1
|
Cartau T, Michon J, Verdon R, Baldolli A. Oral tetracyclines for bone and joint infections: what do we know? J Bone Jt Infect 2025; 10:143-154. [PMID: 40385556 PMCID: PMC12082486 DOI: 10.5194/jbji-10-143-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Background and aim: Complex bone and joint infections (BJIs), including prosthetic joint infections (PJIs) and infections associated with osteosynthetic materials, present significant treatment challenges that often require surgical intervention and prolonged antibiotic therapy. In France, the incidence of PJIs in knee and hip arthroplasties ranges from 0.79 % to 2.4 %, with staphylococci being the primary pathogens involved. Recent studies have suggested that oral antibiotic therapy may be as effective as intravenous therapy and that 12 weeks of antibiotic treatment are needed. Tetracyclines, particularly doxycycline and minocycline, are of interest because of their broad-spectrum activities, good oral bioavailability, and potential efficacy in treating BJIs. We aimed to provide a literature review on the role of oral tetracyclines in the management of BJIs. Method: We performed a systematic review of the literature identified via an electronic search of PubMed and ScienceDirect. Results: A total of 648 articles were screened, and 31 studies were included. Pharmacological studies demonstrated that the bone to blood penetration ratio ranged from 0.06 to 0.75. Less than 20 % of strains implicated in BJIs exhibited resistance to oral tetracyclines. Four studies demonstrated potential inhibition of strain growth. Eight studies that included 62 patients reported curative treatment, with a success rate ranging from 82 % to 100 % for PJIs regardless of the surgical management. For suppressive therapy, 10 studies that included 201 patients reported success rates ranging from 57 % to 100 %. The rate of adverse effects ranged from 0 % to 14 % for curative treatment and from 0 % to 57 % for suppressive treatment, leading to treatment discontinuation in less than 20 % of cases. Conclusion: This review highlights that the number of studies supporting the use of oral tetracyclines for the treatment of BJIs is limited. More robust pharmacological and clinical studies are needed to confirm the safety and efficacy profiles of oral tetracyclines for the treatment of BJIs.
Collapse
Affiliation(s)
- Tom Cartau
- CHU de Caen, Infectious Diseases Department, Avenue de la Côte de Nacre, Caen, 14000 France
- Reference Center for Complex Bone and Joint Infection, Avenue de la Côte de Nacre, Caen, 14000 France
| | - Jocelyn Michon
- CHU de Caen, Infectious Diseases Department, Avenue de la Côte de Nacre, Caen, 14000 France
- Reference Center for Complex Bone and Joint Infection, Avenue de la Côte de Nacre, Caen, 14000 France
| | - Renaud Verdon
- CHU de Caen, Infectious Diseases Department, Avenue de la Côte de Nacre, Caen, 14000 France
- Reference Center for Complex Bone and Joint Infection, Avenue de la Côte de Nacre, Caen, 14000 France
- Calvados, Normandie University, UNICAEN, CHU de Caen Normandie, Caen, Normandy, 14000 France
- INSERM U1311 DynaMicURe, Normandie University, UNICAEN, UNIROUEN, Caen, France
| | - Aurelie Baldolli
- CHU de Caen, Infectious Diseases Department, Avenue de la Côte de Nacre, Caen, 14000 France
- Reference Center for Complex Bone and Joint Infection, Avenue de la Côte de Nacre, Caen, 14000 France
| |
Collapse
|
2
|
Higashihira S, Simpson SJ, Arnold CJ, Deckard ER, Meneghini RM, Greenfield EM, Buller LT. Biofilm Formation is Durably Prevented on Pre-Fabricated Antibiotic Cement Spacers Compared to Cobalt Chrome and Polyethylene. J Arthroplasty 2025; 40:779-785. [PMID: 39233097 DOI: 10.1016/j.arth.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND A 2-stage revision remains the standard for managing chronic periprosthetic joint infection. Despite multiple spacer options, whether a particular one better resists biofilm formation remains unclear. Prefabricated polymethylmethacrylate (PMMA) articulating spacers containing antibiotics and a proprietary pore structure were developed to increase antibiotic elution characterized by a rapid burst phase for the initial one to two days and an extended slow-release phase for > 28 days. This in vitro study determined whether biofilm formation is prevented during the initial rapid burst phase and/or the slow-release phase. METHODS S. aureus-Xen36 was incubated in 1.5 mL of Luria-Bertani broth with PMMA discs with the proprietary pore structure either with or without gentamycin and vancomycin or with 'Hoffman style' positive-control discs (ultra-high molecular weight polyethylene or cobalt-chrome). Nonadherent bacteria were removed by three phosphate buffered saline rinses every 20 to 24 hours. Planktonic bacterial growth in the culture broth and biofilm formation on the discs were measured by colony forming unit (CFU) counting and resazurin reduction assays. Experiments were repeated > four times. RESULTS No detectable planktonic bacterial growth or biofilm formation occurred in cultures containing PMMA with antibiotics (≤ 15 CFUs/disc), whereas biofilms formed on PMMA without antibiotics, ultra-high molecular weight polyethylene, and cobalt-chrome (1 × 107 to 4 × 108 CFUs/disc, P < 0.0001). Biofilm formation was confirmed by a 100-fold decrease in sensitivity to vancomycin. To determine whether the antibiotic slow-release phase is sufficient to block biofilm formation, PMMA discs with antibiotics were preeluted for 14 days with multiple saline changes prior to bacterial inoculation. After antibiotic elution, still no detectable biofilms formed on PMMA discs with antibiotics (≤ 15 CFUs/disc, P < 0.0001). CONCLUSIONS Antibiotic release during both the initial and slow-release phases prevented biofilm formation on PMMA with the proprietary pore structure. This may translate into improved infection eradication rates clinically.
Collapse
Affiliation(s)
- Shota Higashihira
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Stefanie J Simpson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher J Arnold
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evan R Deckard
- Indiana Joint Replacement Institute, Indianapolis, Indiana
| | | | - Edward M Greenfield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leonard T Buller
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
3
|
Nick SE, Bryers JD, Daggett V. Layer-By-Layer Functionalized Gauze With Designed α-Sheet Peptides Inhibits E. coli and S. aureus Biofilm Formation. J Biomed Mater Res A 2025; 113:e37879. [PMID: 40033797 PMCID: PMC12022856 DOI: 10.1002/jbm.a.37879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Microbial biofilms on wounds lead to longer hospital stays, mechanical debridement, and higher mortality. Amyloid fibrils stabilize the bacterial biofilm's extracellular matrix (ECM) and represent a potential anti-biofilm target. As previously reported, de novo α-sheet peptides inhibit amyloid fibrillization and reduce biofilm formation in several bacterial species. Alginate (ALG) and chitosan (CH) are widely used in wound dressings due to their adhesive and antimicrobial activity. Here, we describe a layer-by-layer (LbL) functionalized gauze with alternating layers of ALG and CH loaded with α-sheet peptides for controlled release and biofilm inhibition at a wound site. Material analysis indicated successful LbL polyelectrolyte deposition and peptide incorporation. The LbL gauze facilitated controlled peptide release for 72 h with an initial burst delivery and demonstrated good biocompatibility with no toxicity towards human fibroblasts. The LbL gauze was assessed against Escherichia coli biofilms and reduced colony forming units (CFUs) of adherent bacteria by 81% and 96% as compared to the plain gauze for non-antibiotic and antibiotic (+gentamicin) conditions, respectively. A similar reduction in biofilm formation and increase in antibiotic susceptibility was observed for tests with Staphylococcus aureus and vancomycin. Thus, LbL gauze with incorporated α-sheet peptides demonstrated anti-biofilm properties for both gram-negative and gram-positive bacteria and presents an alternative wound dressing for the prevention of biofilm-associated infections.
