1
|
Aykora D, Taşçı B, Şahin MZ, Tekeoğlu I, Uzun M, Sarafian V, Docheva D. Tendon regeneration deserves better: focused review on In vivo models, artificial intelligence and 3D bioprinting approaches. Front Bioeng Biotechnol 2025; 13:1580490. [PMID: 40352349 PMCID: PMC12062838 DOI: 10.3389/fbioe.2025.1580490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Tendon regeneration has been one of the most challenging issues in orthopedics. Despite various surgical techniques and rehabilitation methods, tendon tears or ruptures cannot wholly regenerate and gain the load-bearing capacity the tendon tissue had before the injury. The enhancement of tendon regeneration mostly requires grafting or an artificial tendon-like tissue to replace the damaged tendon. Tendon tissue engineering offers promising regenerative effects with numerous techniques in the additive manufacturing context. 3D bioprinting is a widely used additive manufacturing method to produce tendon-like artificial tissues based on biocompatible substitutes. There are multiple techniques and bio-inks for fabricating innovative scaffolds for tendon applications. Nevertheless, there are still many drawbacks to overcome for the successful regeneration of injured tendon tissue. The most important target is to catch the highest similarity to the tissue requirements such as anisotropy, porosity, viscoelasticity, mechanical strength, and cell-compatible constructs. To achieve the best-designed artificial tendon-like structure, novel AI-based systems in the field of 3D bioprinting may unveil excellent final products to re-establish tendon integrity and functionality. AI-driven optimization can enhance bio-ink selection, scaffold architecture, and printing parameters, ensuring better alignment with the biomechanical properties of native tendons. Furthermore, AI algorithms facilitate real-time process monitoring and adaptive adjustments, improving reproducibility and precision in scaffold fabrication. Thus, in vitro biocompatibility and in vivo application-based experimental processes will make it possible to accelerate tendon healing and reach the required mechanical strength. Integrating AI-based predictive modeling can further refine these experimental processes to evaluate scaffold performance, cell viability, and mechanical durability, ultimately improving translation into clinical applications. Here in this review, 3D bioprinting approaches and AI-based technology incorporation were given in addition to in vivo models.
Collapse
Affiliation(s)
- Damla Aykora
- Health Services Vocational School, Department of Medical Services and Techniques, First and Emergency Aid, Bitlis Eren University, Bitlis, Türkiye
| | - Burak Taşçı
- Vocational School of Technical Sciences, Fırat University, Elazığ, Türkiye
| | - Muhammed Zahid Şahin
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Sakarya University Training and Research Hospital, Sakarya University, Sakarya, Türkiye
| | - Ibrahim Tekeoğlu
- Faculty of Medicine, Department of Internal Medicine, Department of Physical Medicine and Rehabilitation, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Metehan Uzun
- Health Services Vocational School, Department of Medical Services and Techniques, First and Emergency Aid, Bitlis Eren University, Bitlis, Türkiye
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Department of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Wuerzburg, Germany
| |
Collapse
|
2
|
Aykora D, Taşçı B, Şahin MZ, Tekeoğlu I, Uzun M, Sarafian V, Docheva D. Tendon regeneration deserves better: focused review on In vivo models, artificial intelligence and 3D bioprinting approaches. Front Bioeng Biotechnol 2025; 13. [DOI: doi.org/10.3389/fbioe.2025.1580490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Tendon regeneration has been one of the most challenging issues in orthopedics. Despite various surgical techniques and rehabilitation methods, tendon tears or ruptures cannot wholly regenerate and gain the load-bearing capacity the tendon tissue had before the injury. The enhancement of tendon regeneration mostly requires grafting or an artificial tendon-like tissue to replace the damaged tendon. Tendon tissue engineering offers promising regenerative effects with numerous techniques in the additive manufacturing context. 3D bioprinting is a widely used additive manufacturing method to produce tendon-like artificial tissues based on biocompatible substitutes. There are multiple techniques and bio-inks for fabricating innovative scaffolds for tendon applications. Nevertheless, there are still many drawbacks to overcome for the successful regeneration of injured tendon tissue. The most important target is to catch the highest similarity to the tissue requirements such as anisotropy, porosity, viscoelasticity, mechanical strength, and cell-compatible constructs. To achieve the best-designed artificial tendon-like structure, novel AI-based systems in the field of 3D bioprinting may unveil excellent final products to re-establish tendon integrity and functionality. AI-driven optimization can enhance bio-ink selection, scaffold architecture, and printing parameters, ensuring better alignment with the biomechanical properties of native tendons. Furthermore, AI algorithms facilitate real-time process monitoring and adaptive adjustments, improving reproducibility and precision in scaffold fabrication. Thus, in vitro biocompatibility and in vivo application-based experimental processes will make it possible to accelerate tendon healing and reach the required mechanical strength. Integrating AI-based predictive modeling can further refine these experimental processes to evaluate scaffold performance, cell viability, and mechanical durability, ultimately improving translation into clinical applications. Here in this review, 3D bioprinting approaches and AI-based technology incorporation were given in addition to in vivo models.
