1
|
Qiu X, Zhao F, He D, He G, Li X, Liu R, Yuan J, Wang Y. BQU57 suppresses IL-1β-induced apoptosis and extracellular matrix degradation in nucleus pulposus cells by blocking the NF-κB signaling pathway. Cell Signal 2025; 131:111729. [PMID: 40064280 DOI: 10.1016/j.cellsig.2025.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/21/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a significant contributor to lower back pain (LBP), affecting approximately 80 % of the global population. The RalA inhibitor BQU57 plays a role in various cellular functions; however, its impact on nucleus pulposus cell (NPC) degeneration remains unclear. METHODS This study employed a combination of bioinformatics analysis and experimental validation to investigate the role of RalA in IVDD and its inhibitor BQU57 in its therapeutic potential. Gene expression datasets from the GEO database were analyzed to identify genes associated with IVDD, and clinical intervertebral disc samples were collected to validate the upregulation of RalA in degenerated discs. In vivo and in vitro assessments were conducted to evaluate the effects of BQU57 on the extracellular matrix (ECM) metabolism and apoptosis of nucleus pulposus (NP) cells. RESULTS Elevated expression of RalA was observed in degenerated intervertebral discs from IVDD patients, and its expression was correlated with disease severity. Further mechanistic studies revealed that the RalA inhibitor BQU57 could balance ECM metabolism and apoptosis, potentially through the activation of the NF-κB signaling pathway. CONCLUSION RalA plays a significant role in the pathogenesis of IVDD, and it may serve as a novel therapeutic target for IVDD. BQU57 demonstrates potential as an effective small molecule drug for the prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Feiyu Zhao
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dongqin He
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guanghui He
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoke Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruxing Liu
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jie Yuan
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Yongfeng Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Yu C, Liu C, Kuang W, Li J, Qiu S, Huang H, Li D, Xia B, Duan Y, Zhu L. The BATF2-ATF3 axis exacerbates intervertebral disc degeneration via inducing mitochondrial dysfunction. Int Immunopharmacol 2025; 156:114661. [PMID: 40267724 DOI: 10.1016/j.intimp.2025.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, spinal instability, disc herniation and spinal stenosis, which is a serious risk to human health, yet its molecular mechanisms remain unknown. The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been reported to play important roles in regulating cell proliferation, apoptosis, and inflammatory responses; however, its specific role in IVDD remains unknown. We firstly demonstrated BATF2 expression was significantly upregulated in degenerated nucleus pulposus (NP) tissues. Functional assays demonstrated that BATF2 overexpression promoted nucleus pulposus cell (NPC) apoptosis and extracellular matrix (ECM) catabolism in vitro and vivo. It is further demonstrated that BATF2 impairs mitochondrial function by disturbing mitochondrial redox homeostasis. Mechanistically, BATF2 stabilizes the activating transcription factor 3 (ATF3) by inhibiting the ubiquitination modification of ATF3. Notably, ATF3 overexpression accelerated NPC apoptosis and ECM degradation. More importantly, ATF3 knockdown reversed the effects of BATF2-induced mitochondrial dysfunction and IVDD progression. These results suggest that BATF2-ATF3 axis disrupts mitochondrial redox homeostasis to impair mitochondrial function, thereby exacerbating the progression of IVDD. Targeting BATF2-ATF3 axis could provide a potential strategy for IVDD treatment.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Sujun Qiu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoran Huang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dailong Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bin Xia
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Orthopaedics, Chengdu Seventh People's Hospital, Chengdu 610000, China
| | - Yang Duan
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
3
|
Shu S, Zhang X, Feng Z, Liu Z, Wang K, Li F, Wu Y, Shi B, Qiu Y, Zhu Z, Bao H. Upregulated CEMIP promotes intervertebral disc degeneration via AP-1-mediated change in chromatin accessibility. Clin Transl Med 2025; 15:e70322. [PMID: 40400122 PMCID: PMC12095184 DOI: 10.1002/ctm2.70322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 04/17/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD), a chronic and multifactorial skeletal disorder, is the primary cause of low back pain. It results in reduced disc height and nucleus pulposus hydration due to proteoglycan loss and nucleus pulposus cells (NPCs) dysfunction within a hypoxic microenvironment. Metabolic dysregulation initiates catabolic processes, leading to extracellular matrix (ECM) degradation and compromising disc biomechanical integrity. Emerging evidence highlights epigenetic modifications as pivotal in IDD, influencing NPC gene expression transcriptionally and post-transcriptionally. METHODS In order to understand the epigenetic underpinnings of IDD, our study provided a comprehensive profile of chromatin accessibility changes in degenerated NPCs using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). RESULTS With motif enrichment analysis, we identified the activator protein-1 (AP-1) transcription factor critical in driving the chromatin accessibility changes during IDD. Integrative ATAC-seq and transcriptional profiling revealed cell migration-inducing protein (CEMIP) as a key biomarker and contributor to IDD, exhibiting marked upregulation in IDD. Furthermore, we demonstrated that the AP-1 family, especially, c-Fos, orchestrates the upregulation of CEMIP. Elevated CEMIP plasma levels correlated with clinical IDD severity, and CEMIP knockout mice demonstrated improved IDD. CONCLUSIONS Mechanistically, CEMIP disrupted ECM homeostasis through its regulation of high molecular weight hyaluronic acid (HMW-HA) degradation, and its contribution to fibrotic changes. Our findings highlight CEMIP's vital role in IDD and identify the AP-1 family as a critical regulator of IDD, providing new potential therapeutic targets for novel IDD interventions. KEY POINTS Integrative ATAC-seq and transcriptional profiling revealed CEMIPas a key biomarker and contributor to IDD, exhibiting marked upregulation in IDD. Further, we demonstrated that the AP-1 family, especially, c-Fos, orchestrates the upregulation of CEMIP. Elevated CEMIP plasma levels correlated with clinical IDD severity, and CEMIP knockout mice demonstrated improved IDD. Mechanistically, CEMIP disrupted extracellular matrix homeostasis through its regulation of high molecular weight hyaluronic acid degradation, and its contribution to fibrotic changes. Our findings offer new avenues for IDD treatment strategies, with the potential to alleviate the global burden of back pain.
Collapse
Affiliation(s)
- Shibin Shu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xin Zhang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Kaiyang Wang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Fengrui Li
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yating Wu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bo Shi
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Hongda Bao
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
4
|
Liu XW, Huang SS, Xu P, Xu HW, Wang DK, Wang SJ. Transcription factor EP300 targets SIRT5 to promote autophagy of nucleus pulposus cells and attenuate intervertebral disc degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119933. [PMID: 40096894 DOI: 10.1016/j.bbamcr.2025.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a prevalent spinal ailment and the leading cause of chronic low back pain. Understanding the exact pathogenesis of IVDD and developing targeted molecular drugs will be important in the future. Autophagy plays a key role in the metabolic processes and in the quality control of proteins in IVDD. However, the role of autophagy in the senescence of nucleus pulposus cell (NPC), the primary cells in the intervertebral disc responsible for maintaining the disc's structure and function, is not yet clear. METHODS Gene expression profiling data of human disc tissue were obtained from the Gene Expression Omnibus GSE15227, GSE23130, and GSE70362 datasets. Autophagy-related differentially expressed genes were identified from the Molecular Signatures Database (MSigDB) database. Weighted gene co-expression network analysis (WGCNA), receiver operating characteristic (ROC) curves, and least absolute shrinkage and selection operator (LASSO) regression identified an autophagy-related hub gene that encodes the E1A binding protein EP300 transcription factor in IVDD samples. Potential downstream target genes of EP300 were identified by bioinformatics analysis. The analysis identified sirtuin 5 (SIRT5) as a potential downstream target of EP300. Chromatin immunoprecipitation (ChIP)-qPCR, small interfering RNA (siRNA), and luciferase reporter gene assays were used to verify the interaction of EP300 and SIRT5 in vitro. For in vivo experiments, SIRT5 knockout mice and SIRT5-overexpressing adeno-associated virus serotype 5 (AAV5) were constructed to verify the effect of the EP300-SIRT5 signal axis on the progression of IVDD. RESULTS EP300 expression was reduced in the IVDD samples compared with its expression in healthy disc tissue samples. The reduced EP300 expression inhibited the occurrence of autophagy, which promoted NPC senescence. ChIP-qPCR and luciferase reporter gene assays showed that EP300 promoted SIRT5 expression by direct binding to its promoter. Activation of EP300 expression increased SIRT5 expression and significantly improved autophagy for inhibition of NPC senescence. In vivo experiments confirmed that knockdown of EP300 promoted NPC senescence and led to an exacerbation of IVDD, which was reversed by SIRT5 overexpression. CONCLUSION Our results provide the first evidence for the importance of EP300 and SIRT5 interactions in promoting IVDD development by inhibiting autophagy during IVDD. The EP300-SIRT5 signaling axis was identified as a promising target for therapy of IVDD based on autophagy genes.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shan-Shan Huang
- Department of Geriatric Neurology of Hua Shan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Pei Xu
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dian-Kai Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Tao Z, Zhang T, Ge Y, Li L, Ma C, Wang Z, Chen T, Zhang H, Li R, Jiang T, Ren Y. M2 macrophages regulate nucleus pulposus cell extracellular matrix synthesis through the OPN-CD44 axis in intervertebral disc degeneration. Osteoarthritis Cartilage 2025; 33:447-460. [PMID: 39842659 DOI: 10.1016/j.joca.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear. METHODS According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs). The expression of macrophage-associated markers was verified in specimens of human nucleus pulposus, lumbar spinal instability mice and annulus fibrosus puncture mice. By treating NPCs cocultured with M2 macrophages with osteopontin (OPN) neutralization antibody and siCD44, we demonstrated that both in vitro and in vivo macrophages regulated IDD through the OPN-CD44 axis. Using transforming growth factor beta 1 and siCD44 treatment, we verified that CD44 regulated the pSMAD2/3 pathway. RESULTS IDD engaged macrophage infiltration, mainly gathered in the endplate, and induced macrophage M2 polarization. Infiltrated macrophages showed high-level expression of OPN, and NPCs showed upregulated CD44. Depletion of macrophages significantly decreased the expression of OPN and CD44 in degenerative IVD, concurrently exacerbating IDD. The co-culture of macrophages and NPCs in vitro demonstrated that the conditioned media from NPCs induced macrophage M2 polarization. Further, M2 macrophages rescued NPCs extracellular matrix (ECM) phenotype through the OPN-CD44 axis, by regulating pSMAD2/3 nuclear translocation. CONCLUSIONS Our findings suggest that macrophages regulate NPC ECM expression in IDD through the OPN-CD44 axis, emphasizing the therapeutic potential of targeting macrophages and the OPN-CD44 axis for IDD prevention and treatment.
Collapse
Affiliation(s)
- Zhiwen Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tianyou Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yaning Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Lingzhi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Cheng Ma
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Zhengbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tong Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Helong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Ruya Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yongxin Ren
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
6
|
Huang Z, Shi M, Zhang C, Deng Z, Qin T, Wu J, Zhang X, Han W, Li S, Gao B, Xiao Y, Huang D, Ye W. Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167635. [PMID: 39706351 DOI: 10.1016/j.bbadis.2024.167635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Disturbances in lipid metabolism are closely related to intervertebral disc degeneration (IDD). However, the lipid metabolism characteristics of nucleus pulposus (NP) cells during IDD are unclear. Exercise protects against IDD and acts as a potent mediator of organ metabolism, in which muscle-secreted myokines actively participate. However, whether exercise-induced myokines alleviate IDD by regulating lipid metabolism in NP cells remains unknown. The present study revealed that lipid accumulation is the metabolic reprogramming phenotype in NP cells during IDD, which was attributed to an imbalance between increased fatty acid/triglyceride synthesis and diminished utilization, and was further associated with extracellular matrix (ECM) degradation and cell senescence. To explore the interaction between exercise and IDD, Sprague-Dawley rats were subjected to five weeks of treadmill running exercise, and rats in the exercise group exhibited less severe IDD than did those in the sedentary group. The expression of meteorin-like protein (Metrnl), a newly-discovered myokine that participates in lipid metabolism regulation, was observed to increase in muscle, serum and NP tissue after exercise. Moreover, Metrnl ameliorated lipid accumulation in NP cells and further alleviated ECM degradation and cell senescence. Mechanistically, Metrnl activated the fatty acid β-oxidation rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A) via peroxisome proliferator-activated receptor α (PPARα) to increase lipid utilization in NP cells. This study provides insight into the lipid metabolic features of NP cells in IDD and reveals the intrinsic connections among exercise, metabolism and IDD, with the myokine Metrnl emerging as a pivotal mediator with therapeutic potential.