Collapse
Affiliation(s)
- Sarah E. Nick
- Department of Bioengineering, University of Washington,
Seattle, WA 98195-5061, USA
| | - James D. Bryers
- Department of Bioengineering, University of Washington,
Seattle, WA 98195-5061, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington,
Seattle, WA 98195-5061, USA
| |
Collapse
|
4
|
Sekar A, Inverardi N, Lekkala S, Thomson A, Daesety V, Trendafilova D, Tierney P, Collins JE, Muratoglu OK, Oral E. Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection. Bioengineering (Basel) 2025; 12:173. [PMID: 40001692 PMCID: PMC11851508 DOI: 10.3390/bioengineering12020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Peri-prosthetic joint infection (PJI) is a major post-arthroplasty complication that warrants alternative antibacterial approaches to improve prophylaxis and treatment outcomes. Local administration of analgesics post-surgery is common. Recent studies have demonstrated the antimicrobial potential of analgesics and the feasibility of dual drug-eluting ultra-high molecular weight polyethylene (UHMWPE) for local antibacterial applications. However, the antibacterial mechanism of action is poorly understood, and the translational value of antimicrobial dual drug-loaded UHMWPE has not been evaluated. In this study, we utilized the Laurdan assay and gene expression analysis to demonstrate the antibacterial action of bupivacaine hydrochloride (BP) and tolfenamic acid (TA) against Staphylococcus aureus. Furthermore, we incorporated BP and TA into UHMWPE at different weight concentrations and studied their longitudinal drug release and real-time antibacterial properties. The analgesics showed a significant effect on the bacterial membrane properties comparable to known antibiotics and regulated bacterial gene expression. For the dual drug-loaded UHMWPE, the drug release rate from BP/TA combinations was interestingly not a direct function of the loaded drug weight percent, potentially due to the hydrophobicity of TA and the interactions between the two drugs. Combinations of BP and TA at the higher total drug concentration (10 and 20%) showed a prolonged antibacterial effect against S. aureus, with great potential for prophylactic use.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sashank Lekkala
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Andrew Thomson
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Vikram Daesety
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Darina Trendafilova
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Peyton Tierney
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Jamie E. Collins
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Orhun K. Muratoglu
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu OK, Oral E. Investigating the Translational Value of Periprosthetic Joint Infection Models to Determine the Risk and Severity of Staphylococcal Biofilms. ACS Infect Dis 2024; 10:4156-4166. [PMID: 39630924 DOI: 10.1021/acsinfecdis.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilms are crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better treatment outcomes. We use in vivo and in vitro implant-associated infection models to demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA, and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to prevent or treat PJI effectively.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Orhun K Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
7
|
Hageman KA, Blatt RL, Kuenne WA, Brow RK, McIff TE. Effect of pH and hydroxyapatite-like layer formation on the antibacterial properties of borophosphate bioactive glass incorporated poly(methyl methacrylate) bone cement. Front Bioeng Biotechnol 2024; 12:1462795. [PMID: 39359257 PMCID: PMC11445002 DOI: 10.3389/fbioe.2024.1462795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Infection is a leading cause of total joint arthroplasty failure. Current preventative measures incorporate antibiotics into the poly (methyl methacrylate) (PMMA) bone cement that anchors the implant into the natural bone. With bacterial resistance to antibiotics on the rise, the development of alternative antibacterial materials is crucial to mitigate infection. Borate bioactive glass, 13-93-B3, has been studied previously for use in orthopedic applications due to its ability to be incorporated into bone cements and other scaffolds, convert into hydroxyapatite (HA)-like layer, and enhance the osseointegration and antibacterial properties of the material. The purpose of this study is to better understand how glass composition and change in surrounding pH effects the composite's antibacterial characteristics by comparing the incorporation of 30% wt/wt 13-93-B3 glass and pH neutral borophosphate bioactive glass into PMMA bone cement. We also aim to elucidate how HA-like layer formation on the cement's surface may affect bacterial adhesion. These studies showed that 13-93-B3 incorporated cements had significant reduction of bacterial growth surrounding the composite beyond 24 h of exposure when compared to a neutral borate bioactive glass incorporated cement (p < 0.01) and cement only (p < 0.0001). Additionally, through soaking cement composites in simulated body fluid and then exposing them to a bioluminescent strand of staphylococcus aureus, we found that the presence of a HA-like layer on the 13-93-B3 or pH neutral glass incorporated cement disks resulted in an increase in bacterial attachment on the composite cement's surface, where p < 0.001, and p < 0.05 respectively. Overall, our studies demonstrated that borate bioactive glass incorporated PMMA bone cement has innate antimicrobial properties that make it a promising material to prevent infection in total joint arthroplasties.