Collapse
|
3
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
4
|
Sharun K, Banu SA, El-Husseiny HM, Abualigah L, Pawde AM, Dhama K, Amarpal. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Connect Tissue Res 2024; 65:364-382. [PMID: 39246090 DOI: 10.1080/03008207.2024.2397657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Toukh, Elqaliobiya, Egypt
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Fuchu-shi, Japan
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, Saudi Arabia
- MEU Research Unit, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
6
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Zhang K, Xu T, Xie H, Li J, Fu W. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study. Am J Sports Med 2023; 51:3008-3024. [PMID: 37528751 DOI: 10.1177/03635465231187042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease that causes joint pain and disability. Stem cell therapy is emerging as a promising treatment for OA. PURPOSE To evaluate the ability of peripheral blood-derived mesenchymal stem cells (PBMSCs) combined with donor-matched platelet-rich plasma (PRP) to treat OA in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS PBMSCs and donor-matched PRP were isolated and prepared from the same rabbit. PBMSCs were treated with serum-free medium, fetal bovine serum, and PRP; a series of PBMSC behaviors, including proliferation, migration, and adhesion, were compared among groups. The ability of PBMSCs or PRP alone and PBMSCs+PRP to protect chondrocytes against proinflammatory cytokine (interleukin 1β [IL-1β]) treatment was compared by analyzing reactive oxygen species (ROS)-scavenging ability and apoptosis. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate the expression of extracellular matrix (ECM) metabolism genes and proteins, and Western blotting was used to explore the potential mechanism of the corresponding signaling pathway. In vivo, the effect of PBMSCs+PRP on cartilage and inflammation of the synovium was observed in a surgery-induced OA rabbit model via gross observation, histological and immunohistochemical staining, and enzyme-linked immunosorbent assay. RESULTS Proliferation, migration, and adhesion ability were enhanced in PBMSCs treated with PRP. Moreover, compared with either PBMSCs or PRP alone, PBMSCs+PRP enhanced ROS-scavenging ability and inhibited apoptosis in IL-1β-treated chondrocytes. PBMSCs+PRP also reversed the IL-1β-induced degradation of collagen type 2 and aggrecan and increased expression of matrix metalloproteinase 13, and this effect was related to increased expression of ECM synthesis and decreased expression of degradation and inflammatory genes and proteins. Mechanistically, PBMSCs+PRP reduced the phosphorylation of inhibitor of nuclear factor-κBα (IκBα), which further inhibited the phosphorylation of downstream nuclear factor-κB (NF-κB) in the NF-κB signaling pathway. In vivo, compared with PBMSCs or PRP alone, intra-articular (IA) injection of PBMSCs+PRP enhanced cartilage regeneration and attenuated synovial inflammation in OA-induced rabbits. CONCLUSION These results demonstrate that PRP could enhance biological activities, including viability, migration, and adhesion, in PBMSCs. PBMSCs+PRP could rescue ECM degeneration by inhibiting inflammatory signaling in IL-1β-treated OA chondrocytes. In addition, IA injection of PBMSCs+PRP effectively attenuated OA progression in a surgery-induced OA rabbit model. CLINICAL RELEVANCE PBMSCs+PRP may provide a promising treatment for knee OA, and this study can advance the related basic research.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Iacopetti I, Perazzi A, Patruno M, Contiero B, Carolo A, Martinello T, Melotti L. Assessment of the quality of the healing process in experimentally induced skin lesions treated with autologous platelet concentrate associated or unassociated with allogeneic mesenchymal stem cells: preliminary results in a large animal model. Front Vet Sci 2023; 10:1219833. [PMID: 37559892 PMCID: PMC10407250 DOI: 10.3389/fvets.2023.1219833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Regenerative medicine for the treatment of skin lesions is an innovative and rapidly developing field that aims to promote wound healing and restore the skin to its original condition before injury. Over the years, different topical treatments have been evaluated to improve skin wound healing and, among them, mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) have shown promising results for this purpose. This study sought to evaluate the quality of the healing process in experimentally induced full-thickness skin lesions treated with PRP associated or unassociated with MSCs in a sheep second intention wound healing model. After having surgically created full-thickness wounds on the back of three sheep, the wound healing process was assessed by performing clinical evaluations, histopathological examinations, and molecular analysis. Treated wounds showed a reduction of inflammation and contraction along with an increased re-epithelialization rate and better maturation of the granulation tissue compared to untreated lesions. In particular, the combined treatment regulated the expression of collagen types I and III resulting in a proper resolution of the granulation tissue contrary to what was observed in untreated wounds; moreover, it led to a better maturation and organization of skin adnexa and collagen fibers in the repaired skin compared to untreated and PRP-treated wounds. Overall, both treatments improved the wound healing process compared to untreated wounds. Wounds treated with PRP and MSCs showed a healing progression that qualitatively resembles a restitutio ad integrum of the repaired skin, showing features typical of a mature healthy dermis.
Collapse
Affiliation(s)
- Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | | | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| |
Collapse
|
9
|
Carr BJ. Regenerative Medicine and Rehabilitation Therapy in the Canine. Vet Clin North Am Small Anim Pract 2023; 53:801-827. [PMID: 36997410 DOI: 10.1016/j.cvsm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Regenerative medicine is used in the canine to optimize tissue healing and treat osteoarthritis and soft tissue injuries. Rehabilitation therapy is also often implemented in the treatment and management of musculoskeletal conditions in the canine. Initial experimental studies have shown that regenerative medicine and rehabilitation therapy may work safely and synergistically to enhance tissue healing. Although additional study is required to define optional rehabilitation therapy protocols after regenerative medicine therapy in the canine, certain fundamental principles of rehabilitation therapy still apply to patients treated with regenerative medicine.
Collapse
|
10
|
Quintero D, Perucca Orfei C, Kaplan LD, de Girolamo L, Best TM, Kouroupis D. The roles and therapeutic potentialof mesenchymal stem/stromal cells and their extracellular vesicles in tendinopathies. Front Bioeng Biotechnol 2023; 11:1040762. [PMID: 36741745 PMCID: PMC9892947 DOI: 10.3389/fbioe.2023.1040762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.
Collapse
Affiliation(s)
- Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States,*Correspondence: Dimitrios Kouroupis,
| |
Collapse
|
11
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
12
|
Zhang X, Wang D, Wang Z, Ling SKK, Yung PSH, Tuan RS, Ker DFE. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches. J Orthop Translat 2022; 36:91-108. [PMID: 36090820 PMCID: PMC9428729 DOI: 10.1016/j.jot.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background In the musculoskeletal system, bone, tendon, and muscle form highly integrated multi-tissue units such as the rotator cuff complex, which facilitates functional and dynamic movement of the shoulder joint. Understanding the intricate interplay among these tissues within clinical, biological, and engineering contexts is vital for addressing challenging issues in treatment of musculoskeletal disorders and injuries. Methods A wide-ranging literature search was performed, and findings related to the socioeconomic impact of rotator cuff tears, the structure-function relationship of rotator cuff bone-tendon-muscle units, pathophysiology of injury, current clinical treatments, recent state-of-the-art advances (stem cells, growth factors, and exosomes) as well as their regulatory approval, and future strategies aimed at engineering bone-tendon-muscle musculoskeletal units are outlined. Results Rotator cuff injuries are a significant socioeconomic burden on numerous healthcare systems that may be addressed by treating the rotator cuff as a single complex, given its highly integrated structure-function relationship as well as degenerative pathophysiology and limited healing in bone-tendon-muscle musculoskeletal tissues. Current clinical practices for treating rotator cuff injuries, including the use of commercially available devices and evolving trends in surgical management have benefited patients while advances in application of stem/progenitor cells, growth factors, and exosomes hold clinical potential. However, such efforts do not emphasize targeted regeneration of bone-tendon-muscle units. Strategies aimed at regenerating bone-tendon-muscle units are thus expected to address challenging issues in rotator cuff repair. Conclusions The rotator cuff is a highly integrated complex of bone-tendon-muscle units that when injured, has severe consequences for patients and healthcare systems. State-of-the-art clinical treatment as well as recent advances have resulted in improved patient outcome and may be further enhanced by engineering bone-tendon-muscle multi-tissue grafts as a potential strategy for rotator cuff injuries. Translational Potential of this Article This review aims to bridge clinical, tissue engineering, and biological aspects of rotator cuff repair and propose a novel therapeutic strategy by targeted regeneration of multi-tissue units. The presentation of these wide-ranging and multi-disciplinary concepts are broadly applicable to regenerative medicine applications for musculoskeletal and non-musculoskeletal tissues.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Samuel Ka-kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| |
Collapse
|
13
|
Carr BJ. Platelet-Rich Plasma as an Orthobiologic: Clinically Relevant Considerations. Vet Clin North Am Small Anim Pract 2022; 52:977-995. [PMID: 35562219 DOI: 10.1016/j.cvsm.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet-rich plasma (PRP) is an autologous blood-derived product processed to concentrate platelets and the associated growth factors. PRP has been shown to be relatively well-tolerated and safe to use for a number of conditions in humans, equines, and canines. There are multiple commercial systems that have been validated for canine use. These systems use a variety of methodologies to produce a PRP product. However, PRP products have been shown to differ greatly between systems. Further study is needed to fully elucidate optimal component concentrations for various indications.