Collapse
Affiliation(s)
- Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihuai Deng
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohe Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Xiao
- School of Medicine and Dentistry & Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Lu S, Li M, Cheng Z, Liang Y, Huang J, Huang J, Wang K, Yao D, Chen E, Wang P, Li Y, Huang L. HMGB1-mediated macrophage regulation of NF-κB activation and MMP3 upregulation in nucleus pulposus cells: A critical mechanism in the vicious cycle of intervertebral disc degeneration. Cell Signal 2025; 127:111628. [PMID: 39880103 DOI: 10.1016/j.cellsig.2025.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, primarily driven by inflammatory processes within the disc, particularly involving the infiltration and activity of macrophages. High Mobility Group Box 1 (HMGB1) has been identified as a crucial mediator in this inflammatory cascade, yet its precise role in macrophage-induced disc degeneration remains unclear. In this study, we employed a combination of in vivo and in vitro models, including genetically engineered mice with macrophage-specific overexpression of HMGB1, a rat model of IVDD, and cultured macrophages and nucleus pulposus cells (NPCs), to elucidate the role of HMGB1 in IVDD. Our findings reveal that HMGB1 overexpression in macrophages significantly accelerates IVDD progression by enhancing NF-κB activation and upregulating MMP3 expression in NPCs. Furthermore, the administration of glycyrrhizin (GL), an HMGB1 inhibitor, effectively mitigated these effects, delaying IVDD progression. This study not only uncovers the critical mechanisms by which HMGB1 regulates the interactions between macrophages and NPCs in the inflammatory microenvironment but also provides a theoretical framework for targeting HMGB1 as a potential therapeutic strategy for IVDD. Thus, our findings suggest a promising novel approach for the treatment of this condition.
Collapse
Affiliation(s)
- Shixin Lu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China; Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen 518033, PR China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China
| | - Ziying Cheng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an 710000, Shanxi, PR China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China
| | - Junshen Huang
- Department of Spine Surgery, People's Hospital of Longhua, 38 Jinglong Jianshe Road, Longhua District, Shenzhen 518000, PR China
| | - Jiajun Huang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen 518033, PR China
| | - Kun Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China
| | - Dengbo Yao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610000, Sichuan, PR China
| | - Enming Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen 518033, PR China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, PR China.
| |
Collapse
|
8
|
Xu H, Wei K, Ni J, Deng X, Wang Y, Xiang T, Song F, Wang Q, Niu Y, Jiang F, Wang J, Sheng L, Dai J. Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction. Bone Res 2025; 13:23. [PMID: 39952914 PMCID: PMC11828926 DOI: 10.1038/s41413-025-00402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 02/17/2025] Open
Abstract
Increased matrix stiffness of nucleus pulposus (NP) tissue is a main feature of intervertebral disc degeneration (IVDD) and affects various functions of nucleus pulposus cells (NPCs). Glycolysis is the main energy source for NPC survival, but the effects and underlying mechanisms of increased extracellular matrix (ECM) stiffness on NPC glycolysis remain unknown. In this study, hydrogels with different stiffness were established to mimic the mechanical environment of NPCs. Notably, increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis, and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. Meanwhile, RNA sequencing analysis showed altered cytoskeleton-related gene expression in NPCs on rigid substrates. Myocardin-related transcription factor A (MRTF-A) is a transcriptional coactivator in mechanotransduction mainly responding to cytoskeleton remodeling, which was activated and translocated to the nucleus under rigid substrate and was upregulated during IVDD progression. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed that MRTF-A overexpression reduced NPC glycolytic metabolite abundance and identified a correlation with AMPK pathway. Mechanistically, rigid substrates and MRTF-A overexpression inhibited Kidins220 expression and AMPK phosphorylation in NPCs, whereas MRTF-A inhibition, treated with the MRTF-A inhibitor CCG, partially rescued NP tissue degeneration and glycolytic enzyme expression. Our data demonstrate that MRTF-A is a critical regulator that responds to increased matrix stiffness in IVDD, and MRTF-A activation reduces NPC glycolysis by down-regulating Kidins220 and inhibiting AMPK phosphorylation.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinhao Ni
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuexing Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Taiyang Xiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fanglong Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanping Niu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengxian Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Sheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Dai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Zhao DW, Zhang J, Chen C, Sun W, Liu Y, Han M, Zhang Y, Fu Z, Shi C, Zhao X, Yang Z, Tang C, Zhao K, Zhu D, Zhang Y, Cheng L, Jiang X. Rejuvenation Modulation of Nucleus Pulposus Progenitor Cells Reverses Senescence-Associated Intervertebral Disc Degeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409979. [PMID: 39969420 DOI: 10.1002/adma.202409979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Indexed: 02/20/2025]
Abstract
The decreased regeneration potential of aging nucleus pulposus resident progenitor cells (NPPCs) fails to resist intervertebral disc degeneration (IVDD), and strategies to remodel the regeneration capacity of senescent NPPC are urgently needed. A decrease in Klotho gene expression in NPPCs of both old mice and humans exacerbates the impaired regenerative functionality of NPPC. Here, an NPPC-targeted lipid thymine nanoparticle (NT-LNP) is reported for the in situ manipulation of the regenerative repair potential of NPPCs, restoration of degenerated nucleus pulposus tissue, and mitigation of IVDD. Specifically, the results showed that the in-house customized lipid nanoparticles efficiently introduced Klotho circular ribonucleic acid (circRNA) into NPPCs to engender a renascent phenotype and tuned the balance of extracellular matrix synthesis/catabolism in vitro and in vivo. Moreover, an intradiscal injectable hydrogel system that scavenges chemokines (MCP1 and IL8) in tandem with NPPCs rejuvenated NT-LNPs in the IVD, modulating the inflammatory environment and synergistically promoting the regeneration of degenerated intervertebral discs. In summary, the findings establish that NPPCs can be re-engineered to be youthful and pluripotent to maintain homeostasis and rejuvenation, thereby providing a reversible treatment strategy for IVDD with broad application in other senescence-related diseases.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Jing Zhang
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Weiyi Sun
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Ying Liu
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Maosen Han
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zhipeng Fu
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Chongdeng Shi
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Xiaotian Zhao
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Zhenmei Yang
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Chunwei Tang
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Kun Zhao
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Danqing Zhu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, 4572A Academic Building Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| | - Xinyi Jiang
- Department of Orthopedics, Qilu Hospital, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong, 250012, China
| |
Collapse
|
10
|
Sun Y, Peng Y, Su Z, So KKH, Lu Q, Lyu M, Zuo J, Huang Y, Guan Z, Cheung KMC, Zheng Z, Zhang X, Leung VYL. Fibrocyte enrichment and myofibroblastic adaptation causes nucleus pulposus fibrosis and associates with disc degeneration severity. Bone Res 2025; 13:10. [PMID: 39828732 PMCID: PMC11743603 DOI: 10.1038/s41413-024-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 01/22/2025] Open
Abstract
Fibrotic remodeling of nucleus pulposus (NP) leads to structural and mechanical anomalies of intervertebral discs that prone to degeneration, leading to low back pain incidence and disability. Emergence of fibroblastic cells in disc degeneration has been reported, yet their nature and origin remain elusive. In this study, we performed an integrative analysis of multiple single-cell RNA sequencing datasets to interrogate the cellular heterogeneity and fibroblast-like entities in degenerative human NP specimens. We found that disc degeneration severity is associated with an enrichment of fibrocyte phenotype, characterized by CD45 and collagen I dual positivity, and expression of myofibroblast marker α-smooth muscle actin. Refined clustering and classification distinguished the fibrocyte-like populations as subtypes in the NP cells - and immunocytes-clusters, expressing disc degeneration markers HTRA1 and ANGPTL4 and genes related to response to TGF-β. In injury-induced mouse disc degeneration model, fibrocytes were found recruited into the NP undergoing fibrosis and adopted a myofibroblast phenotype. Depleting the fibrocytes in CD11b-DTR mice in which myeloid-derived lineages were ablated by diphtheria toxin could markedly attenuate fibrous modeling and myofibroblast formation in the NP of the degenerative discs, and prevent disc height loss and histomorphological abnormalities. Marker analysis supports that disc degeneration progression is dependent on a function of CD45+COL1A1+ and αSMA+ cells. Our findings reveal that myeloid-derived fibrocytes play a pivotal role in NP fibrosis and may therefore be a target for modifying disc degeneration and promoting its repair.
Collapse
Affiliation(s)
- Yi Sun
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zezhuo Su
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Kyle K H So
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiuji Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Maojiang Lyu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongcan Huang
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiping Guan
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaomin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Li Z, Cheng P, Xi H, Jiang T, Zheng X, Qiu J, Gong Y, Wu X, Mi S, Hong Y, Hong Z, Zhou W. Tomatidine Alleviates Intervertebral Disc Degeneration by Activating the Nrf2/HO-1/GPX4 Signaling Pathway. Drug Des Devel Ther 2024; 18:6313-6329. [PMID: 39741916 PMCID: PMC11687091 DOI: 10.2147/dddt.s481714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Intervertebral disc degeneration (IDD) is a leading cause of low back pain, and developing new molecular drugs and targets for IDD is a new direction for future treatment strategies. The aim of this study is to investigate the effects and mechanisms of tomatidine in ameliorating lumbar IDD. Methods Nucleus pulposus cells (NPCs) exposed to lipopolysaccharides were used as an in vitro model to investigate changes in the expression of extracellular matrix components and associated signaling pathway molecules. A lumbar instability model was used to simulate IDD. Tomatidine (Td) was then administered intraperitoneally, and its effects were evaluated through histopathological analysis. Results In vitro, Td significantly promoted ECM anabolism, inhibited ECM catabolism, and reduced oxidative stress and ferroptosis in LPS-stimulated NPCs. When Nrf2 expression was inhibited, oxidative stress and ferroptosis were exacerbated, and the protective effects of Td on NPCs were lost, suggesting the Nrf2/HO-1/GPX4 axis is critical for the therapeutic effects of Td. In vivo, histopathological analysis demonstrated that Td ameliorated IDD in a murine model. Conclusion Td alleviates IDD in vitro and in vivo by activating the Nrf2/HO-1/GPX4 pathway to inhibit ferroptosis in NPCs. This mechanism suggests Td is a promising candidate for IDD treatment.