Collapse
Affiliation(s)
- Kara A. Hageman
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah L. Blatt
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - William A. Kuenne
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Richard K. Brow
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Terence E. McIff
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Prosswimmer T, Nick SE, Bryers JD, Daggett V. Designed De Novo α-Sheet Peptides Destabilize Bacterial Biofilms and Increase the Susceptibility of E. coli and S. aureus to Antibiotics. Int J Mol Sci 2024; 25:7024. [PMID: 39000131 PMCID: PMC11241457 DOI: 10.3390/ijms25137024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Biofilm-associated microbes are 10-1000 times less susceptible to antibiotics. An emerging treatment strategy is to target the structural components of biofilm to weaken the extracellular matrix without introducing selective pressure. Biofilm-associated bacteria, including Escherichia coli and Staphylococcus aureus, generate amyloid fibrils to reinforce their extracellular matrix. Previously, de novo synthetic α-sheet peptides designed in silico were shown to inhibit amyloid formation in multiple bacterial species, leading to the destabilization of their biofilms. Here, we investigated the impact of inhibiting amyloid formation on antibiotic susceptibility. We hypothesized that combined administration of antibiotics and α-sheet peptides would destabilize biofilm formation and increase antibiotic susceptibility. Two α-sheet peptides, AP90 and AP401, with the same sequence but inverse chirality at every amino acid were tested: AP90 is L-amino acid dominant while AP401 is D-amino acid dominant. For E. coli, both peptides increased antibiotic susceptibility and decreased the biofilm colony forming units when administered with five different antibiotics, and AP401 caused a greater increase in all cases. For S. aureus, increased biofilm antibiotic susceptibility was also observed for both peptides, but AP90 outperformed AP401. A comparison of the peptide effects demonstrates how chirality influences biofilm targeting of gram-negative E. coli and gram-positive S. aureus. The observed increase in antibiotic susceptibility highlights the role amyloid fibrils play in the reduced susceptibility of bacterial biofilms to specific antibiotics. Thus, the co-administration of α-sheet peptides and existing antibiotics represents a promising strategy for the treatment of biofilm infections.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah E. Nick
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - James D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
9
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu O, Oral E. Investigating the translational value of Periprosthetic Joint Infection (PJI) models to determine the risk and severity of Staphylococcal biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591689. [PMID: 38746179 PMCID: PMC11092509 DOI: 10.1101/2024.04.29.591689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Orhun Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| |
Collapse
|
10
|
Sekar A, Gil D, Tierney P, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med 2024; 22:102. [PMID: 38273276 PMCID: PMC10809490 DOI: 10.1186/s12967-024-04871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | | | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA.
| |
Collapse
|
11
|
Pedroni MA, Ribeiro VST, Cieslinski J, Lopes APDA, Kraft L, Suss PH, Tuon FF. Different concentrations of vancomycin with gentamicin loaded PMMA to inhibit biofilm formation of Staphylococcus aureus and their implications. J Orthop Sci 2024; 29:334-340. [PMID: 36526520 DOI: 10.1016/j.jos.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to evaluate different concentrations of vancomycin and/or gentamicin loaded polymethylmethacrylate (PMMA) against biofilm formation of Staphylococcus aureus. METHODS Biofilm production of S. aureus in PMMA loaded with different concentrations of vancomycin and gentamicin were evaluated by quantitative analysis of biofilm cells, scanning electronic microscopy, viability assay, Fourier transform infrared spectroscopy, and checkerboard. Statistical analysis was performed by Mann Whitney test. The difference in colony forming units per mL was significant when p < 0.05. RESULTS All loaded PMMA presented a reduction in the number of colony forming units per mL (p < 0.05). The gentamicin-loaded PMMA could inhibits the grown of sessile cells (p < 0.05), where the group vancomycin 4 g + gentamicin 500 mg presented a better result. The Fourier transform infrared spectra showed no significant differences, and checkerboard of vancomycin and gentamicin showed synergism. CONCLUSION Effects against adherence and bacterial development in PMMA loaded with antibiotics were mainly seen in the group vancomycin 4 g + gentamicin 500 mg, and synergic effect can be applied in antibiotic-loaded cement.
Collapse
Affiliation(s)
- Marco Antonio Pedroni
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Juliette Cieslinski
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Ana Paula de Andrade Lopes
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Letícia Kraft
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil.
| |
Collapse
|
12
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
13
|
Perez-Alba E, Flores-Treviño S, Villarreal-Salazar V, Bocanegra-Ibarias P, Vilchez-Cavazos F, Camacho-Ortiz A. Planktonic and biofilm states of Staphylococcus aureus isolated from bone and joint infections and the in vitro effect of orally available antibiotics. J Appl Microbiol 2023; 134:lxad258. [PMID: 37977856 DOI: 10.1093/jambio/lxad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
AIMS To demonstrate the in vitro activity of orally available antibiotics against Staphylococcus aureus isolated from bone or orthopedic implant materials. The biofilm eradication of the combination of three antibiotics was also assessed. METHODS AND RESULTS Clinical isolates from orthopedic infection samples were collected, and S. aureus isolates were classified according to their biofilm production and composition. Almost all S. aureus isolates (n = 36, 97.3%) produced biofilm and the major biofilm components were polysaccharides. Antimicrobial susceptibility was determined in planktonic (minimal inhibitory concentration; MIC) and biofilm cells (minimal biofilm eradication concentration; MBEC) using the MBEC Calgary Device. Overall, the MBEC ranged higher than the MIC. When combined at borderline-susceptible concentrations, moxifloxacin-rifampin and doxycycline-rifampin were both able to eradicate biofilms in a third of the strains whereas the doxycycline-moxifloxacin combination proved ineffective at eradicating biofilm, inhibiting it only in three strains. CONCLUSIONS We propose rifampin in combination with moxifloxacin or doxycycline for the design of clinical trials of bone and/or orthopedic device infection without proper debridement or material retention.
Collapse
Affiliation(s)
- Eduardo Perez-Alba
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Samantha Flores-Treviño
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Verónica Villarreal-Salazar
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León., Pedro de Alba, Niños Héroes, Ciudad Universitaria, 66455 San Nicolás de los Garza, N.L., Mexico
| | - Paola Bocanegra-Ibarias
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Félix Vilchez-Cavazos
- Servicio de Ortopedia y Traumatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
- Departamento de Epidemiología Hospitalaria y Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| |
Collapse
|
14
|
Sekar A, Gil D, Tierney PA, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. RESEARCH SQUARE 2023:rs.3.rs-3471646. [PMID: 37961705 PMCID: PMC10635368 DOI: 10.21203/rs.3.rs-3471646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. Methods Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of S. aureus and S. epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6hr) and established (24hr) biofilms were grown on 316 stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, MBEC measurement for GS, gene expression of biofilm-associated genes, visualization by live/dead imaging, scanning electron microscopy, and bacterial membrane fluidity assessment. Results Gentamicin-ketorolac combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. Conclusion The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Peyton Anne Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Darina Trendafilova
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| |
Collapse
|
15
|
Azouzi F, Olagne L, Edouard S, Cammilleri S, Magnan PE, Fournier PE, Million M. Coxiella burnetii Femoro-Popliteal Bypass Infection: A Case Report. Microorganisms 2023; 11:2146. [PMID: 37763990 PMCID: PMC10538191 DOI: 10.3390/microorganisms11092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular infections are the most severe and potentially lethal among the persistent focalized Coxiella burnetii infections. While aortic infections on aneurysms or prostheses are well-known, with specific complications (risk of fatal rupture), new non-aortic vascular infections are increasingly being described thanks to the emerging use of 18-fluorodeoxyglucose positron emission tomography (18F-FDG PET-scan). Here, we describe an infection of a femoro-popliteal bypass that would not have been diagnosed without the use of PET-scan. It is well-known that vascular prosthetic material is a site favorable for bacterial persistence, but the description of unusual anatomical sites, outside the heart or aorta, should raise the clinicians' awareness and generalize the indications for PET-scan, with careful inclusion of the upper and lower limbs (not included in PET-scan for cancer), particularly in the presence of vascular prostheses. Future studies will be needed to precisely determine their optimal management.