Collapse
Affiliation(s)
- Brittany Jean Carr
- The Veterinary Sports Medicine and Rehabilitation Center, 4104 Liberty Highway, Anderson, SC 29621, USA.
| |
Collapse
|
14
|
Uehara K, Zhao C, Gingery A, Thoreson AR, An KN, Amadio PC. The effect of fibrin formulation on cell migration in an in vitro tendon repair model. J Orthop Sci 2021; 26:902-907. [PMID: 32814661 PMCID: PMC7884481 DOI: 10.1016/j.jos.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND The purpose of this study was to determine the effect of fibrinogen concentration on cell viability and migration in a tissue culture tendon healing model. METHODS Forty-eight canine flexor digitorum profundus tendons were randomly divided into three groups. In each group the tendons were lacerated and repaired augmented with a canine bone marrow stromal cell seeded fibrin interposition patch using either 5 mg/ml fibrinogen and 25 U/ml thrombin (physiological as a control), 40 mg/ml fibrinogen and 250 U/ml thrombin (low adhesive), or 80 mg/ml fibrinogen and 250 U/ml thrombin (high adhesive). The sutured tendons were cultured for two or four weeks. RESULTS Failure load was not significantly different among the groups. Cell-labeling staining showed that the stromal cells migrated across the gap in the control and low adhesive groups, but there was no cell migration in the high adhesive group at two weeks. CONCLUSION A high fibrinogen concentration in a fibrin patch or glue may impede early cell migration. LEVEL OF EVIDENCE Not applicable because this study was a laboratory study.
Collapse
Affiliation(s)
- Kosuke Uehara
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chunfeng Zhao
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Anne Gingery
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew R Thoreson
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kai-Nan An
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Peter C Amadio
- Orthopaedic Biomechanics and Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Elkhouly NI, Elkilani OA, Kolaib HA, Elkhouly RM, Morsi DI. Does Autologous Platelet-Rich Plasma Improve Wound Healing and Pain Perception after Cesarean Section in High-Risk Patients? Gynecol Obstet Invest 2021; 86:336-342. [PMID: 34261076 DOI: 10.1159/000517117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the effect of autologous platelet-rich plasma (PRP) on wound healing and pain perception after cesarean section in high-risk patients. DESIGN This was a prospective randomized controlled trial. Participants/Materials, Settings, and Methods: This was a randomized controlled trial of 200 patients who came to the outpatient clinic of Menoufia University Hospital for elective cesarean surgery. The women were randomly assigned to 2 equal groups. The intervention group received PRP subcutaneous injection in the wound after surgery; however, the control group received the usual care. Outcome variables included the redness, edema, ecchymosis, discharge, approximation (REEDA) scale, Vancouver scar scale (VSS), and in addition to the visual analog scale (VAS). RESULTS From April 2018 to July 2020, the PRP group showed a greater reduction in the REEDA score compared to the control group on day 1, day 7, and this was continued till 6 months (1.51 ± 0.90 vs. 2.49 ± 1.12, p < 0.001). Compared with the control group, the PRP group had a significantly greater reduction in the VSS and VAS scores beginning on the seventh day (3.71 ± 0.99 vs. 4.67 ± 1.25, p < 0.001) and (5.06 ± 1.10 vs. 6.02 ± 1.15, p < 0.001), respectively, and continued till 6 months. LIMITATIONS Pain was not measured by the use of analgesics, and we did not investigate the effects of varying platelet concentrations, centrifuge duration, or speed. CONCLUSIONS PRP has positive effects on wound healing and pain reduction in high-risk patients undergoing cesarean section in low-resource settings.
Collapse
Affiliation(s)
- Nabih I Elkhouly
- Department of Obstetrics and Gynecology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Osama A Elkilani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Hend A Kolaib
- Department of Obstetrics and Gynecology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Reem M Elkhouly
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Dalia I Morsi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
16
|
Laurent A, Abdel-Sayed P, Grognuz A, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh AS, Raffoul W, Kronen P, Nuss K, von Rechenberg B, Applegate LA, Darwiche SE. Industrial Development of Standardized Fetal Progenitor Cell Therapy for Tendon Regenerative Medicine: Preliminary Safety in Xenogeneic Transplantation. Biomedicines 2021; 9:380. [PMID: 33916829 PMCID: PMC8066015 DOI: 10.3390/biomedicines9040380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Tendon defects require multimodal therapeutic management over extensive periods and incur high collateral burden with frequent functional losses. Specific cell therapies have recently been developed in parallel to surgical techniques for managing acute and degenerative tendon tissue affections, to optimally stimulate resurgence of structure and function. Cultured primary human fetal progenitor tenocytes (hFPT) have been preliminarily considered for allogeneic homologous cell therapies, and have been characterized as stable, consistent, and sustainable cell sources in vitro. Herein, optimized therapeutic cell sourcing from a single organ donation, industrial transposition of multi-tiered progenitor cell banking, and preliminary preclinical safety of an established hFPT cell source (i.e., FE002-Ten cell type) were investigated. Results underlined high robustness of FE002-Ten hFPTs and suitability for sustainable manufacturing upscaling within optimized biobanking workflows. Absence of toxicity or tumorigenicity of hFPTs was demonstrated in ovo and in vitro, respectively. Furthermore, a 6-week pilot good laboratory practice (GLP) safety study using a rabbit patellar tendon partial-thickness defect model preliminarily confirmed preclinical safety of hFPT-based standardized transplants, wherein no immune reactions, product rejection, or tumour formation were observed. Such results strengthen the rationale of the multimodal Swiss fetal progenitor cell transplantation program and prompt further investigation around such cell sources in preclinical and clinical settings for musculoskeletal regenerative medicine.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Anthony Grognuz
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Peter Kronen
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (P.K.); (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Katja Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (P.K.); (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (P.K.); (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (A.L.); (P.A.-S.); (A.G.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Salim E. Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (P.K.); (K.N.); (B.v.R.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Valizadeh A, Asghari S, Bastani S, Sarvari R, Keyhanvar N, Razin SJ, Khiabani AY, Yousefi B, Yousefi M, Shoae-Hassani A, Mahmoodpoor A, Hamishehkar H, Tavakol S, Keshel SH, Nouri M, Seifalian AM, Keyhanvar P. Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders? Reprod Biol 2021; 21:100472. [PMID: 33639342 DOI: 10.1016/j.repbio.2020.100472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023]
Abstract
Female reproductive system disorders (FRSD) with or without infertility are prevalent women's health problems with a variety of treatment approaches including surgery and hormone therapy. It currently considering to sub-branch of regenerative medicine including stem cells or growth factors injection-based delivery treatment might be improved female reproductive health life. The most common products used for these patients treatment are autologous cell or platelet-based products from patients, including platelet-rich plasma, plasma rich in growth factor, platelet-rich fibrin, and stromal vascular fraction. In this review, we discuss each of the above products used in treatment of FRSD and critically evaluate the clinical outcome.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran
| | - Sepideh Jalilzadeh Razin
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Yousefzadeh Khiabani
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Andam Baft Yakhteh (ABY) Company (Ltd), Tehran, Iran
| | - Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander Marcus Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London NW1 0NH, United Kingdom
| | - Peyman Keyhanvar
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; HealthNBICS Group, Convergence of Knowledge and Technology to the benefit of Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
18
|
De Angelis E, Grolli S, Saleri R, Conti V, Andrani M, Berardi M, Cavalli V, Passeri B, Ravanetti F, Borghetti P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci 2020; 133:98-105. [PMID: 32961475 DOI: 10.1016/j.rvsc.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.