Collapse
Affiliation(s)
- Ze Li
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Pu Cheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Huifeng Xi
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Ting Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xiaohang Zheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jianxin Qiu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Yuhang Gong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xinyu Wu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Yuzhen Hong
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430065, People’s Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Weiwei Zhou
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Chen D, Fan T, Sun K, Rao W, Sheng X, Wan Z, Shu B, Chen L. Network pharmacology and experimental validation to reveal the pharmacological mechanisms of Astragaloside Ⅳ in treating intervertebral disc degeneration. Eur J Pharmacol 2024; 982:176951. [PMID: 39214272 DOI: 10.1016/j.ejphar.2024.176951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aims to identify potential targets and regulatory mechanisms of Astragaloside Ⅳ (AS-Ⅳ) in treating intervertebral disc degeneration (IDD) through network pharmacology analysis with experimental validation. Lumbar spine instability (LSI) mouse models were first established and treated with AS-Ⅳ. Micro-CT, safranin O-fast green staining, IDD score, RT-PCR and immunohistochemistry staining were employed to demonstrate the effect of AS-Ⅳ. Network pharmacology was used to predict the signaling pathways and potential targets of AS-Ⅳ in treating IDD. RT-PCR and immunohistochemistry staining were used to elucidate and validate the mechanism of AS-Ⅳ in vivo. Animal experiments showed that AS-Ⅳ maintained disc height and volume, improved matrix metabolism in LSI mice, and restored Col2α1, ADAMTS-5, Aggrecan, and MMP-13 expression in degenerated discs. Network pharmacology analysis identified 32 cross-targets between AS-Ⅳ and IDD, and PPI network analysis filtered out 11 core genes, including ALB, MAPK1, MAPK14 (p38 MAPK), EGFR, TGFBR1, MAPK8, MMP3, ANXA5, ESR1, CASP3, and IGF1. Enrichment analysis revealed that 7 of the 11 core target genes enriched in the MAPK signaling pathway, and AS-Ⅳ exhibited stable binding to them according to molecular docking results. Experimental validation indicated that AS-Ⅳ reversed mRNA levels of 7 core targets in degenerated disc tissues in LSI mice. Immunohistochemistry staining further revealed that AS-Ⅳ treatment mainly depressed IDD-elevated protein levels of EGFR, p38 MAPK and CASP3 in the annulus fibrosus. This study elucidates that AS-Ⅳ alleviates lumbar spine instability-induced IDD in mice, suggesting the mechanism may involve inhibition of the EGFR/MAPK signaling pathway.
Collapse
Affiliation(s)
- Deta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianyou Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaoping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zijian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
13
|
Yu C, Li J, Kuang W, Ni S, Cao Y, Duan Y. PRDM1 promotes nucleus pulposus cell pyroptosis leading to intervertebral disc degeneration via activating CASP1 transcription. Cell Biol Toxicol 2024; 40:89. [PMID: 39432156 PMCID: PMC11493826 DOI: 10.1007/s10565-024-09932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain and poses a considerable burden to society. However, the molecular mechanisms underlying IVDD remain to be elucidated. PR/SET domain 1 (PRDM1) regulates cell proliferation, apoptosis, and inflammatory responses in various diseases. Despite these regulatory functions, the mechanism of action of PRDM1 in IVDD remains unexplored. In this study, we investigated the role and underlying mechanisms of action of PRDM1 in IVDD progression. The expression of PRDM1 in nucleus pulposus (NP) tissues and NP cells (NPCs) was assessed using western blotting, immunohistochemistry, and immunofluorescence. The effects of PRDM1 on IVDD progression were investigated in vitro and in vivo. Mechanistically, mRNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to confirm that PRDM1 triggered CASP1 transcription. Our study demonstrated for the first time that PRDM1 expression was substantially upregulated in degenerated NP tissues and NPCs. PRDM1 overexpression promoted NPCs pyroptosis by inhibiting mitophagy and exacerbating IVDD progression, whereas PRDM1 silencing exerted the opposite effect. Furthermore, PRDM1 activated CASP1 transcription, thereby promoting NPCs pyroptosis in vitro. Notably, CASP1 silencing reversed the effects of PRDM1 on the NPCs. To the best of our knowledge, this study is the first to demonstrate that PRDM1 silencing inhibits NPCs pyroptosis by repressing CASP1 transcription, which may be a promising new therapeutic target for IVDD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Jianjun Li
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Songjia Ni
- Department of Trauma Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yanlin Cao
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yang Duan
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China.
| |
Collapse
|
14
|
Liang S, Li N, Zhan J, Li Z, Tie C, Zhu Y, Guo H, Ke L, Li J, Xu Z, Zhang P, Cheng W. Magnetic resonance imaging classification in a percutaneous needle injury rat model of intervertebral disc degeneration. J Orthop Surg Res 2024; 19:632. [PMID: 39375759 PMCID: PMC11457380 DOI: 10.1186/s13018-024-05110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND During the development of disease-modifying intervertebral disc degeneration (IDD) drugs, the rat model of IDD is frequently used for disease progression assessment. The aim of this study was to describe a magnetic resonance (MRI) scoring system for the assessment of different disc conditions in puncture-induced IDD, allowing standardization and comparison of results obtained by different investigators. METHODS A total of 36 Sprague-Dawley rats were utilized in the present study. The animals were divided into two groups: a sham group and an IDD group caused by puncture. The rats in the IDD group were subsequently divided into six categories based on time frames, with five rats in each category. The sham group was divided into two sub-groups (n = 3) for 28 and 56 days, respectively. T2-weighted images of rats consecutively studied with MRI of the coccygeal discs were classified according to the time course using the corresponding histological data. Additional scoring of the micro-CT was employed to identify the progression of bone destruction of the rat model of IDD. RESULTS A comparison of the MRI results between the sham group and the IDD group revealed a significant reduction in NP height, area, T2WI value, and DHI in the latter group (P < 0.05). The micro-CT results demonstrated that following acupuncture, there was a notable decline in the BV, Tb.N, and height of the coccygeal vertebra, while the BS/BV and Tb.Sp exhibited a significant increase (P < 0.05). The histological results were analogous to the MRI results, indicating a progressive exacerbation of IDD and a corresponding increase in NP score (P < 0.05). The results of the MRI were found to be consistent with those of the micro-CT and histological analyses (P < 0.05). The results of the study demonstrate a robust correlation between MRI analysis and histological findings. Live animals are employed for MRI analysis to improve experiment comparability. The reliability of the MRI scoring system ensures assessment of disease progression in live animals, while promoting cost savings and animal welfare by avoiding the sacrifice of animals at different times. CONCLUSIONS The described scoring paradigm has quantitatively been found to differentiate IDD disease progression in an in vivo rat model. Hence, we suggest employing it to evaluate the rat IDD model and assess the effects of treatments in this model.
Collapse
Affiliation(s)
- Songlin Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Nianhu Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Jiawen Zhan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Zhichao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Hongyan Guo
- CapitalBio Corporation, Beijing, 102206, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, Guangdong, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China.
- Shandong Zhongke Advanced Technology Co., Ltd, Jinan, 250300, Shandong, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
15
|
Li C, Fei C, Le S, Lai Z, Yan B, Wang L, Zhang Z. Identification and validation of ferroptosis-related biomarkers in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1416345. [PMID: 39351146 PMCID: PMC11439793 DOI: 10.3389/fcell.2024.1416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Ferroptosis plays a significant role in intervertebral disc degeneration (IDD). Understanding the key genes regulating ferroptosis in IDD could reveal fundamental mechanisms of the disease, potentially leading to new diagnostic and therapeutic targets. Methods Public datasets (GSE23130 and GSE70362) and the FerrDb database were analyzed to identify ferroptosis-related genes (DE-FRGs) involved in IDD. Single-cell RNA sequencing data (GSE199866) was used to validate the specific roles and expression patterns of these genes. Immunohistochemistry and Western blot analyses were subsequently conducted in both clinical samples and mouse models to assess protein expression levels across different tissues. Results The analysis identified seven DE-FRGs, including MT1G, CA9, AKR1C1, AKR1C2, DUSP1, CIRBP, and KLHL24, with their expression patterns confirmed by single-cell RNA sequencing. Immunohistochemistry and Western blot analysis further revealed that MT1G, CA9, AKR1C1, AKR1C2, DUSP1, and KLHL24 exhibited differential expression during the progression of IDD. Additionally, the study highlighted the potential immune-modulatory functions of these genes within the IDD microenvironment. Discussion Our study elucidates the critical role of ferroptosis in IDD and identifies specific genes, such as MT1G and CA9, as potential targets for diagnosis and therapy. These findings offer new insights into the molecular mechanisms underlying IDD and present promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyong Le
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Yu XJ, Zhao YT, Abudouaini H, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Li MW, Wang XD, Wang YG, Hao DJ. A novel spherical GelMA-HAMA hydrogel encapsulating APET×2 polypeptide and CFIm25-targeting sgRNA for immune microenvironment modulation and nucleus pulposus regeneration in intervertebral discs. J Nanobiotechnology 2024; 22:556. [PMID: 39267105 PMCID: PMC11391743 DOI: 10.1186/s12951-024-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
METHODS Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1β. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1β, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Collapse
Grants
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Haimiti Abudouaini
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Xue Q, Li J, Qin R, Li M, Li Y, Zhang J, Wang R, Goltzman D, Miao D, Yang R. Nrf2 activation by pyrroloquinoline quinone inhibits natural aging-related intervertebral disk degeneration in mice. Aging Cell 2024; 23:e14202. [PMID: 38780001 PMCID: PMC11320358 DOI: 10.1111/acel.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1β-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Jie Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Ran Qin
- Department of OrthopaedicsNanjing First HospitalNanjingChina
| | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and InterventionShenzhen UniversityShenzhenChina
| | - Yiping Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Renlei Yang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
18
|
Wakefield B, Tang J, Hutchinson JL, Kanji R, Brooks C, Grol MW, Séguin CA, Penuela S, Beier F. Pannexin 3 deletion in mice results in knee osteoarthritis and intervertebral disc degeneration after forced treadmill running. J Orthop Res 2024; 42:1696-1709. [PMID: 38499500 DOI: 10.1002/jor.25830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Pannexin 3 (Panx3) is a glycoprotein that forms mechanosensitive channels expressed in chondrocytes and annulus fibrosus cells of the intervertebral disc (IVD). Evidence suggests Panx3 plays contrasting roles in traumatic versus aging osteoarthritis (OA) and intervertebral disc degeneration (IDD). However, whether its deletion influences the response of joint tissue to forced use is unknown. The purpose of this study was to determine if Panx3 deletion in mice causes increased knee joint OA and IDD after forced treadmill running. Male and female wildtype (WT) and Panx3 knockout (KO) mice were randomized to either a no-exercise group (sedentary; SED) or daily forced treadmill running (forced exercise; FEX) from 24 to 30 weeks of age. Knee cartilage and IVD histopathology were evaluated by histology, while tibial secondary ossification centers were analyzed using microcomputed tomography (µCT). Both male and female Panx3 KO mice developed larger superficial defects of the tibial cartilage after forced treadmill running compared with SED WT mice. Additionally, Panx3 KO mice developed reduced bone volume, and female PANX3 KO mice had lengthening of the lateral tubercle at the intercondylar eminence. In the lower lumbar spine, both male and female Panx3 KO mice developed histopathological features of IDD after running compared to SED WT mice. These findings suggest that the combination of deleting Panx3 and forced treadmill running induces OA and causes histopathological changes associated with the degeneration of the IVDs in mice.
Collapse
Affiliation(s)
- Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Justin Tang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Jeffrey L Hutchinson
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Rehanna Kanji
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Matthew W Grol
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
| | - Frank Beier
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Tan Z, Chen P, Dong X, Guo S, Leung VYL, Cheung JPY, Chan D, Richardson SM, Hoyland JA, To MKT, Cheah KSE. Progenitor-like cells contributing to cellular heterogeneity in the nucleus pulposus are lost in intervertebral disc degeneration. Cell Rep 2024; 43:114342. [PMID: 38865240 DOI: 10.1016/j.celrep.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The nucleus pulposus (NP) in the intervertebral disc (IVD) arises from embryonic notochord. Loss of notochordal-like cells in humans correlates with onset of IVD degeneration, suggesting that they are critical for healthy NP homeostasis and function. Comparative transcriptomic analyses identified expression of progenitor-associated genes (GREM1, KRT18, and TAGLN) in the young mouse and non-degenerated human NP, with TAGLN expression reducing with aging. Lineage tracing using Tagln-CreERt2 mice identified peripherally located proliferative NP (PeriNP) cells in developing and postnatal NP that provide a continuous supply of cells to the entire NP. PeriNP cells were diminished in aged mice and absent in puncture-induced degenerated discs. Single-cell transcriptomes of postnatal Tagln-CreERt2 IVD cells indicate enrichment for TGF-β signaling in Tagln descendant NP sub-populations. Notochord-specific removal of TGF-β/BMP mediator Smad4 results in loss of Tagln+ cells and abnormal NP morphologies. We propose Tagln+ PeriNP cells are potential progenitors crucial for NP homeostasis.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peikai Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Artificial Intelligence and Big Data Lab, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiaonan Dong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuang Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Michael K T To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Shenzhen Clinical Research Center for Rare Diseases, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China; Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Burt KG, Kim MKM, Viola DC, Abraham AC, Chahine NO. Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration. SCIENCE ADVANCES 2024; 10:eadj3194. [PMID: 38848366 PMCID: PMC11160472 DOI: 10.1126/sciadv.adj3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
Persistent inflammation has been associated with severe disc degeneration (DD). This study investigated the effect of prolonged nuclear factor κB (NF-κB) activation in DD. Using an inducible mouse model, we genetically targeted cells expressing aggrecan, a primary component of the disc extra cellular matrix, for activation of the canonical NF-κB pathway. Prolonged NF-κB activation led to severe structural degeneration accompanied by increases in gene expression of inflammatory molecules (Il1b, Cox2, Il6, and Nos2), chemokines (Mcp1 and Mif), and catabolic enzymes (Mmp3, Mmp9, and Adamts4). Increased recruitment of proinflammatory (F4/80+,CD38+) and inflammatory resolving (F4/80+,CD206+) macrophages was observed within caudal discs. We found that the secretome of inflamed caudal disc cells increased macrophage migration and inflammatory activation. Lumbar discs did not exhibit phenotypic changes, suggestive of regional spinal differences in response to inflammatory genetic overactivation. Results suggest prolonged NF-κB activation can induce severe DD through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and activation of macrophage cell populations.