Collapse
Affiliation(s)
- Farah Azouzi
- Laboratoire de Microbiologie CHU Sahloul Sousse Tunisie, LR20SP06, Faculté de Médecine de Sousse Tunisie, Université de Sousse, Sousse 4003, Tunisia;
| | - Louis Olagne
- Service de Médecine Interne, Centre Hospitalier Universitaire Gabriel-Montpied, 63000 Clermont-Ferrand, France;
| | - Sophie Edouard
- UMR MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Institut de la Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France;
- French Reference Center for Rickettsioses, Q Fever and Bartonelloses, Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
| | - Serge Cammilleri
- Service de Médecine Nucléaire Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France;
| | - Pierre-Edouard Magnan
- Service de Chirurgie Vasculaire, Hôpital Timone, Assistance Publique-Hôpitaux de Marseille, 13385 Marseille, France;
| | - Pierre-Edouard Fournier
- French Reference Center for Rickettsioses, Q Fever and Bartonelloses, Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- UMR VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Institut de la Recherche pour le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| | - Matthieu Million
- UMR MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Institut de la Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France;
- French Reference Center for Rickettsioses, Q Fever and Bartonelloses, Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
16
|
Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin Microbiol Rev 2023; 36:e0005922. [PMID: 37067406 PMCID: PMC10283489 DOI: 10.1128/cmr.00059-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Collapse
Affiliation(s)
- Kelly A. Cairns
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew A. Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Trisha N. Peel
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Iain J. Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael J. Dooley
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
- Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Daffinee KE, Piehl EC, Bleick C, LaPlante KL. Eradication of Staphylococcus epidermidis within Biofilms: Comparison of Systemic versus Supratherapeutic Concentrations of Antibiotics. Antimicrob Agents Chemother 2023; 67:e0010823. [PMID: 37154699 PMCID: PMC10269123 DOI: 10.1128/aac.00108-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023] Open
Abstract
Biofilm-forming bacterial infections result in clinical failure, recurring infections, and high health care costs. The antibiotic concentrations needed to eradicate biofilm require further research. We aimed to model an in vitro prosthetic joint infection (PJI) to elucidate the activity of traditional systemic concentrations versus supratherapeutic concentrations to eradicate a Staphylococcus epidermidis biofilm PJI. We evaluated S. epidermidis high-biofilm-forming (ATCC 35984) and low-biofilm-forming (ATCC 12228) isolates in an in vitro pharmacodynamic biofilm reactor model with chromium cobalt coupons to simulate prosthetic joint infection. Vancomycin, daptomycin, levofloxacin, and minocycline were used alone and combined with rifampin to evaluate the effect of biofilm eradication. We simulated three exposures: (i) humanized systemic dosing alone, (ii) supratherapeutic doses (1,000× MIC), and (iii) and dosing in combination with rifampin. Resistance development was monitored throughout the study. Simulated humanized systemic doses of a lipoglycopeptide (daptomycin), a fluoroquinolone (levofloxacin), a tetracycline (minocycline), and a glycopeptide (vancomycin) alone failed to eradicate a formed S. epidermidis biofilm. Supratherapeutic doses of vancomycin (2,000 μg/mL) and minocycline (15 μg/mL) with or without rifampin (15 μg/mL) failed to eradicate biofilms. However, a levofloxacin supratherapeutic dose (125 μg/mL) with rifampin eradicated the high-biofilm-producing isolate by 48 h. Interestingly, supratherapeutic-dose exposures of daptomycin (500 μg/mL) alone eradicated high- and low-biofilm-forming isolates in established biofilms. The concentrations needed to eradicate biofilms on foreign materials are not obtained with systemic dosing regimens. The failure of systemic dosing regimens to eradicate biofilms validates clinical findings with recurring infections. The addition of rifampin to supratherapeutic dosing regimens does not result in synergy. Supratherapeutic daptomycin dosing may be effective at the site of action to eradicate biofilms. Further studies are needed.
Collapse
Affiliation(s)
- K. E. Daffinee
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
| | - E. C. Piehl
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
| | - C. Bleick
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - K. L. LaPlante
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Ong J, Godfrey R, Nazarian A, Tam J, Isaacson BM, Pasquina PF, Williams DL. Comparison of Staphylococcus aureus tolerance between antimicrobial blue light, levofloxacin, and rifampin. Front Microbiol 2023; 14:1158558. [PMID: 37303789 PMCID: PMC10248220 DOI: 10.3389/fmicb.2023.1158558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Background Bacterial biofilms readily develop on all medical implants, including percutaneous osseointegrated (OI) implants. With the growing rate of antibiotic resistance, exploring alternative options for managing biofilm-related infections is necessary. Antimicrobial blue light (aBL) is a unique therapy that can potentially manage biofilm-related infections at the skin-implant interface of OI implants. Antibiotics are known to have antimicrobial efficacy disparities between the planktonic and biofilm bacterial phenotypes, but it is unknown if this characteristic also pertains to aBL. In response, we developed experiments to explore this aspect of aBL therapy. Methods We determined minimum bactericidal concentrations (MBCs) and antibiofilm efficacies for aBL, levofloxacin, and rifampin against Staphylococcus aureus ATCC 6538 planktonic and biofilm bacteria. Using student t-tests (p < 0.05), we compared the efficacy profiles between the planktonic and biofilm states for the three independent treatments and a levofloxacin + rifampin combination. Additionally, we compared antimicrobial efficacy patterns for levofloxacin and aBL against biofilms as dosages increased. Results aBL had the most significant efficacy disparity between the planktonic and biofilm phenotypes (a 2.5 log10 unit difference). However, further testing against biofilms revealed that aBL had a positive correlation between increasing efficacy and exposure time, while levofloxacin encountered a plateau. While aBL efficacy was affected the most by the biofilm phenotype, its antimicrobial efficacy did not reach a maximum. Discussion/conclusion We determined that phenotype is an important characteristic to consider when determining aBL parameters for treating OI implant infections. Future research would benefit from expanding these findings against clinical S. aureus isolates and other bacterial strains, as well as the safety of long aBL exposures on human cells.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Brad M. Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
- The Geneva Foundation, Tacoma, WA, United States
- Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness, Uniformed Services University, Bethesda, MD, United States
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
| | - Paul F. Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Dustin L. Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
19
|
Parker DM, Koch JA, Gish CG, Brothers KM, Li W, Gilbertie J, Rowe SE, Conlon BP, Byrapogu VKC, Urish KL. Hydrogen Peroxide, Povidone-Iodine and Chlorhexidine Fail to Eradicate Staphylococcus aureus Biofilm from Infected Implant Materials. Life (Basel) 2023; 13:1230. [PMID: 37374013 DOI: 10.3390/life13061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogen peroxide, povidone-iodine, and chlorhexidine are antiseptics that are commonly added to irrigants to either prevent or treat infection. There are little clinical data available that demonstrate efficacy of adding antiseptics to irrigants in the treatment of periprosthetic joint infection after biofilm establishment. The objective of the study was to assess the bactericidal activity of the antiseptics on S. aureus planktonic and biofilm. For planktonic irrigation, S. aureus was exposed to different concentrations of antiseptics. S. aureus biofilm was developed by submerging a Kirschner wire into normalized bacteria and allowing it to grow for forty-eight hours. The Kirschner wire was then treated with irrigation solutions and plated for CFU analysis. Hydrogen peroxide, povidone-iodine, and chlorhexidine were bactericidal against planktonic bacteria with over a 3 log reduction (p < 0.0001). Unlike cefazolin, the antiseptics were not bactericidal (less than 3 log reduction) against biofilm bacteria but did have a statistical reduction in biofilm as compared to the initial time point (p < 0.0001). As compared to cefazolin treatment alone, the addition of hydrogen peroxide or povidone-iodine to cefazolin treatment only additionally reduced the biofilm burden by less than 1 log. The antiseptics demonstrated bactericidal properties with planktonic S. aureus; however, when used to irrigate S. aureus biofilms, these antiseptics were unable to decrease biofilm mass below a 3 log reduction, suggesting that S. aureus biofilm has a tolerance to antiseptics. This information should be considered when considering antibiotic tolerance in established S. aureus biofilm treatment.