Collapse
Affiliation(s)
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Melania Andrani
- Department of Veterinary Sciences, University of Parma, Italy
| | - Martina Berardi
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | | | | | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
19
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Rajpar I, Barrett JG. Multi-differentiation potential is necessary for optimal tenogenesis of tendon stem cells. Stem Cell Res Ther 2020; 11:152. [PMID: 32272975 PMCID: PMC7146987 DOI: 10.1186/s13287-020-01640-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tendon injury is a significant clinical problem due to poor healing and a high reinjury rate; successful treatment is limited by our poor understanding of endogenous tendon stem cells. Recent evidence suggests that adult stem cells are phenotypically diverse, even when comparing stem cells isolated from the same tissue from the same individual, and may in fact exist on a spectrum of proliferation and differentiation capacities. Additionally, the relationships between and clinical relevance of this phenotypic variation are poorly understood. In particular, tenogenic capacity has not been studied in comparison to tenogenic differentiation and cell proliferation. Toward this end, we performed a comprehensive assessment of cell proliferation and differentiation capacity toward four connective tissue lineages (tendon, cartilage, bone, and adipose) using tendon stem cell lines derived from single cells released directly from tendon tissue to (1) evaluate the differences, if any, in tenogenic potential, and (2) identify the relationships between differentiation phenotypes and proliferation capacity. Methods Tendon stem cells were derived from the endotenon of superficial digital flexor tendon from 3 horses. The cell suspension from each horse was separately plated simultaneously (1) at moderate density to generate a heterogenous population of cells—parent tendon cell line—and (2) at low density to separate single cells from each other to allow isolation of colonies that derive from single mother cells—clonal tendon stem cell lines. Thirty clonal tendon stem cell lines—10 from each horse—and each parent tendon cell line were assessed for tenogenesis, tri-lineage differentiation, and cell proliferation. Differentiation was confirmed by lineage-specific cell staining and quantified by the relative gene expression of lineage-specific markers. Statistical significance was determined using analysis of variance and post hoc Tukey’s tests. Results Three distinct differentiation phenotypes—differentiation potency toward all 4 tissue lineages and two tri-lineage differentiation potencies—were identified in tendon clonal stem cell lines. These phenotypes were differentiation toward (1) tendon, cartilage, bone, and adipose (TCOA); (2) tendon, cartilage, and bone (TCO); and (3) tendon, cartilage, and adipose (TCA). Further, clonal cell lines that differentiated toward all four lineages had the highest expression of scleraxis and mohawk upon tenogenesis. Moreover, cell proliferation was significantly different between phenotypic groups, as evidenced by increased numbers of cumulative cell population doublings in clonal cell lines that did not differentiate toward adipose. Conclusions Our study provides evidence of the heterogenous character of adult stem cells and identifies key differences in tendon stem cell differentiation and proliferative potentials from the same individual and from the same tendon. Isolation of tendon stem cell lines with the capacity to differentiate into all four connective tissue lineages may yield improved therapeutic benefits in clinical models of repair and promote a native, regenerative phenotype in engineered tendons. Future studies may be targeted to understanding the functional contributions of each tendon stem cell phenotype in vivo and identifying additional cell phenotypes.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, 17690 Old Waterford Road, Leesburg, VA, 20176, USA
| | - Jennifer G Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, 17690 Old Waterford Road, Leesburg, VA, 20176, USA.
| |
Collapse
|
21
|
O'Keefe RJ, Tuan RS, Lane NE, Awad HA, Barry F, Bunnell BA, Colnot C, Drake MT, Drissi H, Dyment NA, Fortier LA, Guldberg RE, Kandel R, Little DG, Marshall MF, Mao JJ, Nakamura N, Proffen BL, Rodeo SA, Rosen V, Thomopoulos S, Schwarz EM, Serra R. American Society for Bone and Mineral Research-Orthopaedic Research Society Joint Task Force Report on Cell-Based Therapies - Secondary Publication. J Orthop Res 2020; 38:485-502. [PMID: 31994782 DOI: 10.1002/jor.24485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy. Both the American Society for Bone and Mineral Research (ASBMR) and the Orthopaedic Research Society (ORS) are committed to ensuring that the potential of cell-based therapies is realized through rigorous, reproducible, and clinically meaningful scientific discovery. The two organizations convened a multidisciplinary and international Task Force composed of physicians, surgeons, and scientists who are recognized experts in the development and use of cell-based therapies. The Task Force was charged with defining the state-of-the art in cell-based therapies and identifying the gaps in knowledge and methodologies that should guide the research agenda. The efforts of this Task Force are designed to provide researchers and clinicians with a better understanding of the current state of the science and research needed to advance the study and use of cell-based therapies for skeletal tissues. The design and implementation of rigorous, thorough protocols will be critical to leveraging these innovative treatments and optimizing clinical and functional patient outcomes. In addition to providing specific recommendations and ethical considerations for preclinical and clinical investigations, this report concludes with an outline to address knowledge gaps in how to determine the cell autonomous and nonautonomous effects of a donor population used for bone regeneration. © 2020 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:485-502, 2020.
