orthopaedic Training Programme, Waterfront 4, Goldcrest Way, Newburn Riverside, Newcastle Upon Tyne NE15 8NY, UK
| | | | | | | | | |
Collapse
|
35
|
Abstract
This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature. We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model when considering its application.
Collapse
Affiliation(s)
- L. A. Mills
- Royal National Orthopaedic Hospital, Stanmore, Brockley
Hill, Middlesex HA7 4LP, UK
| | - A. H. R. W. Simpson
- Edinburgh University, Department
of Orthopaedics and Trauma, Chancellors Building, Little
France, Edinburgh EH16 4SB, UK
| |
Collapse
|
36
|
Melatonin Impairs Fracture Healing by Suppressing RANKL-Mediated Bone Remodeling. J Surg Res 2012; 173:83-90. [DOI: 10.1016/j.jss.2010.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 08/09/2010] [Accepted: 08/19/2010] [Indexed: 11/23/2022]
|
37
|
Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, Steck R, Laschke MW, Wehner T, Bindl R, Recknagel S, Stuermer EK, Vollmar B, Wildemann B, Lienau J, Willie B, Peters A, Ignatius A, Pohlemann T, Claes L, Menger MD. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 2011; 49:591-9. [PMID: 21782988 DOI: 10.1016/j.bone.2011.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 01/26/2023]
Abstract
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.
Collapse
Affiliation(s)
- T Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coleman CM, Scheremeta BH, Boyce AT, Mauck RL, Tuan RS. Delayed fracture healing in growth differentiation factor 5-deficient mice: a pilot study. Clin Orthop Relat Res 2011; 469:2915-24. [PMID: 21590487 PMCID: PMC3171561 DOI: 10.1007/s11999-011-1912-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 04/29/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Growth differentiation factor-5 (GDF-5) is a key regulator of skeletogenesis and bone repair and induces bone formation in spinal fusions and nonunion applications by enhancing chondrocytic and osteocytic differentiation and stimulating angiogenesis. Elucidating the contribution of GDF-5 to fracture repair may support its clinical application in complex fractures. QUESTIONS/PURPOSE We therefore asked whether the absence of GDF-5 during fracture repair impaired bone healing as assessed radiographically, histologically, and mechanically. METHODS In this pilot study, we performed tibial osteotomies on 10-week-old male mice, stabilized by intramedullary and extramedullary nailing. Healing was assessed radiographically and histologically on Days 1 (n = 1 wild-type; n = 5 bp [brachopodism]), 5 (n = 3 wild-type; n = 3 bp), 10 (n = 6 wild-type; n = 3 bp), 14 (n = 6 wild-type; n = 6 bp), 21 (n = 6 wild-type; n = 6 bp), 28 (n = 7 wild-type; n = 6 bp), and 56 (n = 6 wild-type; n = 6 bp) after fracture. After 10 (n = 7 wild-type; n = 7 bp contralateral and n = 3 bp fractured tibiae), 14 (n = 6 wild-type; n = 6 bp), 21 (n = 6 wild-type; n = 6 bp), 28 (n = 6 wild-type; n = 3 bp), and 56 (n = 8 wild-type; n = 6 bp) days, the callus cross-sectional area was calculated. We characterized the mechanical integrity of the healing fracture by yield stress and Young's modulus at 28 (n = 6 wild-type; n = 3 bp) and 56 (n = 8 wild-type; n = 6 bp) days postfracture. RESULTS The absence of GDF-5 impaired cartilaginous matrix deposition in the callus and reduced callus cross-sectional area. After 56 days, the repaired bp fracture was mechanically comparable to that of controls. CONCLUSIONS Although GDF-5 deficiency did not compromise long-term fracture healing, a delay in cartilage formation and remodeling supports roles for GDF-5 in the early phase of bone repair. CLINICAL RELEVANCE Local delivery of GDF-5 to clinically difficult fractures may simulate cartilage formation in the callus and support subsequent remodeling.
Collapse
Affiliation(s)
- Cynthia M. Coleman
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Service, Bethesda, MD USA
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway Ireland
| | - Brooke H. Scheremeta
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Service, Bethesda, MD USA
- Schneider Children’s Hospital, New Hyde Park, NY USA
| | - Amanda T. Boyce
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Service, Bethesda, MD USA
| | - Robert L. Mauck
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Service, Bethesda, MD USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA USA
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Service, Bethesda, MD USA
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219 USA
| |
Collapse
|
39
|
Steck R, Ueno M, Gregory L, Rijken N, Wullschleger ME, Itoman M, Schuetz MA. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging. J Orthop Res 2011; 29:1245-50. [PMID: 21437963 DOI: 10.1002/jor.21341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 11/29/2010] [Indexed: 02/04/2023]
Abstract
Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.