Collapse
Affiliation(s)
- Kevin G. Burt
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Min Kyu M. Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Dan C. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Reyes Alcaraz V, Pattappa G, Miura S, Angele P, Blunk T, Rudert M, Hiraki Y, Shukunami C, Docheva D. A Narrative Review of the Roles of Chondromodulin-I (Cnmd) in Adult Cartilage Tissue. Int J Mol Sci 2024; 25:5839. [PMID: 38892027 PMCID: PMC11173128 DOI: 10.3390/ijms25115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Articular cartilage is crucial for joint function but its avascularity limits intrinsic repair, leading to conditions like osteoarthritis (OA). Chondromodulin-I (Cnmd) has emerged as a key molecule in cartilage biology, with potential implications for OA therapy. Cnmd is primarily expressed in cartilage and plays an important role in chondrocyte proliferation, cartilage homeostasis, and the blocking of angiogenesis. In vivo and in vitro studies on Cnmd, also suggest an involvement in bone repair and in delaying OA progression. Its downregulation correlates with OA severity, indicating its potential as a therapeutic target. Further research is needed to fully understand the mode of action of Cnmd and its beneficial implications for managing OA. This comprehensive review aims to elucidate the molecular characteristics of Cnmd, from its expression pattern, role in cartilage maintenance, callus formation during bone repair and association with OA.
Collapse
Affiliation(s)
- Viviana Reyes Alcaraz
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany;
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| |
Collapse
|
22
|
Zhang L, Hu S, Xiu C, Li M, Zheng Y, Zhang R, Li B, Chen J. Intervertebral disc-intrinsic Hedgehog signaling maintains disc cell phenotypes and prevents disc degeneration through both cell autonomous and non-autonomous mechanisms. Cell Mol Life Sci 2024; 81:74. [PMID: 38308696 PMCID: PMC10838248 DOI: 10.1007/s00018-023-05106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
Intervertebral disc degeneration is closely related to abnormal phenotypic changes in disc cells. However, the mechanism by which disc cell phenotypes are maintained remains poorly understood. Here, Hedgehog-responsive cells were found to be specifically localized in the inner annulus fibrosus and cartilaginous endplate of postnatal discs, likely activated by Indian Hedgehog. Global inhibition of Hedgehog signaling using a pharmacological inhibitor or Agc1-CreERT2-mediated deletion of Smo in disc cells of juvenile mice led to spontaneous degenerative changes in annulus fibrosus and cartilaginous endplate accompanied by aberrant disc cell differentiation in adult mice. In contrast, Krt19-CreER-mediated deletion of Smo specifically in nucleus pulposus cells led to healthy discs and normal disc cell phenotypes. Similarly, age-related degeneration of nucleus pulposus was accelerated by genetic inactivation of Hedgehog signaling in all disc cells, but not in nucleus pulposus cells. Furthermore, inactivation of Gli2 in disc cells resulted in partial loss of the vertebral growth plate but otherwise healthy discs, whereas deletion of Gli3 in disc cells largely corrected disc defects caused by Smo ablation in mice. Taken together, our findings not only revealed for the first time a direct role of Hedgehog-Gli3 signaling in maintaining homeostasis and cell phenotypes of annuls fibrosus and cartilaginous endplate, but also identified disc-intrinsic Hedgehog signaling as a novel non-cell-autonomous mechanism to regulate nucleus pulposus cell phenotype and protect mice from age-dependent nucleus pulposus degeneration. Thus, targeting Hedgehog signaling may represent a potential therapeutic strategy for the prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Siyuan Hu
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chunmei Xiu
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Meng Li
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yixin Zheng
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Rui Zhang
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Bin Li
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jianquan Chen
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Jin L, Xiao L, Manley BJ, Oh EG, Huang W, Zhang Y, Chi J, Shi W, Kerrigan JR, Sung SSJ, Kuan CY, Li X. CCR2 monocytes as therapeutic targets for acute disc herniation and radiculopathy in mouse models. Osteoarthritis Cartilage 2024; 32:52-65. [PMID: 37802464 PMCID: PMC10873076 DOI: 10.1016/j.joca.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Back pain and radiculopathy caused by disc herniation are major health issues worldwide. While macrophages are key players in disc herniation induced inflammation, their roles and origins in disease progression remain unclear. We aim to study the roles of monocytes and derivatives in a mouse model of disc herniation. METHODS Using a CCR2-CreER; R26R-EGFP (Ai6) transgenic mouse strain, we fate-mapped C-C chemokine receptor type 2 (CCR2) expressing monocytes and derivatives at disc herniation sites, and employed a CCR2RFP/RFP mouse strain and a CCR2-specific antagonist to study the effects of CCR2+ monocytes on local inflammatory responses, pain level, and disc degeneration by immunostaining, flow cytometry, and histology. RESULTS CCR2+ monocytes (GFP+) increased at the sites of disc hernia over postoperative day 4, 6, and 9 in CCR2-CreER; Ai6 mice. F4/80+ cells increased, and meanwhile, CD11b+ cells trended downward. Co-localization analysis revealed that both GFP+CD11b+ and GFP+F4/80+ constituted the majority of CD11b+ and F4/80+ cells at disc hernia sites. Fluorescence activated cell sorter purified GFP+ cells exhibited higher cytokine expressions than GFP- cells. Inhibition of CCR2 signaling reduced infiltration of monocytes and macrophages, alleviated pain, maintained disc height, and reduced osteoclast activity in adjacent cortical bone for up to 1 month. CONCLUSION Our findings suggest that circulating CCR2+ monocytes play important roles in initiating and promoting the local inflammatory responses, pain sensitization, and degenerative changes after disc herniation, and thus may serve as therapeutic targets for disc herniation induced back and leg pain.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brock J Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Wendy Huang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yi Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, Charlottesville, VA 22908, USA
| | - Jason R Kerrigan
- Department of Mechanical and Aerospace Engineering, Center of Applied Biomechanics, University of Virginia, Charlottesville, VA 22904, USA
| | - Sun-Sang J Sung
- Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
24
|
Hutchinson JL, Veras MA, Serjeant ME, McCann MR, Kelly AL, Quinonez D, Beier F, Séguin CA. Comparative histopathological analysis of age-associated intervertebral disc degeneration in CD-1 and C57BL/6 mice: Anatomical and sex-based differences. JOR Spine 2023; 6:e1298. [PMID: 38156059 PMCID: PMC10751972 DOI: 10.1002/jsp2.1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is a major contributor to back pain and disability. The cause of IVD degeneration is multifactorial, with no disease-modifying treatments. Mouse models are commonly used to study IVD degeneration; however, the effects of anatomical location, strain, and sex on the progression of age-associated degeneration are poorly understood. Methods A longitudinal study was conducted to characterize age-, anatomical-, and sex-specific differences in IVD degeneration in two commonly used strains of mice, C57BL/6 and CD-1. Histopathological evaluation of the cervical, thoracic, lumbar, and caudal regions of mice at 6, 12, 20, and 24 months of age was conducted by two blinded observers at each IVD for the nucleus pulposus (NP), annulus fibrosus (AF), and the NP/AF boundary compartments, enabling analysis of scores by tissue compartment, summed scores for each IVD, or averaged scores for each anatomical region. Results C57BL/6 mice displayed mild IVD degeneration until 24 months of age; at this point, the lumbar spine demonstrated the most degeneration compared to other regions. Degeneration was detected earlier in the CD-1 mice (20 months of age) in both the thoracic and lumbar spine. In CD-1 mice, moderate to severe degeneration was noted in the cervical spine at all time points assessed. In both strains, age-associated IVD degeneration in the thoracic and lumbar spine was associated with increased histopathological scores in all IVD compartments. In both strains, minimal degeneration was detected in caudal IVDs out to 24 months of age. Both C57BL/6 and CD-1 mice displayed sex-specific differences in the presentation and progression of age-associated IVD degeneration. Conclusions These results showed that the progression and severity of age-associated degeneration in mouse models is associated with marked differences based on anatomical region, sex, and strain. This information provides a fundamental baseline characterization for users of mouse models to enable effective and appropriate experimental design, interpretation, and comparison between studies.