Collapse
Affiliation(s)
- Regis J O'Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Rocky S Tuan
- The Chinese University of Hong Kong, Institute for Tissue Engineering and Regenerative Medicine, Hong Kong SAR, China
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, CA, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Bruce A Bunnell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | | | - Matthew T Drake
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory Healthcare, Emory University, Tucker, GA, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rita Kandel
- Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David G Little
- Orthopaedic Research and Biotechnology, Kids Research Institute, Westmead, Australia
| | - Mary F Marshall
- Center for Biomedical Ethics and Humanities, University of Virginia, Charlottesville, VA, USA
| | - Jeremy J Mao
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| | - Benedikt L Proffen
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Harvard Medical School/Boston Children's Hospital, Boston, MA, USA
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Rosa Serra
- University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
23
|
O'Keefe RJ, Tuan RS, Lane NE, Awad HA, Barry F, Bunnell BA, Colnot C, Drake MT, Drissi H, Dyment NA, Fortier LA, Guldberg RE, Kandel R, Little DG, Marshall MF, Mao JJ, Nakamura N, Proffen BL, Rodeo SA, Rosen V, Thomopoulos S, Schwarz EM, Serra R. American Society for Bone and Mineral Research-Orthopaedic Research Society Joint Task Force Report on Cell-Based Therapies. J Bone Miner Res 2020; 35:3-17. [PMID: 31545883 DOI: 10.1002/jbmr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023]
Abstract
Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy. Both the American Society for Bone and Mineral Research (ASBMR) and the Orthopaedic Research Society (ORS) are committed to ensuring that the potential of cell-based therapies is realized through rigorous, reproducible, and clinically meaningful scientific discovery. The two organizations convened a multidisciplinary and international Task Force composed of physicians, surgeons, and scientists who are recognized experts in the development and use of cell-based therapies. The Task Force was charged with defining the state-of-the art in cell-based therapies and identifying the gaps in knowledge and methodologies that should guide the research agenda. The efforts of this Task Force are designed to provide researchers and clinicians with a better understanding of the current state of the science and research needed to advance the study and use of cell-based therapies for skeletal tissues. The design and implementation of rigorous, thorough protocols will be critical to leveraging these innovative treatments and optimizing clinical and functional patient outcomes. In addition to providing specific recommendations and ethical considerations for preclinical and clinical investigations, this report concludes with an outline to address knowledge gaps in how to determine the cell autonomous and nonautonomous effects of a donor population used for bone regeneration. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Regis J O'Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Rocky S Tuan
- The Chinese University of Hong Kong, Institute for Tissue Engineering and Regenerative Medicine, Hong Kong SAR, China
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, CA, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Bruce A Bunnell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | | | - Matthew T Drake
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory Healthcare, Emory University, Tucker, GA, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rita Kandel
- Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David G Little
- Orthopaedic Research and Biotechnology, Kids Research Institute, Westmead, Australia
| | - Mary F Marshall
- Center for Biomedical Ethics and Humanities, University of Virginia, Charlottesville, VA, USA
| | - Jeremy J Mao
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
| | - Benedikt L Proffen
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Harvard Medical School/Boston Children's Hospital, Boston, MA, USA
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Rosa Serra
- University of Alabama at Birmingham, AL, USA
| |
Collapse
|
24
|
Perucca Orfei C, Viganò M, Pearson JR, Colombini A, De Luca P, Ragni E, Santos-Ruiz L, de Girolamo L. In Vitro Induction of Tendon-Specific Markers in Tendon Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic Acid Stimulation. Int J Mol Sci 2019; 20:ijms20010149. [PMID: 30609804 PMCID: PMC6337430 DOI: 10.3390/ijms20010149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) and tissue-specific progenitors have been proposed as useful tools for regenerative medicine approaches in bone, cartilage and tendon-related pathologies. The differentiation of cells towards the desired, target tissue-specific lineage has demonstrated advantages in the application of cell therapies and tissue engineering. Unlike osteogenic and chondrogenic differentiation, there is no consensus on the best tenogenic induction protocol. Many growth factors have been proposed for this purpose, including BMP-12, b-FGF, TGF-β3, CTGF, IGF-1 and ascorbic acid (AA). In this study, different combinations of these growth factors have been tested in the context of a two-step differentiation protocol, in order to define their contribution to the induction and maintenance of tendon marker expression in adipose tissue and bone marrow derived MSCs and tendon cells (TCs), respectively. Our results demonstrate that TGF-β3 is the main inducer of scleraxis, an early expressed tendon marker, while at the same time inhibiting tendon markers normally expressed later, such as decorin. In contrast, we find that decorin is induced by BMP-12, b-FGF and AA. Our results provide new insights into the effect of different factors on the tenogenic induction of MSCs and TCs, highlighting the importance of differential timing in TGF-β3 stimulation.
Collapse
Affiliation(s)
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - John R Pearson
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Leonor Santos-Ruiz
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
- Network Centre for Biomedical Research ⁻ Biotechnology, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain.
- Department of Cell Biology, Genetics and Physiology, Instituto de Investigación University of Málaga, 29016 Malaga, Spain.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| |
Collapse
|
25
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Tenogenic Properties of Mesenchymal Progenitor Cells Are Compromised in an Inflammatory Environment. Int J Mol Sci 2018; 19:ijms19092549. [PMID: 30154348 PMCID: PMC6163784 DOI: 10.3390/ijms19092549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/26/2023] Open
Abstract
Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching. The impact of different inflammatory conditions, as represented by supplementation with interleukin-1β and/or tumor necrosis factor-α or by co-culture with allogeneic peripheral blood leukocytes, on ASC functional properties was investigated. High cytokine concentrations increased ASC proliferation and osteogenic differentiation, but decreased chondrogenic differentiation and ASC viability in scaffold culture, as well as tendon scaffold repopulation, and strongly influenced musculoskeletal gene expression. Effects regarding the latter differed between the monolayer and scaffold cultures. Leukocytes rather decreased ASC proliferation, but had similar effects on viability and musculoskeletal gene expression. This included decreased expression of the tenogenic transcription factor scleraxis by an inflammatory environment throughout culture conditions. The data demonstrate that ASC tenogenic properties are compromised in an inflammatory environment, with relevance to their possible mechanisms of action in acute tendon disease.
Collapse
|
27
|
Martinello T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedictis GM, Ferro S, Zuin M, Martines E, Brun P, Maccatrozzo L, Chiers K, Spaas JH, Patruno M. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res 2018; 14:202. [PMID: 29940954 PMCID: PMC6019727 DOI: 10.1186/s12917-018-1527-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. RESULTS At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. CONCLUSION Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa.