Collapse
Affiliation(s)
- Dana M Parker
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John A Koch
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Charles G Gish
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William Li
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jessica Gilbertie
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Venkata K C Byrapogu
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
Brothers KM, Parker DM, Taguchi M, Ma D, Mandell JB, Thurlow LL, Byrapogu VC, Urish KL. Dose optimization in surgical prophylaxis: sub-inhibitory dosing of vancomycin increases rates of biofilm formation and the rates of surgical site infection. Sci Rep 2023; 13:4593. [PMID: 36944677 PMCID: PMC10030625 DOI: 10.1038/s41598-023-30951-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Antibiotic stewardship is viewed as having great public health benefit with limited direct benefit to the patient at the time of administration. The objective of our study was to determine if inappropriate administration of antibiotics could create conditions that would increase the rates of surgical infection. We hypothesized that sub-MIC levels of vancomycin would increase Staphylococcus aureus growth, biofilm formation, and rates of infection. S. aureus MRSA and MSSA strains were used for all experiments. Bacteria were grown planktonically and monitored using spectrophotometry. Quantitative agar culture was used to measure planktonic and biofilm bacterial burden. A mouse abscess model was used to confirm phenotypes in vivo. In the planktonic growth assay, increases in bacterial burden at ¼ MIC vancomycin were observed in USA300 JE2 by 72 h. Similar findings were observed with ½ MIC in Newman and SH1000. For biofilm formation, USA300 JE2 at ¼ and ½ MIC vancomycin increased biofilm formation by approximately 1.3- and 2.3-fold respectively at 72 h as compared to untreated controls. Similar findings were observed with Newman and SH1000 with a 2.4-fold increase in biofilm formation at ½ MIC vancomycin. In a mouse abscess model, there was a 1.2-fold increase with sub-MIC vancomycin at 3 days post infection. Our study showed that Sub-optimal vancomycin dosing promoted S. aureus planktonic growth and biofilm formation, phenotypic measures of bacterial virulence. This phenotype induced by sub-MIC levels of vancomycin was also observed to increase rates of infection and pathogenesis in our mouse model. Risks of exposure to sub-MIC concentrations with vancomycin in surgical procedures are greater as there is decreased bioavailability in tissue in comparison to other antibiotics. This highlights the importance of proper antibiotic selection, stewardship, and dosing for both surgical prophylaxis and treatment of infection.
Collapse
Affiliation(s)
- Kimberly M Brothers
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana M Parker
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Masashi Taguchi
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopaedic Surgery, Ageo Medical Clinic, 3133 Haraichi, Ageo-Shi, Saitama, Japan
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan B Mandell
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lance L Thurlow
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Venkata C Byrapogu
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Arthritis and Arthroplasty Design Group, and The Bone and Joint Center, Department of Orthopaedic Surgery, Department of Bioengineering, Department of Biomedical Engineering, and Clinical and Translational Science Institute, Magee Womens Hospital of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
21
|
Zhang X, Chen P, Wan HY, Zhu RJ, Zhou Y, Song MR, Jiang N, Yu B. Antimicrobial potency, prevention ability, and killing efficacy of daptomycin-loaded versus vancomycin-loaded β-tricalcium phosphate/calcium sulfate for methicillin-resistant Staphylococcus aureus biofilms. Front Microbiol 2022; 13:1029261. [PMID: 36406460 PMCID: PMC9669593 DOI: 10.3389/fmicb.2022.1029261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Growing evidence has shown that the efficacy of systemic administration of daptomycin for the treatment of methicillin-resistant Staphylococcus aureus (MRSA)-related infections is satisfactory. However, the clinical efficacy of the local administration of daptomycin for the management of osteoarticular infections remains unclear. This in vitro study compared the efficacy of daptomycin and vancomycin against MRSA biofilms. The elution kinetics of daptomycin and vancomycin, combined with gentamicin and loaded with either β-tricalcium phosphate/calcium sulfate or calcium sulfate, in the presence of MRSA infection, was assessed. Their efficacy in preventing biofilm formation and killing pre-formed biofilms was assessed using colony-forming unit count and confocal laser scanning microscopy. In addition, the efficacy of daptomycin, vancomycin, and gentamicin in prophylaxis and eradication of MRSA biofilms was also evaluated. Daptomycin + gentamicin and vancomycin + gentamicin displayed similar antimicrobial potency against MRSA, by either β-tricalcium phosphate/calcium sulfate or calcium sulfate. In the prevention assays, both daptomycin + gentamicin and vancomycin + gentamicin showed similar efficacy in preventing bacterial colony formation, with approximately 6 logs lower colony-forming units than those in the control group at both 1 and 3 days. The killing effect on pre-formed biofilms showed significant decreases of approximately 4 logs at 1 and 3 days following treatment with daptomycin + gentamicin and vancomycin + gentamicin. In addition, the confocal laser scanning microscopy results support the colony-forming unit data. Moreover, single use of vancomycin and gentamicin showed similar efficacies in preventing and killing MRSA biofilms, both of which were better than that of gentamicin. Our study demonstrated that vancomycin + gentamicin and daptomycin + gentamicin loaded with β-tricalcium phosphate/calcium sulfate or calcium sulfate showed similar prophylactic and killing effects on MRSA biofilms, implying a potential indication of local administration daptomycin for the treatment of MRSA-associated osteoarticular infections, especially if vancomycin administration presents limitations.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics and Traumatology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Peng Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, Hainan General Hospital, Hainan Hospital Affiliated to Hainan Medical University, Haikou, China
| | - Hao-yang Wan
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Run-jiu Zhu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhou
- School of Nursing, Jiangmen Chinese Medicine College of Guangdong Province, Jiangmen, China
| | - Ming-rui Song
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Nan Jiang,
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Bin Yu,
| |