Collapse
Affiliation(s)
- Jeffrey L. Hutchinson
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Matthew A. Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Meghan E. Serjeant
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Matthew R. McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Ashley L. Kelly
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryThe Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| |
Collapse
|
25
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
26
|
Wu X, Chen M, Lin S, Chen S, Gu J, Wu Y, Qu M, Gong W, Yao Q, Li H, Zou X, Chen D, Xiao G. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice. Aging Dis 2023; 14:1818-1833. [PMID: 37196110 PMCID: PMC10529740 DOI: 10.14336/ad.2023.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023] Open
Abstract
Degenerative disc disease (DDD) is one of the most common skeletal disorders affecting aged populations. DDD is the leading cause of low back/neck pain, resulting in disability and huge socioeconomic burdens. However, the molecular mechanisms underlying DDD initiation and progression remain poorly understood. Pinch1 and Pinch2 are LIM-domain-containing proteins with crucial functions in mediating multiple fundamental biological processes, such as focal adhesion, cytoskeletal organization, cell proliferation, migration, and survival. In this study, we found that Pinch1 and Pinch2 were both highly expressed in healthy intervertebral discs (IVDs) and dramatically downregulated in degenerative IVDs in mice. Deleting Pinch1 in aggrecan-expressing cells and Pinch2 globally (AggrecanCreERT2; Pinch1fl/fl; Pinch2-/-) caused striking spontaneous DDD-like lesions in lumbar IVDs in mice. Pinch loss inhibited cell proliferation and promoted extracellular matrix (ECM) degradation and apoptosis in lumbar IVDs. Pinch loss markedly enhanced the production of pro-inflammatory cytokines, especially TNFα, in lumbar IVDs and exacerbated instability-induced DDD defects in mice. Pharmacological inhibition of TNFα signaling mitigated the DDD-like lesions caused by Pinch loss. In human degenerative NP samples, reduced expression of Pinch proteins was correlated with severe DDD progression and a markedly upregulated expression of TNFα. Collectively, we demonstrate the crucial role of Pinch proteins in maintaining IVD homeostasis and define a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Sheng Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Jingliang Gu
- Department of Orthopedics, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Yuchen Wu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
27
|
Wang D, Shang Q, Mao J, Gao C, Wang J, Wang D, Wang H, Jia H, Peng P, Du M, Luo Z, Yang L. Phosphorylation of KRT8 (keratin 8) by excessive mechanical load-activated PKN (protein kinase N) impairs autophagosome initiation and contributes to disc degeneration. Autophagy 2023; 19:2485-2503. [PMID: 36897022 PMCID: PMC10392755 DOI: 10.1080/15548627.2023.2186099] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Excessive mechanical load (overloading) is a well-documented pathogenetic factor for many mechano stress-induced pathologies, i.e. intervertebral disc degeneration (IDD). Under overloading, the balance between anabolism and catabolism within nucleus pulposus (NP) cells are badly thrown off, and NP cells undergo apoptosis. However, little is known about how the overloading is transduced to the NP cells and contributes to disc degeneration. The current study shows that conditional knockout of Krt8 (keratin 8) within NP aggravates load-induced IDD in vivo, and overexpression of Krt8 endows NP cells greater resistance to overloading-induced apoptosis and degeneration in vitro. Discovery-driven experiments shows that phosphorylation of KRT8 on Ser43 by overloading activated RHOA-PKN (protein kinase N) impedes trafficking of Golgi resident small GTPase RAB33B, suppresses the autophagosome initiation and contributes to IDD. Overexpression of Krt8 and knockdown of Pkn1 and Pkn2, at an early stage of IDD, ameliorates disc degeneration; yet only knockdown of Pkn1 and Pkn2, when treated at late stage of IDD, shows a therapeutic effect. This study validates a protective role of Krt8 during overloading-induced IDD and demonstrates that targeting overloading activation of PKNs could be a novel and effective approach to mechano stress-induced pathologies with a wider window of therapeutic opportunity.Abbreviations: AAV: adeno-associated virus; AF: anulus fibrosus; ANOVA: analysis of variance; ATG: autophagy related; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; CEP: cartilaginous endplates; CHX: cycloheximide; cKO: conditional knockout; Cor: coronal plane; CT: computed tomography; Cy: coccygeal vertebra; D: aspartic acid; DEG: differentially expressed gene; DHI: disc height index; DIBA: dot immunobinding assay; dUTP: 2'-deoxyuridine 5'-triphosphate; ECM: extracellular matrix; EDTA: ethylene diamine tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPS: group-based prediction system; GSEA: gene set enrichment analysis; GTP: guanosine triphosphate; HE: hematoxylin-eosin; HRP: horseradish peroxidase; IDD: intervertebral disc degeneration; IF: immunofluorescence staining; IL1: interleukin 1; IVD: intervertebral disc; KEGG: Kyoto encyclopedia of genes and genomes; KRT8: keratin 8; KD: knockdown; KO: knockout; L: lumbar vertebra; LBP: low back pain; LC/MS: liquid chromatograph mass spectrometer; LSI: mouse lumbar instability model; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP3: matrix metallopeptidase 3; MRI: nuclear magnetic resonance imaging; NC: negative control; NP: nucleus pulposus; PBS: phosphate-buffered saline; PE: p-phycoerythrin; PFA: paraformaldehyde; PI: propidium iodide; PKN: protein kinase N; OE: overexpression; PTM: post translational modification; PVDF: polyvinylidene fluoride; qPCR: quantitative reverse-transcriptase polymerase chain reaction; RHOA: ras homolog family member A; RIPA: radio immunoprecipitation assay; RNA: ribonucleic acid; ROS: reactive oxygen species; RT: room temperature; TCM: rat tail compression-induced IDD model; TCS: mouse tail suturing compressive model; S: serine; Sag: sagittal plane; SD rats: Sprague-Dawley rats; shRNA: short hairpin RNA; siRNA: small interfering RNA; SOFG: safranin O-fast green; SQSTM1: sequestosome 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VG/ml: viral genomes per milliliter; WCL: whole cell lysate.
Collapse
Affiliation(s)
- Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| |
Collapse
|
28
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
29
|
Hu Z, Wang Y, Gao X, Zhang Y, Liu C, Zhai Y, Chang X, Li H, Li Y, Lou J, Li C. Optineurin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration. Front Pharmacol 2022; 13:893307. [PMID: 36105191 PMCID: PMC9465714 DOI: 10.3389/fphar.2022.893307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Low back pain is thought to be mainly caused by intervertebral disc degeneration (IVDD), and there is a lack of effective treatments. Cellular senescence and matrix degradation are important factors that cause disc degeneration. Mitochondrial dysfunction induced by oxidative stress is an important mechanism of cellular senescence and matrix degradation in the nucleus pulposus (NP), and mitophagy can effectively remove damaged mitochondria, restore mitochondrial homeostasis, and mitigate the damage caused by oxidative stress. Optineurin (OPTN) is a selective mitophagy receptor, and its role in intervertebral disc degeneration remains unclear. Here, we aimed to explore the effect of OPTN on H2O2-induced nucleus pulposus cell (NPCs) senescence and matrix degradation in a rat model of disc degeneration. Western blot analysis showed that OPTN expression was reduced in degenerative human and rat nucleus pulposus tissues and increased in H2O2-induced senescent NPCs. OPTN overexpression significantly inhibited H2O2-induced senescence and increased matrix-associated protein expression in NPCs, but OPTN knockdown showed the opposite effect. As previous reports have suggested that mitophagy significantly reduces mitochondrial damage and reactive oxygen species (ROS) caused by oxidative stress, and we used the mitophagy agonist CCCP, the mitophagy inhibitor cyclosporin A (CsA), and the mitochondrial ROS (mtROS) scavenger mitoTEMPO and confirmed that OPTN attenuated NPCs senescence and matrix degeneration caused by oxidative stress by promoting mitophagy to scavenge damaged mitochondria and excess reactive oxygen species, thereby slowing the progression of IVDD. In conclusion, our research suggests that OPTN is involved in IVDD and exerts beneficial effects against IVDD.
Collapse
Affiliation(s)
- Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yu Wang
- Department of Ophthalmology, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xiaoxin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Chenhao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|
30
|
Bhadouria N, Berman AG, Wallace JM, Holguin N. Raloxifene Stimulates Estrogen Signaling to Protect Against Age- and Sex-Related Intervertebral Disc Degeneration in Mice. Front Bioeng Biotechnol 2022; 10:924918. [PMID: 36032728 PMCID: PMC9404526 DOI: 10.3389/fbioe.2022.924918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen agonist raloxifene is an FDA-approved treatment of osteoporosis in postmenopausal women, which may also be a promising prophylactic for painful intervertebral disc (IVD) degeneration. Here, we hypothesized that 1) aging and biological sex contribute to IVD degeneration by reducing estrogen signaling and that 2) raloxifene stimulates estrogen signaling to protect against age- and sex-related IVD degeneration in mice. 2.5-month-old (male and female) and 22.5-month-old (female) C57Bl/6J mice were subcutaneously injected with raloxifene hydrochloride 5x/week for 6 weeks (n = 7-9/grp). Next, female mice were ovariectomized (OVX) or sham operated at 4 months of age and tissues harvested at 6 months (n = 5-6/grp). Advanced aging and OVX increased IVD degeneration score, weakened IVD strength, reduced estrogen receptor-α (ER-α) protein expression, and increased neurotransmitter substance P (SP) expression. Similar to aging and compared with male IVDs, female IVDs were more degenerated, mechanically less viscoelastic, and expressed less ER-α protein, but unlike the effect induced by aging or OVX, IVD mechanical force was greater in females than in males. Therapeutically, systemic injection of raloxifene promoted ER-α protein to quell these dysregulations by enlarging IVD height, alleviating IVD degeneration score, increasing the strength and viscoelastic properties of the IVD, and reducing IVD cell expression of SP in young-adult and old female mice. Transcriptionally, injection of raloxifene upregulated the gene expression of ER-α and extracellular matrix-related anabolism in young-adult and old IVD. In vertebra, advanced aging and OVX reduced trabecular BV/TV, whereas injection of raloxifene increased trabecular BV/TV in young-adult and old female mice, but not in young-adult male mice. In vertebra, advanced aging, OVX, and biological sex (females > males) increased the number of SP-expressing osteocytes, whereas injection of raloxifene reduced the number of SP-expressing osteocytes in young-adult female and male mice and old female mice. Overall, injection of estrogen agonist raloxifene in mice normalized dysregulation of IVD structure, IVD mechanics, and pain-related SP expression in IVD cells and osteocytes induced by aging and biological sex. These data suggest that, in addition to bone loss, raloxifene may relieve painful IVD degeneration in postmenopausal women induced by advanced age, biological sex, and estrogen depletion.
Collapse
Affiliation(s)
- Neharika Bhadouria
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States,Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States,Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Nilsson Holguin,
| |
Collapse
|
31
|
D’Erminio DN, Krishnamoorthy D, Lai A, Hoy RC, Natelson DM, Poeran J, Torres A, Laudier DM, Nasser P, Vashishth D, Illien-Jünger S, Iatridis JC. High fat diet causes inferior vertebral structure and function without disc degeneration in RAGE-KO mice. J Orthop Res 2022; 40:1672-1686. [PMID: 34676612 PMCID: PMC9021327 DOI: 10.1002/jor.25191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Back pain and spinal pathologies are associated with obesity in juveniles and adults, yet studies identifying causal relationships are lacking and none investigate sex differences. This study determined if high fat (HF) diet causes structural and functional changes to vertebrae and intervertebral discs (IVDs); if these changes are modulated in mice with systematic ablation for the receptor for advanced glycation endproducts (RAGE-KO); and if these changes are sex-dependent. Wild-type (WT) and RAGE-KO mice were fed a low fat (LF) or HF diet for 12 weeks starting at 6 weeks, representing the juvenile population. HF diet led to weight/fat gain, glucose intolerance, and increased cytokine levels (IL-5, MIG, and RANTES); with less fat gain in RAGE-KO females. Most importantly, HF diet reduced vertebral trabecular bone volume fraction and compressive and shear moduli, without a modifying effect of RAGE-KO, but with a more pronounced effect in females. HF diet caused reduced cortical area fraction only in WT males. Neither HF diet nor RAGE-KO affected IVD degeneration grade. Biomechanical properties of coccygeal motion segments were affected by RAGE-KO but not diet, with some interactions identified. In conclusion, HF diet resulted in inferior vertebral structure and function with some sex differences, no IVD degeneration, and few modifying effects of RAGE-KO. These structural and functional deficiencies with HF diet provide further evidence that diet can affect spinal structures and may increase the risk for spinal injury and degeneration with aging and additional stressors. Back pain and spinal pathologies are associated with obesity in juveniles and adults, yet studies identifying causal relationships are lacking and none investigate sex differences.
Collapse
Affiliation(s)
- Danielle N D’Erminio
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- Dept. of Biomedical Engineering, The City College of New York at CUNY, NY, NY
| | - Divya Krishnamoorthy
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- 3DBio Therapeutics, New York, NY
| | - Alon Lai
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Robert C Hoy
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Devorah M Natelson
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Jashvant Poeran
- Dept. of Population Health Science & Policy, and Medicine, Mount Sinai Health System, New York, NY
| | - Andrew Torres
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Damien M Laudier
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Philip Nasser
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| | - Deepak Vashishth
- Ctr. for Biotechnology & Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Svenja Illien-Jünger
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
- Emory University School of Medicine, Department of Orthopaedics, Atlanta, GA
| | - James C Iatridis
- Leni & Peter W. May Dept. of Orthopaedics, Mount Sinai Health System, New York, NY
| |
Collapse
|
32
|
Tang SN, Walter BA, Heimann MK, Gantt CC, Khan SN, Kokiko-Cochran ON, Askwith CC, Purmessur D. In vivo Mouse Intervertebral Disc Degeneration Models and Their Utility as Translational Models of Clinical Discogenic Back Pain: A Comparative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:894651. [PMID: 35812017 PMCID: PMC9261914 DOI: 10.3389/fpain.2022.894651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Benjamin A. Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mary K. Heimann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Connor C. Gantt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Safdar N. Khan
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Candice C. Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Devina Purmessur ;
| |
Collapse
|
33
|
Xu M, Huang J, Jin M, Jiang W, Luo F, Tan Q, Zhang R, Luo X, Kuang L, Zhang D, Liang S, Qi H, Chen H, Ni Z, Su N, Yang J, Du X, Chen B, Deng C, Xie Y, Chen L. Expansion of FGFR3-positive nucleus pulposus cells plays important roles in postnatal nucleus pulposus growth and regeneration. Stem Cell Res Ther 2022; 13:227. [PMID: 35659742 PMCID: PMC9166488 DOI: 10.1186/s13287-022-02903-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) can cause low back pain, a major public health concern. IVDD is characterized with loss of cells especially those in nucleus pulposus (NP), due to the limited proliferative potential and regenerative ability. Few studies, however, have been carried out to investigate the in vivo proliferation events of NP cells and the cellular contribution of a specific subpopulation of NP during postnatal growth or regeneration. METHODS We generated FGFR3-3*Flag-IRES-GFP mice and crossed FGFR3-CreERT2 mice with Rosa26-mTmG, Rosa26-DTA and Rosa26-Confetti mice, respectively, to perform inducible genetic tracing studies. RESULTS Expression of FGFR3 was found in the outer region of NP with co-localized expressions of proliferating markers. By fate mapping studies, FGFR3-positive (FGFR3+) NP cells were found proliferate from outer region to inner region of NP during postnatal growth. Clonal lineage tracing by Confetti mice and ablation of FGFR3·+ NP cells by DTA mice further revealed that the expansion of the FGFR3+ cells was required for the morphogenesis and homeostasis of postnatal NP. Moreover, in degeneration and regeneration model of mouse intervertebral disc, FGFR3+ NP cells underwent extensive expansion during the recovery stage. CONCLUSION Our present work demonstrates that FGFR3+ NP cells are novel subpopulation of postnatal NP with long-existing proliferative capacity shaping the adult NP structure and participating in the homeostasis maintenance and intrinsic repair of NP. These findings may facilitate the development of new therapeutic approaches for IVD regeneration.