Collapse
Affiliation(s)
- T. Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - C. Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - A. Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - I. Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - F. Gemignani
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - G. M. DeBenedictis
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | | | | | - P. Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - L. Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - K. Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, University of Gent, Ghent, Belgium
| | - J. H. Spaas
- Global Stem cell Technology-ANACURA group, Noorwegenstraat 4, 9940 Evergem, Belgium
| | - M. Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| |
Collapse
|
28
|
González-Quevedo D, Martínez-Medina I, Campos A, Campos F, Carriel V. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018; 7:318-324. [PMID: 29922450 PMCID: PMC5987687 DOI: 10.1302/2046-3758.74.bjr-2017-0326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. METHODS We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis. RESULTS A total of 388 references were retrieved and 35 studies were included in this systematic review. The different biomaterials developed were analyzed and we found that they improve the biomechanical and histological characteristics of the repaired tendon. At meta-analysis, despite a high heterogeneity, it revealed a statistically significant effect in favour of the maximum load, the maximum stress, and the Young's modulus between experimental and control groups. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line, favouring experimental groups. CONCLUSIONS This review of the literature demonstrates the heterogeneity in the tendon tissue engineering literature. Several biomaterials have been developed and have been shown to enhance tendon healing and regeneration with improved outcomes.Cite this article: D. González-Quevedo, I. Martínez-Medina, A. Campos, F. Campos, V. Carriel. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018;7:318-324. DOI: 10.1302/2046-3758.74.BJR-2017-0326.
Collapse
Affiliation(s)
- D. González-Quevedo
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain, PhD Program in Biomedicine, University of Granada, Spain
| | - I. Martínez-Medina
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain
| | - A. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - F. Campos
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| | - V. Carriel
- Department of Histology (Tissue Engineering Group) and Instituto de Investigación Biosanitaria Ibs University of Granada, Granada, Spain
| |
Collapse
|
29
|
Mahmoudian-Sani MR, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J Cosmet Dermatol 2018; 17:650-659. [PMID: 29504236 DOI: 10.1111/jocd.12512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. EVIDENCE SYNTHESIS For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. CONCLUSION In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing.
Collapse
Affiliation(s)
| | - Fatemeh Rafeei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Amini
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 2018; 372:549-570. [PMID: 29404727 DOI: 10.1007/s00441-018-2792-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.
Collapse
|
31
|
Pöschke A, Krähling B, Failing K, Staszyk C. Molecular Characteristics of the Equine Periodontal Ligament. Front Vet Sci 2018; 4:235. [PMID: 29376061 PMCID: PMC5768624 DOI: 10.3389/fvets.2017.00235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/14/2017] [Indexed: 02/04/2023] Open
Abstract
The equine periodontal ligament (PDL) is a fibrous connective tissue that covers the intra-alveolar parts of the tooth and anchors it to the alveolar bone-it, therefore, provides a similar function to a tendinous structure. While several studies have considered the formation and structure of tendons, there is insufficient information particularly on the molecular composition of the PDL. Especially for the equine PDL, there is limited knowledge concerning the expression of genes commonly regarded as typical for tendon tissue. In this study, the gene expression of, e.g., collagen type 1 alpha 1 (COL1), collagen type 3 alpha 1 (COL3), scleraxis (SCX), and fibrocartilage markers was examined in the functional mature equine PDL compared with immature and mature equine tendon tissue. PDL samples were obtained from incisor, premolar, and molar teeth from seven adult horses. Additionally, tendon samples were collected from four adult horses and five foals at different sampling locations. Analyses of gene expression were performed using real-time quantitative polymerase chain reaction (qRT-PCR). Significantly higher expression levels of COL1 and 3 were found in the mature equine PDL in comparison with mature tendon, indicating higher rates of collagen production and turnover in the mature equine PDL. The expression levels of SCX, a specific marker for tenogenic-differentiated cells, were on a similar level in functional mature PDL and in mature tendon tissue. Evidence of chondrogenic metaplasia, often found in tendon entheses or in pressurized regions of tendons, was not found in the mature equine PDL. The obtained results justify further experiments focused on the possible use of equine PDL cells for cell-based regenerative therapies.
Collapse
Affiliation(s)
- Antje Pöschke
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Bastian Krähling
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Failing
- Department of Biomathematics, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Staszyk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
32
|
Magro M, Martinello T, Bonaiuto E, Gomiero C, Baratella D, Zoppellaro G, Cozza G, Patruno M, Zboril R, Vianello F. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochim Biophys Acta Gen Subj 2017; 1861:2802-2810. [PMID: 28778487 DOI: 10.1016/j.bbagen.2017.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 07/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. METHODS SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. RESULTS Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. CONCLUSIONS Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. GENERAL SIGNIFICANCE SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Emanuela Bonaiuto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
33
|
Romero A, Barrachina L, Ranera B, Remacha A, Moreno B, de Blas I, Sanz A, Vázquez F, Vitoria A, Junquera C, Zaragoza P, Rodellar C. Comparison of autologous bone marrow and adipose tissue derived mesenchymal stem cells, and platelet rich plasma, for treating surgically induced lesions of the equine superficial digital flexor tendon. Vet J 2017; 224:76-84. [DOI: 10.1016/j.tvjl.2017.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022]
|
34
|
Ribitsch I, Chang-Rodriguez S, Egerbacher M, Gabner S, Gueltekin S, Huber J, Schuster T, Jenner F. Sheep Placenta Cotyledons: A Noninvasive Source of Ovine Mesenchymal Stem Cells. Tissue Eng Part C Methods 2017; 23:298-310. [DOI: 10.1089/ten.tec.2017.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Iris Ribitsch
- Department for Companion Animals and Horses, Equine Clinic, Vetmeduni Vienna, Vienna, Austria
| | - Souyet Chang-Rodriguez
- Department for Companion Animals and Horses, Equine Clinic, Vetmeduni Vienna, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, Vetmeduni Vienna, Vienna, Austria
| | - Simone Gabner
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, Vetmeduni Vienna, Vienna, Austria
| | - Sinan Gueltekin
- Department for Companion Animals and Horses, Equine Clinic, Vetmeduni Vienna, Vienna, Austria
| | - Johann Huber
- Teaching and Research Farm Kremesberg, Vetmeduni Vienna, Vienna, Austria
| | - Therese Schuster
- Department for Companion Animals and Horses, Equine Clinic, Vetmeduni Vienna, Vienna, Austria
| | - Florien Jenner
- Department for Companion Animals and Horses, Equine Clinic, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
35
|
Liu L, Hindieh J, Leong DJ, Sun HB. Advances of stem cell based-therapeutic approaches for tendon repair. J Orthop Translat 2017; 9:69-75. [PMID: 29662801 PMCID: PMC5822968 DOI: 10.1016/j.jot.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
Tendon injuries are significant clinical problems. Current treatments often result in incomplete repair or healing, which may lead to reduced function and rupture. Stem cell-based therapy is a promising intervention for tendon repair. In this article, we attempt to provide a brief overview on the recent progress in the field, current understanding of the underlying mechanisms of the approach, and the potential of stem cell-based therapies beyond cell implantation. We conclude the review by sharing our viewpoints on the challenges, opportunities, and future directions of this approach. The translational potential of this article: This paper reviews recent progress on stem cell-based therapeutic approaches for tendon repair, which highlights its translational potential and challenges.