Collapse
|
22
|
Higashihira S, Simpson SJ, Collier CD, Natoli RM, Kittaka M, Greenfield EM. Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro. Clin Orthop Relat Res 2022; 480:1476-1487. [PMID: 35583504 PMCID: PMC9278916 DOI: 10.1097/corr.0000000000002251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biofilms protect bacteria from the host immune system and many antibiotics, making the treatment of orthopaedic infections difficult. Halicin, a recently discovered antibiotic, has potent activity against nonorthopaedic infections in mice and the planktonic, free-living forms of many bacterial species, including Staphylococcus aureus , a common cause of orthopaedic infections. Importantly, halicin did not induce resistance in vitro and was effective against drug-resistant bacteria and proliferating and quiescent bacteria. Quiescence is an important cause of antibiotic tolerance in biofilms. However, whether halicin acts on biofilms has not been tested. QUESTIONS/PURPOSES (1) Does halicin reduce the viability of S. aureus in less mature and more mature biofilms as it does in planktonic cultures? (2) How do the relative effects of halicin on S. aureus biofilms and planktonic cultures compare with those of conventional antibiotics (tobramycin, cefazolin, vancomycin, or rifampicin) that are commonly used in clinical orthopaedic infections? METHODS To measure minimal biofilm eradication concentrations (MBECs) with less mature 3-day and more mature 7-day biofilms, we used 96-well peg plates that provided high throughput and excellent reproducibility. After S. aureus -Xen36 biofilm formation, planktonic bacteria were removed from the cultures, and the biofilms were exposed to various concentrations of halicin, tobramycin, cefazolin, vancomycin, or rifampicin for 20 hours. Biofilm viability was determined by measuring resazurin reduction or by counting colony-forming units after sonication. To determine effects of halicin and the conventional antibiotics on biofilm viability, we defined MBEC 75 as the lowest concentration that decreased viability by 75% or more. To determine effects on bacterial viability in planktonic cultures, minimum inhibitory concentrations (MICs) were determined with the broth dilution method. Each result was measured in four to 10 independent experiments. RESULTS We found no differences between halicin's effectiveness against planktonic S. aureus and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 25 μM [interquartile range 25 to 25 and 25 to 25, respectively]; p > 0.99). Halicin was eightfold less effective against more mature 7-day biofilms (MBEC 75 = 200 μM [100 to 200]; p < 0.001). Similarly, tobramycin was equally effective against planktonic culture and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 20 μM [20 to 20 and 10 to 20, respectively]; p > 0.99). Tobramycin's MBEC 75 against more mature 7-day biofilms was 320 μM (320 to 480), which is 16-fold greater than its planktonic MIC (p = 0.03). In contrast, the MBEC 75 for cefazolin, vancomycin, and rifampicin against more mature 7-day biofilms were more than 1000-fold (> 1000; p < 0.001), 500-fold (500 to 875; p < 0.001), and 3125-fold (3125 to 5469; p = 0.004) greater than their planktonic MICs, respectively, consistent with those antibiotics' relative inactivity against biofilms. CONCLUSION Halicin was as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but eightfold higher concentrations were needed for more mature 7-day biofilms. Tobramycin, an antibiotic whose effectiveness depends on biofilm maturity, was also as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but 16-fold higher concentrations were needed for more mature 7-day biofilms. In contrast, cefazolin, vancomycin, and rifampicin were substantially less active against both less and more mature biofilms than against planktonic cultures. CLINICAL RELEVANCE Halicin is a promising antibiotic that may be effective against S. aureus osteomyelitis and infections on orthopaedic implants. Future studies should assess the translational value of halicin by testing its effects in animal models of orthopaedic infections; on the biofilms of other bacterial species, including multidrug-resistant bacteria; and in combination therapy with conventional antibiotics.
Collapse
Affiliation(s)
- Shota Higashihira
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Japan
| | - Stefanie Jan Simpson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher David Collier
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman Michael Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Edward Michael Greenfield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Koepf US, Scheidt S, Hischebeth GTR, Strassburg CP, Wirtz DC, Randau TM, Lutz P. Increased rate of enteric bacteria as cause of periprosthetic joint infections in patients with liver cirrhosis. BMC Infect Dis 2022; 22:389. [PMID: 35439971 PMCID: PMC9019970 DOI: 10.1186/s12879-022-07379-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction Periprosthetic joint infections (PJI) are a major complication in joint-arthroplasty. Rifampicin is often used as an additional agent to treat PJI, because it penetrates bacterial biofilms. However, rifaximin, belonging to the same antibiotic class as rifampicin, is frequently used to prevent episodes of hepatic encephalopathy in patients with cirrhosis and may induce resistance to rifampicin. The aim of this study was to examine the microbial pattern of periprosthetic joint infections in cirrhotic patients and to test the hypothesis that intake of rifaximin increases the rate of resistance to rifampicin in periprosthetic joint infections. Methods A cohort of cirrhotic patients and PJI (n = 25) was analysed on the characteristics of bacterial isolates from sonication and tissue analysis. In a second step a subgroup analysis on the development of rifampicin resistant bacterial specimens, depending on the intake of rifaximin (8 rifaximin intake patients vs. 13 non rifaximin intake patients) was performed. Results Intestinal bacteria were found in 50% of the specimens, which was significantly more frequent than in a control cohort. By comparison of the single bacterial isolates, rifampicin resistance was detected in 69.2% (9/13) of the rifaximin-intake samples. In contrast, the non-rifaximin-intake isolates only were resistant to rifampicin in 22.2% (4/18) of the cases (p = 0.01). The odds ratio for developing a rifampicin-resistance through rifaximin intake was calculated as OR = 13.5. Conclusion Periprosthetic joint infections have a high incidence of being caused by enteric bacteria in cirrhotic patients. Due to this change in microbial pattern and the innate resistance to rifampicin of most of gram-negative bacteria, the therapy with rifampicin should be carefully considered. The association between the use of rifaximin and developed resistance to rifampicin has a major impact on the treatment of PJI.