Collapse
Affiliation(s)
- Meng Xu
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Department of Rehabilitation Medicine, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Junlan Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Min Jin
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wanling Jiang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fengtao Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qiaoyan Tan
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ruobin Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoqing Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Kuang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dali Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sen Liang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huabing Qi
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hangang Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhenhong Ni
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Su
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaolan Du
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bo Chen
- Department of Spine Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
34
|
Kroon T, Bhadouria N, Niziolek P, Edwards D, Choi R, Clinkenbeard EL, Robling A, Holguin N. Suppression of Sost/Sclerostin and Dickkopf-1 Augment Intervertebral Disc Structure in Mice. J Bone Miner Res 2022; 37:1156-1169. [PMID: 35278242 PMCID: PMC9320845 DOI: 10.1002/jbmr.4546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of low back pain, characterized by accelerated extracellular matrix breakdown and IVD height loss, but there is no approved pharmacological therapeutic. Deletion of Wnt ligand competitor Lrp5 induces IVD degeneration, suggesting that Wnt signaling is essential for IVD homeostasis. Therefore, the IVD may respond to neutralization of Wnt ligand competitors sost(gene)/sclerostin(protein) and/or dickkopf-1 (dkk1). Anti-sclerostin antibody (scl-Ab) is an FDA-approved bone therapeutic that activates Wnt signaling. We aimed to (i) determine if pharmacological neutralization of sclerostin, dkk1, or their combination would stimulate Wnt signaling and augment IVD structure and (ii) determine the prolonged adaptation of the IVD to global, persistent deletion of sost. Nine-week-old C57Bl/6J female mice (n = 6-7/group) were subcutaneously injected 2×/week for 5.5 weeks with scl-Ab (25 mg/kg), dkk1-Ab (25 mg/kg), 3:1 scl-Ab/dkk1-Ab (18.75:6.25 mg/kg), or vehicle (veh). Separately, IVD of sost KO and wild-type (WT) mice (n = 8/group) were harvested at 16 weeks of age. First, compared with vehicle, injection of scl-Ab, dkk1-Ab, and 3:1 scl-Ab/dkk1-Ab similarly increased lumbar IVD height and β-catenin gene expression. Despite these similarities, only injection of scl-Ab alone strengthened IVD mechanical properties and decreased heat shock protein gene expressions. Genetically and compared with WT, sost KO enlarged IVD height, increased proteoglycan staining, and imbibed IVD hydration. Notably, persistent deletion of sost was compensated by upregulation of dkk1, which consequently reduced the cell nuclear fraction for Wnt signaling co-transcription factor β-catenin in the IVD. Lastly, RNA-sequencing pathway analysis confirmed the compensatory suppression of Wnt signaling and revealed a reduction of cellular stress-related pathways. Together, suppression of sost/sclerostin or dkk1 each augmented IVD structure by stimulating Wnt signaling, but scl-Ab outperformed dkk1-Ab in strengthening the IVD. Ultimately, postmenopausal women prescribed scl-Ab injections to prevent vertebral fracture may also benefit from a restoration of IVD height and health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tori Kroon
- Department of Biomedical EngineeringIUPUIIndianapolisINUSA
| | - Neharika Bhadouria
- Department of Mechanical EngineeringPurdue UniversityWest LafayetteINUSA
| | | | - Daniel Edwards
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
| | - Roy Choi
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | | | - Alexander Robling
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | - Nilsson Holguin
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
- Department of Mechanical and Energy EngineeringIUPUIIndianapolisINUSA
| |
Collapse
|
35
|
Zhang W, Gong Y, Zheng X, Qiu J, Jiang T, Chen L, Lu F, Wu X, Cheng F, Hong Z. Platelet-Derived Growth Factor-BB Inhibits Intervertebral Disc Degeneration via Suppressing Pyroptosis and Activating the MAPK Signaling Pathway. Front Pharmacol 2022; 12:799130. [PMID: 35095507 PMCID: PMC8795915 DOI: 10.3389/fphar.2021.799130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a cytokine involved in tissue repair and tumor progression. It has been found to have expression differences between normal and degenerative intervertebral discs. However, it is not clear whether PDGF-BB has a protective effect on intervertebral disc degeneration (IDD). In this experiment, we treated nucleus pulposus cells (NPCs) with IL-1β to simulate an inflammatory environment and found that the extracellular matrix (ECM) anabolic function of NPCs in an inflammatory state was inhibited. Moreover, the induction of IL-1β also enhanced the expression of NLRP3 and the cleavage of caspase-1 and IL-1β, which activated the pyroptosis of NPCs. In this study, we studied the effect of PDGF-BB on IL-1β-treated NPCs and found that PDGF-BB not only significantly promotes the ECM anabolism of NPCs, but also inhibits the occurrence of pyroptosis and the production of pyroptosis products of NPCs. Consistent with this, when we used imatinib to block the PDGF-BB receptor, the above-mentioned protective effect disappeared. In addition, we found that PDGF-BB can also promote the ECM anabolism of NPCs by regulating the ERK, JNK, PI3K/AKT signaling pathways, but not the P38 signaling pathway. In vivo studies, mice that blocked PDGF-BB receptors showed more severe histological manifestations of intervertebral disc degeneration. In summary, our results indicate that PDGF-BB participates in inhibiting the occurrence and development of IDD by inhibiting pyroptosis and regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Weikang Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Yuhang Gong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaohang Zheng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianxin Qiu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ting Jiang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Lihua Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Fangying Lu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinhui Wu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Fengmin Cheng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
36
|
Chen S, Wu X, Lai Y, Chen D, Bai X, Liu S, Wu Y, Chen M, Lai Y, Cao H, Shao Z, Xiao G. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res 2022; 10:5. [PMID: 35013104 PMCID: PMC8748798 DOI: 10.1038/s41413-021-00179-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is the main cause of low back pain with major social and economic burdens; however, its underlying molecular mechanisms remain poorly defined. Here we show that the focal adhesion protein Kindlin-2 is highly expressed in the nucleus pulposus (NP), but not in the anulus fibrosus and the cartilaginous endplates, in the IVD tissues. Expression of Kindlin-2 is drastically decreased in NP cells in aged mice and severe IVDD patients. Inducible deletion of Kindlin-2 in NP cells in adult mice causes spontaneous and striking IVDD-like phenotypes in lumbar IVDs and largely accelerates progression of coccygeal IVDD in the presence of abnormal mechanical stress. Kindlin-2 loss activates Nlrp3 inflammasome and stimulates expression of IL-1β in NP cells, which in turn downregulates Kindlin-2. This vicious cycle promotes extracellular matrix (ECM) catabolism and NP cell apoptosis. Furthermore, abnormal mechanical stress reduces expression of Kindlin-2, which exacerbates Nlrp3 inflammasome activation, cell apoptosis, and ECM catabolism in NP cells caused by Kindlin-2 deficiency. In vivo blocking Nlrp3 inflammasome activation prevents IVDD progression induced by Kindlin-2 loss and abnormal mechanical stress. Of translational significance, adeno-associated virus-mediated overexpression of Kindlin-2 inhibits ECM catabolism and cell apoptosis in primary human NP cells in vitro and alleviates coccygeal IVDD progression caused by mechanical stress in rat. Collectively, we establish critical roles of Kindlin-2 in inhibiting Nlrp3 inflammasome activation and maintaining integrity of the IVD homeostasis and define a novel target for the prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongchao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Lim S, An SB, Jung M, Joshi HP, Kumar H, Kim C, Song SY, Lee J, Kang M, Han I, Kim B. Local Delivery of Senolytic Drug Inhibits Intervertebral Disc Degeneration and Restores Intervertebral Disc Structure. Adv Healthc Mater 2022; 11:e2101483. [PMID: 34699690 DOI: 10.1002/adhm.202101483] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is a leading cause of chronic low back pain. There is a strong clinical demand for more effective treatments for IVDD as conventional treatments provide only symptomatic relief rather than arresting IVDD progression. This study shows that senolytic therapy with local drug delivery can inhibit IVDD and restore IVD integrity. ABT263, a senolytic drug, is loaded in poly(lactic-co-glycolic acid) nanoparticles (PLGA-ABT) and intradiscally administered into injury-induced IVDD rat models. The single intradiscal injection of PLGA-ABT may enable local delivery of the drug to avascular IVD, prevention of potential systemic toxicity caused by systemic administration of senolytic drug, and morbidity caused by repetitive injections of free drug into the IVD. The strategy results in the selective elimination of senescent cells from the degenerative IVD, reduces expressions of pro-inflammatory cytokines and matrix proteases in the IVD, inhibits progression of IVDD, and even restores the IVD structure. This study demonstrates for the first time that local delivery of senolytic drug can effectively treat senescence-associated IVDD. This approach can be extended to treat other types of senescence-associated degenerative diseases.
Collapse
Affiliation(s)
- Songhyun Lim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER)‐Ahmedabad Gandhinagar Gujarat 382355 India
| | - Cheesue Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Ju‐Ro Lee
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
| | - Inbo Han
- Department of Neurosurgery CHA University School of Medicine CHA Bundang Medical Center, Seongnam‐si Gyeonggi‐do 13496 Republic of Korea
| | - Byung‐Soo Kim
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program for Bioengineering Seoul National University Seoul 08826 Republic of Korea
- Institute of Chemical Processes Institute of Engineering Research BioMAX Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
38
|
Chen Z, Ming J, Liu Y, Hu G, Liao Q. Epigenetic modification of miR-217 promotes intervertebral disc degeneration by targeting the FBXO21-ERK signalling pathway. Arthritis Res Ther 2022; 24:261. [PMID: 36443856 PMCID: PMC9703697 DOI: 10.1186/s13075-022-02949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Numerous potential therapeutic alternatives for intervertebral disc degeneration (IDD) have been investigated, the most promising of which are based on biological variables such as microRNAs (miRNAs). Therefore, we verified the hypothesis that miRNAs modulate IDD by affecting the FBXO21-ERK signalling pathway. METHODS Microarray and quantitative real-time polymerase chain reaction (RT-qPCR) tests were used to examine the expression profiles of miRNAs in nucleus pulposus (NP) cells between patients with IDD and controls. Western blotting and luciferase reporter assays were used to identify the miRNA targets. RESULTS Microarray and RT-qPCR assays confirmed that the expression level of miR-217 was significantly decreased in degenerative NP cells. CpG islands were predicted in the miR-217 promoter region. The IDD group had considerably higher methylation than the control group. Gain- and loss-of-function experiments revealed that miR-217 mimics inhibited apoptosis and extracellular matrix (ECM) breakdown in NP cells. Bioinformatic analyses and luciferase assays were used to determine the connection between miR-217 and FBXO21. In vitro tests revealed that miR-217 mimics inhibited the expression of FBXO21, pERK, MMP13, and ADAMTS5 proteins, successfully protecting the ECM from degradation. Additionally, in vivo investigation using the IDD mouse model demonstrated that the miR-217 agonist may sufficiently promote NP cell proliferation, decrease apoptosis, promote ECM synthesis, and suppress the expression of matrix-degrading enzymes in NP cells. CONCLUSIONS Overexpression of miR-217 inhibits IDD via FBXO21/ERK regulation. TRIAL REGISTRATION This study was performed in strict accordance with the NIH guidelines for the care and use of laboratory animals (NIH Publication No. 85-23 Rev. 1985) and was approved by the human research ethics committee of Wuhan University Renmin Hospital (Approval No. RMHREC-D-2020-391), and written informed consent was obtained from each participant.