Collapse
Affiliation(s)
- Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
The LockingMouseNail—A New Implant for Standardized Stable Osteosynthesis in Mice. J Surg Res 2011; 169:220-6. [DOI: 10.1016/j.jss.2009.11.713] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 11/20/2022]
|
41
|
Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, Matthys R, Pohlemann T, Menger MD. Sildenafil accelerates fracture healing in mice. J Orthop Res 2011; 29:867-73. [PMID: 21246617 DOI: 10.1002/jor.21324] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Sildenafil, a cyclic guanosine monophosphate (cGMP)-dependent phospodiesterase-5 inhibitor, has been shown to be a potent stimulator of angiogenesis through upregulation of pro-angiogenic factors and control of cGMP concentration. Herein, we determined whether sildenafil also influences angiogenic growth factor expression and bone formation during the process of fracture healing. Bone healing was studied in a murine closed femur fracture model using radiological, biomechanical, histomorphometric, and protein biochemical analysis at 2 and 5 weeks after fracture. Thirty mice received 5 mg/kg body weight sildenafil p.o. daily. Controls (n = 30) received equivalent amounts of vehicle. After 2 weeks of fracture healing sildenafil significantly increased osseous fracture bridging, as determined radiologically and histologically. This resulted in an increased biomechanical stiffness compared to controls. A smaller callus area with a slightly reduced amount of cartilaginous tissue indicated an accelerated healing process. After 5 weeks the differences were found blunted, demonstrating successful healing in both groups. Western blot analysis showed a significantly higher expression of the pro-angiogenic and osteogenic cysteine-rich protein (CYR) 61, confirming the increase of bone formation. We show for the first time that sildenafil treatment accelerates fracture healing by enhancing bone formation, most probably by a CYR61-associated pathway.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gurkan UA, Kishore V, Condon KW, Bellido TM, Akkus O. A scaffold-free multicellular three-dimensional in vitro model of osteogenesis. Calcif Tissue Int 2011; 88:388-401. [PMID: 21318400 PMCID: PMC10132772 DOI: 10.1007/s00223-011-9467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/21/2011] [Indexed: 01/28/2023]
Abstract
In vitro models of osteogenesis are essential for investigating bone biology and the effects of pharmaceutical, chemical, and physical cues on bone formation. Osteogenesis takes place in a complex three-dimensional (3D) environment with cells from both mesenchymal and hematopoietic origins. Existing in vitro models of osteogenesis include two-dimensional (2D) single type cell monolayers and 3D cultures. However, an in vitro scaffold-free multicellular 3D model of osteogenesis is missing. We hypothesized that the self-inductive ossification capacity of bone marrow tissue can be harnessed in vitro and employed as a scaffold-free multicellular 3D model of osteogenesis. Therefore, rat bone marrow tissue was cultured for 28 days in three settings: 2D monolayer, 3D homogenized pellet, and 3D organotypic explant. The ossification potential of marrow in each condition was quantified by micro-computed tomography. The 3D organotypic marrow explant culture resulted in the greatest level of ossification with plate-like bone formations (up to 5 mm in diameter and 0.24 mm in thickness). To evaluate the mimicry of the organotypic marrow explants to newly forming native bone tissue, detailed compositional and morphological analyses were performed, including characterization of the ossified matrix by histochemistry, immunohistochemistry, Raman microspectroscopy, energy dispersive X-ray spectroscopy, backscattered electron microscopy, and micromechanical tests. The results indicated that the 3D organotypic marrow explant culture model mimics newly forming native bone tissue in terms of the characteristics studied. Therefore, this platform holds significant potential to be used as a model of osteogenesis, offering an alternative to in vitro monolayer cultures and in vivo animal models.
Collapse
Affiliation(s)
- Umut A Gurkan
- Center for Biomedical Engineering at Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | |
Collapse
|
43
|
Histing T, Stenger D, Kuntz S, Scheuer C, Tami A, Garcia P, Holstein JH, Klein M, Pohlemann T, Menger MD. Increased osteoblast and osteoclast activity in female senescence-accelerated, osteoporotic SAMP6 mice during fracture healing. J Surg Res 2011; 175:271-7. [PMID: 21571305 DOI: 10.1016/j.jss.2011.03.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/04/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Previous studies have shown that fracture healing depends on gender and that in females, ovariectomy-induced osteoporosis impairs the healing process. There is no information, however, whether the alteration of fracture healing in osteoporosis also depends on gender. MATERIALS AND METHODS Therefore, we herein studied fracture healing in female and male senescence-accelerated osteoporotic mice, strain P6 (SAMP6), including biomechanical, histomorphometric, and protein biochemical analysis. RESULTS Bending stiffness was reduced in male and female SAMP6 mice compared with senescence-resistant strain 1 (SAMR1) controls. This was associated with elevated serum concentrations of tartrate-resistent acid phosphatase form 5b (TRAP) in both female and male SAMP6 mice. Callus size, however, was significantly larger in female SAMP6 mice compared with male SAMP6 mice and female SAMR1 controls. This indicates a delayed remodeling process in female SAMP6 mice. The delay of callus remodeling in female SAMP6 mice was associated with a significantly higher osteoprotegerin (OPG) callus tissue expression and increased serum concentrations of osteocalcin (OC) and deoxypyridinoline (DPD), indicating elevated osteoblast and osteoclast activities. CONCLUSION The present study shows that remodeling during fracture healing in female, but not in male, SAMP6 mice is delayed, most probably due to an increased osteoblast and osteoclast activity.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Darwiche SS, Kobbe P, Pfeifer R, Kohut L, Pape HC, Billiar T. Pseudofracture: an acute peripheral tissue trauma model. J Vis Exp 2011:2074. [PMID: 21525847 DOI: 10.3791/2074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality. Many studies have begun to assess these changes in the reactivity of the immune system following trauma. Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses. The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible. This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the pseudofracture, as we wanted a sterile yet proportionally severe peripheral tissue trauma model. Hemorrhagic shock is a common finding in the setting of severe trauma, and the global hypoperfusion adds a very relevant element to a trauma model. The pseudofracture model can be easily combined with a hemorrhagic shock model for a multiple trauma model of high severity.
Collapse
|
45
|
Histing T, Kristen A, Roth C, Holstein J, Garcia P, Matthys R, Menger M, Pohlemann T. In vivo gait analysis in a mouse femur fracture model. J Biomech 2010; 43:3240-3. [DOI: 10.1016/j.jbiomech.2010.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/25/2010] [Accepted: 07/24/2010] [Indexed: 11/25/2022]
|