Collapse
Affiliation(s)
- Uta S Koepf
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Sebastian Scheidt
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Gunnar T R Hischebeth
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Dieter C Wirtz
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Thomas M Randau
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| |
Collapse
|
24
|
Veerman K, Raessens J, Telgt D, Smulders K, Goosen JHM. Debridement, antibiotics, and implant retention after revision arthroplasty : antibiotic mismatch, timing, and repeated DAIR associated with poor outcome. Bone Joint J 2022; 104-B:464-471. [PMID: 35360944 DOI: 10.1302/0301-620x.104b4.bjj-2021-1264.r1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Debridement, antibiotics, and implant retention (DAIR) is a widely accepted form of surgical treatment for patients with an early periprosthetic joint infection (PJI) after primary arthroplasty. The outcome of DAIR after revision arthroplasty, however, has not been reported. The aim of this study was to report the success rate of DAIR after revision arthroplasty with a follow-up of two years. METHODS This retrospective study, conducted at the Sint Maartenskliniek, Nijmegen, the Netherlands, included 88 patients who underwent DAIR within 90 days of revision total hip or total knee arthroplasty between 2012 and 2019. Details of the surgical procedures and PJI were collected. Univariate analysis and a subgroup analysis of the culture-positive group were performed. Kaplan-Meier survivorship curves were constructed. RESULTS The overall success rate of DAIR, with respect to the retention of components and the cure of infection, was 68% after two years. DAIR performed with an interval of > 30 days after the index revision procedure (odds ratio (OR) 0.24 (95% confidence interval (CI) 0.08 to 0.72); p = 0.008), a repeated DAIR within 90 days (OR 0.37 (95% CI 0.14 to 0.97); p = 0.040), and the use of an immunosuppressive agent (OR 0.13 (95% CI 0.02 to 0.67); p = 0.012) were associated with a significantly reduced success rate. In the culture-positive group, a mismatch between the antibiotic treatment and the susceptibility of the organism was associated with a significantly lower success rate (OR 0.13 (95% CI 0.03 to 0.62); p = 0.007). CONCLUSION DAIR is an acceptable form of surgical treatment for patients with a suspected early PJI after revision arthroplasty of the hip or knee. DAIRs performed after a prolonged interval, multiple DAIRs, and antibiotic mismatches were significantly associated with an increased risk of failure. Optimization of the host immune response and the prevention of antibiotic mismatch are modifiable factors that may improve the outcome. The high rate of mismatches was an important finding, underlining the need for a review of the local microbiological data, which might improve the outcome. Cite this article: Bone Joint J 2022;104-B(4):464-471.
Collapse
Affiliation(s)
- Karin Veerman
- Department of Orthopaedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Joris Raessens
- Department of Orthopaedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Denise Telgt
- Department of Orthopaedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Katrijn Smulders
- Department of Orthopaedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| | - Jon H M Goosen
- Department of Orthopaedic Surgery, Sint Maartenskliniek, Nijmegen, the Netherlands
| |
Collapse
|
25
|
|
26
|
Isguven S, Fitzgerald K, Delaney LJ, Harwood M, Schaer TP, Hickok NJ. In vitro investigations of Staphylococcus aureus biofilms in physiological fluids suggest that current antibiotic delivery systems may be limited. Eur Cell Mater 2022; 43:6-21. [PMID: 35106744 PMCID: PMC10043781 DOI: 10.22203/ecm.v043a03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Orthopaedic surgical site infections, especially when a hardware is involved, are associated with biofilm formation. Clinical strategies for biofilm eradication still fall short. The present study used a novel animal model of long-bone fixation with vancomycin- or gentamicin-controlled release and measured the levels of antibiotic achieved at the site of release and in the surrounding tissue. Then, using fluids that contain serum proteins (synovial fluid or diluted serum), the levels of vancomycin or gentamicin required to substantially reduce colonising bacteria were measured in a model representative of either prophylaxis or established biofilms. In the in vivo model, while the levels immediately adjacent to the antibiotic release system were up to 50× the minimal inhibitory concentration in the first 24 h, they rapidly dropped. At peripheral sites, values never reached these levels. In the in vitro experiments, Staphylococcus aureus biofilms formed in serum or in synovial fluid showed a 5-10 fold increase in antibiotic tolerance. Importantly, concentrations required were much higher than those achieved in the local delivery systems. Finally, the study determined that the staged addition of vancomycin and gentamicin was not more efficacious than simultaneous vancomycin and gentamicin administration when using planktonic bacteria. On the other hand, for biofilms, the staged addition seemed more efficacious than adding the antibiotics simultaneously. Overall, data showed that the antibiotics' concentrations near the implant in the animal model fall short of the concentrations required to eradicate biofilms formed in either synovial fluid or serum.
Collapse
Affiliation(s)
| | | | | | | | - T P Schaer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Road, Kennett Square, PA 19348, Philadelphia,
| | | |
Collapse
|
27
|
Marston S, Mirick Mueller G, Sabin A, Hansen GT, Lindgren B, Aparicio C, Armstrong AR, Larsen OH, Schmidt A, Kyle R, Gustilo R, Tsukayama D, Bechtold J, Bue M. Systemic versus free antibiotic delivery in preventing acute exogenous implant related infection in a rat model. J Orthop Res 2022; 40:429-438. [PMID: 33913540 DOI: 10.1002/jor.25052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
We studied systemic ceftriaxone, and free/local tobramycin and doxycycline in a controlled rat model representing a generic acute exogenous joint infection. We hypothesized that evidence of infection (quantitative colony forming units [CFU], qualitative scanning electron microscopy [SEM], histopathology) (1a) would be reduced with local versus systemic antibiotic, (1b) any antibiotic would be superior to control, (2) there would be a difference among antibiotics, and (3) antibiotic would not be detectable in serum at 4-week euthanasia. Study groups included infected and noninfected (1) control (no treatment), (2) systemic ceftriaxone (daily), (3) local tobramycin, and (4) local doxycycline (10 rats/group; power = 0.8). With IACUC approval, a reliable acute exogenous joint infection was created by slowly injecting 50-μl, 104 CFU Staphylococcus aureus, into the distal femoral medullary canal. The antibiotic formulation was introduced locally to the femoral canal and joint space. After 4 weeks, serum, pin, bone, and synovium were obtained. CFU/ml of bone and synovium were quantified using macrotiter method. SEM imaged biofilm on the surface of the pin, histopathology identified tissue response, liquid chromatography/mass spectrometry quantified plasma antibiotic. (1) Groups receiving any antibiotic reported lower CFU/ml in synovium compared with no treatment. (2) In the synovium, free/local tobramycin reduced CFU/ml to a greater extent than free/local doxycycline (p < 0.05). (3) Antibiotic in plasma after the local application was nondetectable in all groups after 4 weeks. SEM revealed no difference in biofilm on pin among all groups.