Collapse
Affiliation(s)
- Zhonghui Chen
- grid.490567.9Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Fuzhou, China ,grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Jianghua Ming
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Yajing Liu
- grid.412632.00000 0004 1758 2270Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Geliang Hu
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| | - Qi Liao
- grid.412632.00000 0004 1758 2270Orthopaedic Surgery, Renmin Hospital of Wuhan University, No. 9 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei China
| |
Collapse
|
39
|
Di Pauli von Treuheim T, Torre OM, Ferreri ED, Nasser P, Abbondandolo A, Delgado Caceres M, Lin D, Docheva D, Iatridis JC. Tenomodulin and Chondromodulin-1 Are Both Required to Maintain Biomechanical Function and Prevent Intervertebral Disc Degeneration. Cartilage 2021; 13:604S-614S. [PMID: 34486420 PMCID: PMC8804743 DOI: 10.1177/19476035211029696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The underlying mechanisms and molecular factors influencing intervertebral disc (IVD) homeostasis and degeneration remain clinically relevant. Tenomodulin (Tnmd) and chondromodulin (Chm1) are antiangiogenic transmembrane glycoproteins, with cleavable C-terminus, expressed by IVD cells that are implicated in the onset of degenerative processes. We evaluate the organ-level biomechanical impact of knocking out Tnmd alone, and Tnmd and Chm1, simultaneously. DESIGN Caudal (c5-8) and lumbar vertebrae (L1-4) of skeletally mature male and female 9-month-old wildtype (WT), Tnmd knockout (Tnmd-/-), and Tnmd/Chm1 double knockout (Tnmd-/-/Chm-/-) mice were used (n = 9-13 per group). Disc height index (DHI), histomorphological changes, and axial, torsional, creep, and failure biomechanical properties were evaluated. Differences were assessed by one-way ANOVA with post hoc Bonferroni-corrected comparisons (P < 0.05). RESULTS Tnmd-/-/Chm1-/- IVDs displayed increased DHI and histomorphological scores that indicated increased IVD degeneration compared to the WT and Tnmd-/- groups. Double knockout IVDs required significantly less torque and energy to initiate torsional failure. Creep parameters were comparable between all groups, except for the slow time constant, which indicated faster outward fluid flow. Tnmd-/- IVDs lost fluid faster than the WT group, and this effect was amplified in the double knockout IVDs. CONCLUSION Knocking out Tnmd and Chm1 affects IVD fluid flow and organ-level biomechanical function and therefore may play a role in contributing to IVD degeneration. Larger effects of the Tnmd and Chm1 double knockout mice compared to the Tnmd single mutant suggest that Chm1 may play a compensatory role in the Tnmd single mutant IVDs.
Collapse
Affiliation(s)
| | - Olivia M. Torre
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily D. Ferreri
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelica Abbondandolo
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Delgado Caceres
- Experimental Trauma Surgery, Department
of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Dasheng Lin
- Orthopaedic Center of People’s
Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou,
China
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department
of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - James C. Iatridis
- Leni & Peter W. May Department of
Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James C. Iatridis, Leni & Peter W. May
Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave
Levy Place, Box 1188, New York, NY 10029-6574, USA.
| |
Collapse
|
40
|
MicroRNA-338-3p as a novel therapeutic target for intervertebral disc degeneration. Exp Mol Med 2021; 53:1356-1365. [PMID: 34531509 PMCID: PMC8492655 DOI: 10.1038/s12276-021-00662-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/29/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated the pivotal role played by microRNAs (miRNAs) in the etiopathogenesis of intervertebral disc degeneration (IDD). The study of miRNA intervention in IDD models may promote the advancement of miRNA-based therapeutic strategies. The aim of the current study was to investigate whether intradiscal delivery of miRNA can attenuate IDD development. Our results showed that miR-338-3p expression was significantly increased in the nucleus pulposus (NP) of patients with IDD. Moreover, there was a statistically significant positive correlation between the expression level of miR-338-3p and the severity of IDD. Our functional studies showed that miR-338-3p significantly influenced the expression of extracellular matrix synthesis genes, as well as the proliferation and apoptosis of NP cells. Mechanistically, miR-338-3p aggravated IDD progression by directly targeting SIRT6, a negative regulator of the MAPK/ERK pathway. Intradiscal injection of antagomir-338-3p significantly decelerated IDD development in mouse models. Our study is the first to identify miR-338-3p as a mediator of IDD and thus may be a promising target for rescuing IDD.
Collapse
|
41
|
Cambria E, Heusser S, Scheuren AC, Tam WK, Karol AA, Hitzl W, Leung VY, Müller R, Ferguson SJ, Wuertz‐Kozak K. TRPV4 mediates cell damage induced by hyperphysiological compression and regulates COX2/PGE2 in intervertebral discs. JOR Spine 2021; 4:e1149. [PMID: 34611585 PMCID: PMC8479521 DOI: 10.1002/jsp2.1149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aberrant mechanical loading of the spine causes intervertebral disc (IVD) degeneration and low back pain. Current therapies do not target the mediators of the underlying mechanosensing and mechanotransduction pathways, as these are poorly understood. This study investigated the role of the mechanosensitive transient receptor potential vanilloid 4 (TRPV4) ion channel in dynamic compression of bovine nucleus pulposus (NP) cells in vitro and mouse IVDs in vivo. METHODS Degenerative changes and the expression of the inflammatory mediator cyclooxygenase 2 (COX2) were examined histologically in the IVDs of mouse tails that were dynamically compressed at a short repetitive hyperphysiological regime (vs sham). Bovine NP cells embedded in an agarose-collagen hydrogel were dynamically compressed at a hyperphysiological regime in the presence or absence of the selective TRPV4 antagonist GSK2193874. Lactate dehydrogenase (LDH) and prostaglandin E2 (PGE2) release, as well as phosphorylation of mitogen-activated protein kinases (MAPKs), were analyzed. Degenerative changes and COX2 expression were further evaluated in the IVDs of trpv4-deficient mice (vs wild-type; WT). RESULTS Dynamic compression caused IVD degeneration in vivo as previously shown but did not affect COX2 expression. Dynamic compression significantly augmented LDH and PGE2 releases in vitro, which were significantly reduced by TRPV4 inhibition. Moreover, TRPV4 inhibition during dynamic compression increased the activation of the extracellular signal-regulated kinases 1/2 (ERK) MAPK pathway by 3.13-fold compared to non-compressed samples. Trpv4-deficient mice displayed mild IVD degeneration and decreased COX2 expression compared to WT mice. CONCLUSIONS TRPV4 therefore regulates COX2/PGE2 and mediates cell damage induced by hyperphysiological dynamic compression, possibly via ERK. Targeted TRPV4 inhibition or knockdown might thus constitute promising therapeutic approaches to treat patients suffering from IVD pathologies caused by aberrant mechanical stress.
Collapse
Affiliation(s)
- Elena Cambria
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Sally Heusser
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | | | - Wai Kit Tam
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Department of Molecular Mechanisms of Disease (DMMD), Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Wolfgang Hitzl
- Research Office (Biostatistics)Paracelsus Medical UniversitySalzburgAustria
- Department of Ophthalmology and OptometryParacelsus Medical UniversitySalzburgAustria
- Research Program Experimental Ophthalmology and Glaucoma ResearchParacelsus Medical UniversitySalzburgAustria
| | - Victor Y. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | - Ralph Müller
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | | | - Karin Wuertz‐Kozak
- Institute for BiomechanicsETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
- Spine Center, Schön Klinik München HarlachingAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria)MunichGermany
| |
Collapse
|
42
|
Brendler J, Winter K, Lochhead P, Schulz A, Ricken AM. Histological differences between lumbar and tail intervertebral discs in mice. J Anat 2021; 240:84-93. [PMID: 34427936 PMCID: PMC8655214 DOI: 10.1111/joa.13540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Both the lumbar and tail intervertebral discs (IVD) of mice serve as models for the pathogenesis and histologic progression of degenerative disc disease. Recent studies in mature mice, however, demonstrate that the mechanics and physical attributes of lumbar and tail IVD‐endplate (EP)‐interfaces are strikingly different. We hypothesized that these structural disparities are associated with differences in the composition and organization of soft tissue elements that influence the biomechanical properties of the spine. Lumbar and tail vertebral segments and discs were collected from the same C57BL/6N and C57BL/6JRj mice, respectively for histological comparison of coronal sections at the ages of 4 weeks (weaned, both strains, C57BL/6N: n = 7; C57BL/6JRj: n = 4), three (mature, C57BL/6N: n = 7; C57BL/6JRj: n = 4), twelve (middle aged, C57BL/6JRj only: n = 3) and eighteen (old, C57BL/6JRj only: n = 3) months old. The histology of lumbar and tail IVD‐EP‐interfaces of mature mice differed markedly. The lumbar IVD‐EP‐interphase was characterized by a broad cartilaginous EP, while the tail IVD‐EP‐interphase comprised a thin layer of cartilage cells adjacent to a broad bony layer abutting the vertebral growth plate. Furthermore, the composition of the nuclei pulposi (NP) of lumbar and tail IVD in mature mice differed greatly. Lumbar NP consisted of a compact cluster of mainly large, uni‐vacuolated cells centered in an amorphous matrix, while tail NP were composed of a loose aggregate of vacuolated and non‐vacuolated cells. The anuli fibrosi also differed, with more abundant and sharply defined lamellae in tail compared to lumbar discs. The observed histological differences in the EP were even most prominent in weaned mice but were still discernible in middle‐aged and old mice. An appreciation of the histological differences between lumbar and tail IVD components in mice, including nucleus pulposus, annulus fibrosus, and endplates, is essential to our understanding of spinal biomechanics in these animals and should inform the design and interpretation of future IVD‐studies.
Collapse
Affiliation(s)
| | | | - Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Angela Schulz
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
43
|
Melgoza IP, Chenna SS, Tessier S, Zhang Y, Tang SY, Ohnishi T, Novais EJ, Kerr GJ, Mohanty S, Tam V, Chan WCW, Zhou C, Zhang Y, Leung VY, Brice AK, Séguin CA, Chan D, Vo N, Risbud MV, Dahia CL. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model-An ORS spine section initiative. JOR Spine 2021; 4:e1164. [PMID: 34337338 PMCID: PMC8313179 DOI: 10.1002/jsp2.1164] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.