Collapse
Affiliation(s)
- Lidi Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer Hindieh
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
36
|
Effect of Transplantation of Bone Marrow Derived Mesenchymal Stem Cells and Platelets Rich Plasma on Experimental Model of Radiation Induced Oral Mucosal Injury in Albino Rats. Int J Dent 2017; 2017:8634540. [PMID: 28337218 PMCID: PMC5346393 DOI: 10.1155/2017/8634540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 01/18/2023] Open
Abstract
Normal tissue damage following radiotherapy is still a major problem in cancer treatment. Therefore, the current work aimed at exploring the possible role of systemically injected bone marrow derived mesenchymal stem cells (BM-MSCs) and/or locally injected platelet rich plasma (PRP) in ameliorating the side effects of ionizing radiation on the rat's tongue. Twelve rats served as control group (N) and 48 rats received a single radiation dose of 13 Gy to the head and neck region; then, they were equally divided into 4 experimental groups: irradiated only (C), irradiated + MSCs (S), irradiated + (PRP) (P), and combined group (PS). Animal scarification occurred in 3 and 7 days after radiation. Then, tongues were dissected and examined histologically and for expression of bcl-2 by RT-PCR. Histological examination of the treated groups (S), (P), and (PS) revealed an obvious improvement in the histological structure of the tongue, compared to group (C), in addition to upregulated expression of bcl-2, indicating decreased apoptotic activity. Conclusion. BM-MSCs and PRP have shown positive effect in minimizing the epithelial atrophy of normal oral mucosa after regional radiotherapy, which was emphasized by decreasing apoptotic activity in these tissues. Nevertheless, combined use of BM-MSCs and PRP did not reveal the assumed synergetic effect in oral tissue protection.
Collapse
|
37
|
Biologic and Tissue Engineering Strategies for Tendon Repair. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0019-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M. Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med 2016; 11:3202-3219. [PMID: 27597421 DOI: 10.1002/term.2209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/28/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
Tendon injuries are a noteworthy morbidity but at present there are few effective scientifically proven treatments. In recent decades, a number of new strategies including tissue engineering with mesenchymal stem cells (MSCs) have been proposed to enhance tendon healing. Although MSCs are an interesting and promising approach, many questions regarding their use in tendon repair remain unanswered. This descriptive overview of the literature of the last decade explores the in vivo studies on tendon healing, in small and large animal models, which used MSCs harvested from different tissues, and the state of the art in clinical applications. It was observed that there are still doubts about the optimum amount of MSCs to use and their source and the type of scaffolds to deliver the cells. Thus, further studies are needed to determine the best protocol for MSC use in tendon healing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Melania Maglio
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Nicolo Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
39
|
PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9103792. [PMID: 27610386 PMCID: PMC5004020 DOI: 10.1155/2016/9103792] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022]
Abstract
Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy.
Collapse
|
40
|
Tehranian A, Esfehani-Mehr B, Pirjani R, Rezaei N, Sadat Heidary S, Sepidarkish M. Application of Autologous Platelet-Rich Plasma (PRP) on Wound Healing After Caesarean Section in High-Risk Patients. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e34449. [PMID: 27660723 PMCID: PMC5027131 DOI: 10.5812/ircmj.34449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/24/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Background Platelet-rich plasma (PRP) is a human plasma product enriched by platelets, growth factors, and fibrinogen with high hemostatic and healing properties. Objectives The aim of this study was to evaluate the effect of autologous PRP on wound healing in high-risk women undergoing cesarean sections. Patients and Methods In this balanced, randomized, and controlled trial, 140 patients were admitted to Arash women’s hospital, Tehran, Iran from May of 2013 to November of 2014 for elective cesarean surgery. The patients were randomly assigned into two groups. The intervention group received PRP after surgery, whereas the control group received the usual care. All patients were evaluated at baseline, five days, and eight weeks after the cesarean section. The primary endpoint used the REEDA scale for assessing the changes in wound healing. The secondary outcome measures used were the Vancouver scar scale (VSS) and the visual analog scale (VAS). All scale scores were analyzed using a repeated measures test for variance. Results At the end of study, the PRP group showed a greater reduction in the edema ecchymosed discharge approximation (REEDA) score compared to the control group (85.5% reduction in the PRP group; 72% in the control group) (P < 0.001). Compared with the control group, the PRP group had a significantly greater reduction in the VAN score, beginning on the fifth day after the cesarean section (-0.7, 38% reduction in PRP group; -0.8, 33% in control group) (P < 0.001), and this trend was stable at the end of the eighth week (-0.6, 54% reduction in PRP group; -0.3, 18% in control group). Furthermore, patients treated with PRP experienced a 93% reduction in the VAS score at the end of follow-up, but the control group only observed a 79% reduction (P < 0.001). Conclusions It seems that applying PRP is an effective therapeutic approach for wound healing, and faster wound healing is expected due to the presence of more platelets and growth factors.
Collapse
Affiliation(s)
- Afsaneh Tehranian
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Afsaneh Tehranian, Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2177883283, Fax: +98 21 77883196, E-mail:
| | - Bahareh Esfehani-Mehr
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reihaneh Pirjani
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Negar Rezaei
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, IR Iran
| | - Somaye Sadat Heidary
- Research Promotion Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mahdi Sepidarkish
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, IR Iran
| |
Collapse
|
41
|
Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun 2016; 40:39-48. [PMID: 26757735 DOI: 10.1007/s11259-016-9652-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.
Collapse
|
42
|
Qi Y, Niu L, Zhao T, Shi Z, Di T, Feng G, Li J, Huang Z. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration. Stem Cell Res Ther 2015; 6:256. [PMID: 26689714 PMCID: PMC4687276 DOI: 10.1186/s13287-015-0256-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/21/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Background Promotion of bone regeneration is important for successful repair of bony defects. This study aimed to investigate whether combining bone marrow-derived mesenchymal stem cell (BMSC) sheets with platelet-rich plasma (PRP) gel/calcium phosphate particles could promote bone formation in the femoral bone defects of rats. Methods The proliferation and differentiation of BMSCs or BMSC sheets cultured with calcium phosphate particles and/or PRP were investigated in in vitro. In vivo, 36 2.5 × 5 mm bone defects were randomly divided into groups and treated with either BMSCs/PRP gel, calcium phosphate particles, PRP gel/calcium phosphate particles, a BMSC sheet/calcium phosphate particles, a BMSC sheet/PRP gel/calcium phosphate particles, or were left untreated (n = 6/group). A further 15 bone defects were treated with chloromethyl-benzamidodialkylcarbocyanine (CM-Dil)-labelled BMSC sheet/PRP gel/calcium phosphate particles and observed using a small animal in vivo fluorescence imaging system to trace the implanted BMSCs at 1 day, 3 days, 7 days, 2 weeks, and 4 weeks after surgery. Results The expression of collagen type I and osteocalcin genes of BMSCs or BMSC sheets treated with PRP and calcium phosphate particles was significantly higher than that of BMSCs or BMSC sheets treated with calcium phosphate particles or the controls (P <0.05). PRP can promote gene expression of collagen III and tenomodulin by BMSCs and in BMSC sheets. The VEGF, collagen I and osteocalcin gene expression levels were higher in the BMSC sheet than in cultured BMSCs (P <0.05). Moreover, alizarin red staining quantification, ALP quantification and calcein blue fluorescence showed the osteogenic potential of BMSCs treated with PRP and calcium phosphate particles The implanted BMSCs were detectable at 1 day, 3 days, 7 days, 2 weeks and 4 weeks after surgery by a small animal in vivo fluorescence imaging system and were visualized in the defect zones by confocal microscopy. At 4 weeks after implantation, the defects treated with the BMSC sheet/PRP gel/calcium phosphate particles showed significantly more bone formation than the other five groups. Conclusions Incorporation of an BMSC sheet into the PRP gel/calcium phosphate particles greatly promoted bone regeneration. These BMSC sheet and tissue engineering strategies offer therapeutic opportunities for promoting bone defect repair clinically.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lie Niu
- Department of Orthopedic Surgery, People's Hospital of Dongping County, Shandong, China.