Collapse
Affiliation(s)
- Itzel Paola Melgoza
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Srish S. Chenna
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Steven Tessier
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisMissouriUSA
| | - Takashi Ohnishi
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporoJapan
| | - Emanuel José Novais
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Geoffrey J. Kerr
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | | | - Vivian Tam
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Wilson C. W. Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Chao‐Ming Zhou
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Ying Zhang
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Victor Y. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | | | - Cheryle A. Séguin
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | - Danny Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
- Department of Cell & Developmental BiologyWeill Cornell Medicine Graduate School of Medical SciencesNew York CityNew YorkUSA
| |
Collapse
|
44
|
Patterson F, Miralami R, Tansey KE, Prabhu RK, Priddy LB. Deleterious effects of whole-body vibration on the spine: A review of in vivo, ex vivo, and in vitro models. Animal Model Exp Med 2021; 4:77-86. [PMID: 34179716 PMCID: PMC8212824 DOI: 10.1002/ame2.12163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Occupational exposure to whole-body vibration is associated with the development of musculoskeletal, neurological, and other ailments. Low back pain and other spine disorders are prevalent among those exposed to whole-body vibration in occupational and military settings. Although standards for limiting exposure to whole-body vibration have been in place for decades, there is a lack of understanding of whole-body vibration-associated risks among safety and healthcare professionals. Consequently, disorders associated with whole-body vibration exposure remain prevalent in the workforce and military. The relationship between whole-body vibration and low back pain in humans has been established largely through cohort studies, for which vibration inputs that lead to symptoms are rarely, if ever, quantified. This gap in knowledge highlights the need for the development of relevant in vivo, ex vivo, and in vitro models to study such pathologies. The parameters of vibrational stimuli (eg, frequency and direction) play critical roles in such pathologies, but the specific cause-and-effect relationships between whole-body vibration and spinal pathologies remain mostly unknown. This paper provides a summary of whole-body vibration parameters; reviews in vivo, ex vivo, and in vitro models for spinal pathologies resulting from whole-body vibration; and offers suggestions to address the gaps in translating injury biomechanics data to inform clinical practice.
Collapse
Affiliation(s)
- Folly Patterson
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Raheleh Miralami
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Keith E. Tansey
- Department of Neurosurgery and NeurobiologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Center for Neuroscience and Neurological RecoveryMethodist Rehabilitation CenterJacksonMSUSA
- Spinal Cord Injury Medicine and Research ServicesG.V. (Sonny) Montgomery VA Medical CenterJacksonMSUSA
| | - Raj K. Prabhu
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Lauren B. Priddy
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| |
Collapse
|
45
|
Wu T, Li X, Jia X, Zhu Z, Lu J, Feng H, Shen B, Guo K, Li Y, Wang Q, Gao Z, Yu B, Ba Z, Huang Y, Wu D. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo. J Orthop Translat 2021; 29:19-29. [PMID: 34094855 PMCID: PMC8141503 DOI: 10.1016/j.jot.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background Krüppel like factor 10 (KLF10), which is also known as TGF-β Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. Methods The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. Results We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1β induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-β signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. Conclusions This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-β signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hang Feng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuzhi Li
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
46
|
Kong M, Zhang Y, Song M, Cong W, Gao C, Zhang J, Han S, Tu Q, Ma X. Myocardin‑related transcription factor A nuclear translocation contributes to mechanical overload‑induced nucleus pulposus fibrosis in rats with intervertebral disc degeneration. Int J Mol Med 2021; 48:123. [PMID: 33982787 PMCID: PMC8121555 DOI: 10.3892/ijmm.2021.4956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/16/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported that the Ras homolog family member A (RhoA)/myocardin‑related transcription factor A (MRTF‑A) nuclear translocation axis positively regulates fibrogenesis induced by mechanical forces in various organ systems. The aim of the present study was to determine whether this signaling pathway was involved in the pathogenesis of nucleus pulposus (NP) fibrosis induced by mechanical overload during the progression of intervertebral disc degeneration (IVDD) and to confirm the alleviating effect of an MRTF‑A inhibitor in the treatment of IVDD. NP cells (NPCs) were cultured on substrates of different stiffness (2.9 and 41.7 KPa), which mimicked normal and overloaded microenvironments, and were treated with an inhibitor of MRTF‑A nuclear import, CCG‑1423. In addition, bipedal rats were established by clipping the forelimbs of rats at 1 month and gradually elevating the feeding trough, and in order to establish a long‑term overload‑induced model of IVDD, and their intervertebral discs were injected with CCG‑1423 in situ. Cell viability was determined by Cell Counting Kit‑8 assay, and protein expression was determined by western blotting, immunofluorescence and immunohistochemical staining. The results demonstrated that the viability of NPCs was not affected by the application of force or the inhibitor. In NPCs cultured on stiff matrices, MRTF‑A was mostly localized in the nucleus, and the expression levels of fibrotic proteins, including type I collagen, connective tissue growth factor and α‑smooth muscle cell actin, were upregulated compared with those in NPCs cultured on soft matrices. The levels of these proteins were reduced by CCG‑1423 treatment. In rats, 6 months of upright posture activated MRTF‑A nuclear‑cytoplasmic trafficking and fibrogenesis in the NP and induced IVDD; these effects were alleviated by CCG‑1423 treatment. In conclusion, the results of the present study demonstrated that the RhoA/MRTF‑A translocation pathway may promote mechanical overload‑induced fibrogenic activity in NP tissue and partially elucidated the molecular mechanisms underlying the occurrence of IVDD.
Collapse
Affiliation(s)
- Meng Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Yiran Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Mengxiong Song
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Changtong Gao
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital, Qing'dao, Shandong 266000, P.R. China
| | - Jiajun Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Qihao Tu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| |
Collapse
|
47
|
Zhou Y, Deng M, Su J, Zhang W, Liu D, Wang Z. The Role of miR-31-5p in the Development of Intervertebral Disc Degeneration and Its Therapeutic Potential. Front Cell Dev Biol 2021; 9:633974. [PMID: 33816484 PMCID: PMC8012912 DOI: 10.3389/fcell.2021.633974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) refers to the abnormal response of cell-mediated progressive structural failure. In order to understand the molecular mechanism of the maintenance and destruction of the intervertebral disc, new IDD treatment methods are developed. Here, we first analyzed the key regulators of IDD through microRNAs microarrays. Then, the level of miR-31-5p was evaluated by qRT-PCR. The association between miR-31-5p and Stromal cell-derived factor 1 (SDF-1)/CXCR7 axis was assessed by 3′-untranslated region (UTR) cloning and luciferase assay. The apoptosis of cells under different treatments was evaluated by flow cytometer. The cell proliferation was assessed by EdU assay. After IDD model establishment, the discs of mice tail were harvested for histological and radiographic evaluation in each group. Finally, the protein levels of SDF-1, CXCR7, ADAMTS-5, Col II, Aggrecan, and MMP13 were assessed by western blot. The results show that miR-31-5p is a key regulator of IDD and its level is down-regulated in IDD. Overexpression of miR-31-5p facilitates nucleus pulposus cell proliferation, inhibits apoptosis, facilitates ECM formation, and inhibits the level of matrix degrading enzymes in NP cells. The SDF-1/CXCR7 axis is the direct target of miR-31-5p. miR-31-5p acts on IDD by regulating SDF-1/CXCR7. In vitro experiments further verified that the up-regulation of miR-31-5p prevented the development of IDD. In conclusion, overexpression of miR-31-5p can inhibit IDD by regulating SDF-1/CXCR7.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mingsi Deng
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, China
| | - Jiqing Su
- Department of Oncology, Changsha Central Hospital Affiliated to Nanhua University, Changsha, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dongbiao Liu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhengguang Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
48
|
Serjeant M, Moon PM, Quinonez D, Penuela S, Beier F, Séguin CA. The Role of Panx3 in Age-Associated and Injury-Induced Intervertebral Disc Degeneration. Int J Mol Sci 2021; 22:ijms22031080. [PMID: 33499145 PMCID: PMC7865929 DOI: 10.3390/ijms22031080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Pannexin 3 (Panx3) is a mechanosensitive, channel-forming glycoprotein implicated in the progression of post-traumatic osteoarthritis. Despite evidence for Panx3 expression in the intervertebral disc (IVD), its function in this cartilaginous joint structure remained unknown. Using Panx3 knockout mice, this study investigated the role of Panx3 in age-associated IVD degeneration and degeneration induced by annulus fibrosus (AF) needle puncture. Loss of Panx3 did not significantly impact the progression of age-associated histopathological IVD degeneration; however, loss of Panx3 was associated with decreased gene expression of Acan, Col1a1, Mmp13 and Runx2 and altered localization of COLX in the IVD at 19 months-of-age. Following IVD injury in the caudal spine, histological analysis of wild-type mice revealed clusters of hypertrophic cells in the AF associated with increased pericellular proteoglycan accumulation, disruptions in lamellar organization and increased lamellar thickness. In Panx3 knockout mice, hypertrophic AF cells were rarely detected and AF structure was largely preserved post-injury. Interestingly, uninjured IVDs adjacent to the site of injury more frequently showed evidence of early nucleus pulposus degeneration in Panx3 knockout mice but remained healthy in wild-type mice. These findings suggest a role for Panx3 in mediating the adaptive cellular responses to altered mechanical stress in the IVD, which may buffer aberrant loads transferred to adjacent motion segments.
Collapse
Affiliation(s)
- Meaghan Serjeant
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (P.M.M.); (D.Q.); (F.B.)
- Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Paxton M. Moon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (P.M.M.); (D.Q.); (F.B.)
- Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (P.M.M.); (D.Q.); (F.B.)
| | - Silvia Penuela
- Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (P.M.M.); (D.Q.); (F.B.)
- Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (P.M.M.); (D.Q.); (F.B.)
- Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Correspondence:
| |
Collapse
|
49
|
Chen Z, Zhang W, Deng M, Li Y, Zhou Y. CircGLCE alleviates intervertebral disc degeneration by regulating apoptosis and matrix degradation through the targeting of miR-587/STAP1. Aging (Albany NY) 2020; 12:21971-21991. [PMID: 33159017 PMCID: PMC7695369 DOI: 10.18632/aging.104035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to identify a specific circular RNA and to investigate its regulatory mechanism in intervertebral disc degeneration (IDD). CircGLCE was selected after microarray analyses and was further analysed by RT-qPCR and FISH. CircGLCE was found to stably exist in the cytoplasm of nucleus pulposus (NP) cells. It was downregulated in IDD. After silencing CircGLCE, its function was assessed with RT-qPCR, immunofluorescence analysis and flow cytometry. Knockdown of CircGLCE promoted apoptosis and induced the expression of matrix-degrading enzymes in NP cells. CircGLCE served as a miR-587 sponge in NP cells. Inhibiting miR-587 counteracted the IDD-enhancing effect caused by silencing CircGLCE. STAP1 served as the miRNA target that mediated the functions of miR-587. In an IDD mouse model, the in vivo effects of overexpressing CircGLCE on IDD were confirmed by imaging techniques, TUNEL staining, FISH, western blotting, H&E staining and immunohistochemistry. Thus, CircGLCE attenuates IDD by inhibiting the apoptosis of NP cells and ECM degradation through the targeting of miR-587/STAP1. CircGLCE may be a potential therapeutic target for IDD treatments.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weibing Zhang
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Deng
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaming Li
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Zhou
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int J Mol Sci 2020; 21:ijms21197391. [PMID: 33036383 PMCID: PMC7582266 DOI: 10.3390/ijms21197391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the predominant causes of chronic low back pain (LBP), which is a leading cause of disability worldwide. Despite substantial progress in cell therapy for the treatment of IVD degeneration, significant challenges remain for clinical application. Here, we investigated the effectiveness of hyaluronan-methylcellulose (HAMC) hydrogels loaded with Wharton's Jelly-derived mesenchymal stromal cell (WJ-MSCs) in vitro and in a rat coccygeal IVD degeneration model. Following induction of injury-induced IVD degeneration, female Sprague-Dawley rats were randomized into four groups to undergo a single intradiscal injection of the following: (1) phosphate buffered saline (PBS) vehicle, (2) HAMC, (3) WJ-MSCs (2 × 104 cells), and (4) WJ-MSCs-loaded HAMC (WJ-MSCs/HAMC) (n = 10/each group). Coccygeal discs were removed following sacrifice 6 weeks after implantation for radiologic and histologic analysis. We confirmed previous findings that encapsulation in HAMC increases the viability of WJ-MSCs for disc repair. The HAMC gel maintained significant cell viability in vitro. In addition, combined implantation of WJ-MSCs and HAMC significantly promoted degenerative disc repair compared to WJ-MSCs alone, presumably by improving nucleus pulposus cells viability and decreasing extracellular matrix degradation. Our results suggest that WJ-MSCs-loaded HAMC promotes IVD repair more effectively than cell injection alone and supports the potential clinical use of HAMC for cell delivery to arrest IVD degeneration or to promote IVD regeneration.
Collapse
|