| | - Tengfei Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Junhua Li
- Department of Orthopedic Surgery, Hangzhou TCM Hospital, Hangzhou, China.
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
43
|
Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:163-74. [PMID: 26715856 PMCID: PMC4685888 DOI: 10.2147/sccaa.s60832] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Headquarter, Hospital Authority, Hong Kong SAR, People's Republic of China
| |
Collapse
|
44
|
Uehara K, Zhao C, Gingery A, Thoreson AR, An KN, Amadio PC. Effect of Fibrin Formulation on Initial Strength of Tendon Repair and Migration of Bone Marrow Stromal Cells in Vitro. J Bone Joint Surg Am 2015; 97:1792-8. [PMID: 26537167 PMCID: PMC4625644 DOI: 10.2106/jbjs.o.00292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cell-based tissue engineering techniques have been introduced to improve tendon repair outcomes. The purpose of this study was to determine optimal concentrations of fibrinogen and thrombin for use as a scaffold to deliver stromal cells to the tendon repair site. METHODS Lacerated flexor digitorum profundus tendons from forty canine forepaws underwent simulated repair with fibrin gel interposition. The tendons were divided into five groups with different ratios of fibrinogen (mg/mL) to thrombin (NIH units/mL) used to form the gels. These ratios, which ranged from those found in normal hemostasis to those used clinically as adhesives, were 5:25 (the physiological ratio, used as a control), 40:250 (a low adhesive concentration of fibrinogen and a low adhesive concentration of thrombin [low-low group]), 80:250 (high-low group), 40:500 (low-high group), and 80:500 (high-high group). The failure load and tensile stiffness at time zero, compressive stiffness of the fibrin gel, and cell viability and migration were evaluated. RESULTS The failure loads of the high-low and high-high groups were significantly higher than that of the control group. The tensile stiffness of the high-high group was significantly higher than that of the control group. The high-low and high-high groups had significantly higher compressive stiffness than the other groups. While there was no significant difference among the groups regarding cell viability, the cells in the control, low-low, and low-high gels were spindle-shaped whereas those in the high-low and high-high groups were rounded. Cells migrated across scratch gaps within twenty-four hours in the control, low-low, and low-high groups, but not in the high-low and high-high groups. CONCLUSIONS Higher concentrations of fibrinogen resulted in stronger and stiffer gels, but the strength was far less than that of a tendon suture and these gels were associated with a more rounded cell morphology and reduced cell migration. Therefore, lower concentrations of fibrinogen should be used if a fibrin gel is employed to deliver cells for tendon repair. CLINICAL RELEVANCE Concentrations of fibrinogen lower than those used in fibrin glue may be more appropriate if fibrin is employed to create a cell delivery matrix for tendon repair.
Collapse
Affiliation(s)
- Kosuke Uehara
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| | - Chunfeng Zhao
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| | - Anne Gingery
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| | - Andrew R. Thoreson
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| | - Kai-Nan An
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| | - Peter C. Amadio
- Orthopedic Biomechanics and Tendon and Soft Tissue
Biology Laboratories, Division of Orthopedic Research, and Department of Biochemistry
and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905.
E-mail address for P.C. Amadio:
| |
Collapse
|
45
|
Sayegh ET, Sandy JD, Virk MS, Romeo AA, Wysocki RW, Galante JO, Trella KJ, Plaas A, Wang VM. Recent Scientific Advances Towards the Development of Tendon Healing Strategies. ACTA ACUST UNITED AC 2015; 4:128-143. [PMID: 26753125 DOI: 10.2174/2211542004666150713190231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There exists a range of surgical and non-surgical approaches to the treatment of both acute and chronic tendon injuries. Despite surgical advances in the management of acute tears and increasing treatment options for tendinopathies, strategies frequently are unsuccessful, due to impaired mechanical properties of the treated tendon and/or a deficiency in progenitor cell activities. Hence, there is an urgent need for effective therapeutic strategies to augment intrinsic and/or surgical repair. Such approaches can benefit both tendinopathies and tendon tears which, due to their severity, appear to be irreversible or irreparable. Biologic therapies include the utilization of scaffolds as well as gene, growth factor, and cell delivery. These treatment modalities aim to provide mechanical durability or augment the biologic healing potential of the repaired tissue. Here, we review the emerging concepts and scientific evidence which provide a rationale for tissue engineering and regeneration strategies as well as discuss the clinical translation of recent innovations.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - John D Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Mandeep S Virk
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anthony A Romeo
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Robert W Wysocki
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jorge O Galante
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Katie J Trella
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Anna Plaas
- Department of Rheumatology/Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Vincent M Wang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
46
|
Smith RK, Garvican ER, Fortier LA. The current 'state of play' of regenerative medicine in horses: what the horse can tell the human. Regen Med 2015; 9:673-85. [PMID: 25372081 DOI: 10.2217/rme.14.42] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horse is an attractive model for many human age-related degenerative diseases of the musculoskeletal system because it is a large animal species that both ages and exercises, and develops naturally occurring injuries with many similarities to the human counterpart. It therefore represents an ideal species to use as a 'proving ground' for new therapies, most notably regenerative medicine. Regenerative techniques using cell-based therapies for the treatment of equine musculoskeletal disease have been in use for over a decade. This review article provides a summary overview of the sources, current challenges and problems surrounding the use of stem cell and non-cell-based therapy in regenerative medicine in horses and is based on presentations from a recent Havemeyer symposium on equine regenerative medicine where speakers are selected from leading authorities in both equine and human regenerative medicine fields from 10 different countries.
Collapse
Affiliation(s)
- Roger Kw Smith
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | |
Collapse
|
47
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
48
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
49
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
50
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|