Collapse
Affiliation(s)
- Scott Marston
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Arick Sabin
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Glen T Hansen
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | | | | | | | - Ole H Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andrew Schmidt
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Richard Kyle
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Ramon Gustilo
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Dean Tsukayama
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Joan Bechtold
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Mats Bue
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Hidradenitis Suppurativa: Host-Microbe and Immune Pathogenesis Underlie Important Future Directions. JID INNOVATIONS 2021; 1:100001. [PMID: 34909706 PMCID: PMC8659377 DOI: 10.1016/j.xjidi.2021.100001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory disease of the skin with a chronic, relapsing-remitting course. The pathogenesis of the disease is poorly understood and involves multiple factors, including genetics, environment, host-microbe interactions, and immune dysregulation. In particular, the composition of the cutaneous microbiome shifts as the disease progresses, although it is unclear whether this is a primary or secondary process. Trials with immunomodulatory therapy elucidate the role of specific immune pathways and cytokine signaling in disease mechanism, such as TNF-α, IL-1β, IL-12, IL-17, IL-23, and complement. Future studies should continue examining the causes of and contributing factors to microbial changes and immune dysregulation in HS pathogenesis.
Collapse
Key Words
- AMP, antimicrobial peptide
- BD, β-defensin
- BMI, body mass index
- DC, dendritic cell
- DCD, dermcidin
- GSC, γ-secretase complex
- HS, hidradenitis suppurativa
- HiSCR, hidradenitis suppurativa clinical response
- IBD, inflammatory bowel disease
- IHS4, International Hidradenitis Suppurativa Severity Score System
- KC, keratinocyte
- MMP, matrix metalloproteinase
- NET, neutrophil extracellular traps
- NMSC, nonmelanoma skin cancer
- PG, pyoderma gangrenosum
- RCT, randomized controlled trial
- SAPHO, synovitis, acne, pustulosis, hyperostosis, and osteitis
- TLR, toll-like receptor
- Th, T helper type
- iNOS, inducible nitric oxide synthase
- pDC, plasmacytoid dendritic cell
Collapse
|
29
|
Wang LH, Feng YD, Zhang XW, Jin L, Zhou FL, Xu GH. Elution and Biomechanical Properties of Meropenem-Loaded Bone Cement. Orthop Surg 2021; 13:2417-2422. [PMID: 34734478 PMCID: PMC8654665 DOI: 10.1111/os.13139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the biomechanical and elution properties of meropenem‐loaded bone cement. Methods Bone cement (Palacos LV) with 5% (2 g/4 0g), 10% (4 g/40 g), and 15% (6 g/40 g) meropenem; 5% (2 g/40 g) and 10% (4 g/40 g) vancomycin; and blank bone cement were prepared in a total of six groups named A2, A4, A6, B2, B4, and A0 (antibiotic‐free). 36 cylinder specimens (6‐mm diameter and 12‐mm height) of all six groups were molded for a compression test. After the compression test, because of mechanical properties below the ISO standard requirements, groups B2, B4 were not subjected to a bending test. So a total of 24 rectangular strip specimens (10‐mm width, 75‐mm length, and 3.3‐mm thickness) for groups A2, A4, A6 and A0 were molded for the bending test. Between‐group differences of compressive strength, bending strength and bending modulus were analyzed. The meropenem standard was prepared as a series of standard solutions to calculate the standard curve. At a constant temperature of 37 °C, separately, meropenem‐loaded bone cement cylinder specimens (12 mm in diameter and 17 mm in length) of A2, A4 and A6 were serially immersed in saline solution without stirring. The eluent drug concentration at 24, 48, 72 h and 6, 12, 24 days was measured and the drug concentration‐time curve of meropenem was constructed. Results With the exception of groups B2 and B4, all cements compressive strength values were well above the minimum requirement of the ISO 5833 standard (70 MPa). The compressive strength and bending strength values of group A4 were higher than those of group A0 (P < 0.05), but no difference was found between the A0, A2 and A6 groups (P > 0.05). There were no intergroup differences of bending modulus between the A0, A2, A4 and A6 groups (P > 0.05). A standard curve of meropenem was obtained and a regression equation was constructed: Y = 15.0265 X + 13.5218, r = 1.00. At 37 °C, the release of meropenem was rapid during the first 48 h for all A2, A4, A6 samples, and subsequent release continued to decrease. Conclusion When adding up to 15% (6 g/40 g) meropenem to the bone cement, the biomechanical properties were not reduced, and bone cement with 10% (4 g/40 g) meropenem had the best performance. At a constant temperature of 37°C, meropenem can be released from bone cement for up to 24 days.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Orthopaedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Ya-Dong Feng
- Department of Orthopaedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Xiao-Wei Zhang
- Department of Pathology, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Long Jin
- Department of Pharmacy, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Fang-Lun Zhou
- Department of Orthopaedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Guo-Hong Xu
- Department of Orthopaedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| |
Collapse
|
30
|
Svensson Malchau K, Tillander J, Zaborowska M, Hoffman M, Lasa I, Thomsen P, Malchau H, Rolfson O, Trobos M. Biofilm properties in relation to treatment outcome in patients with first-time periprosthetic hip or knee joint infection. J Orthop Translat 2021; 30:31-40. [PMID: 34485075 PMCID: PMC8385121 DOI: 10.1016/j.jot.2021.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/27/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022] Open
Abstract
Background Periprosthetic joint infections (PJI) are challenging complications following arthroplasty. Staphylococci are a frequent cause of PJI and known biofilm producers. Biofilm formation decreases antimicrobial susceptibility, thereby challenging favourable treatment outcomes. The aims of this study were to characterize the biofilm abilities and antimicrobial susceptibilities of staphylococci causing first-time PJI and correlate them to clinical outcome (infection resolution and recurrence). Methods Reoperations for PJI of the hip or knee between 1st January 2012 to 30th June 2015 performed at the Sahlgrenska University Hospital were identified in a local database. Medical records were reviewed and clinical parameters recorded for patients whose intraoperative bacterial isolates had been stored at the clinical laboratory. Staphylococcal strains isolated from reoperations due to first-time PJI were characterised by their ability to form biofilms using the microtiter plate test. Antimicrobial susceptibility of the strains was determined by minimum inhibitory concentration (MIC) when grown planktonically, and by minimum biofilm eradication concentration (MBEC) when grown as biofilms. MBEC determination was conducted using the Calgary biofilm device (CBD) and a custom-made antimicrobial susceptibility plate containing eight clinically relevant antimicrobial agents. Results The study group included 49 patients (70 bacterial strains) from first-time PJI, whereof 24 (49%) patients had recurrent infection. Strong biofilm production was significantly associated with recurrent infection. Patients infected with strong biofilm producers had a five-fold increased risk for recurrent infection. Strains grown as biofilms were over 8000 times more resistant to antimicrobial agents compared to planktonic cultures. Biofilms were more susceptible to rifampicin compared to other antimicrobials in the assay. Increased biofilm susceptibility (MBEC > MIC) was observed for the majority of the bacterial strains and antimicrobial agents. Conclusions Strong biofilm production was significantly associated with increased antimicrobial resistance and PJI recurrence. This underscores the importance of determining biofilm production and susceptibility as part of routine diagnostics in PJI. Strong staphylococcal biofilm production may have implications on therapeutic choices and suggest more extensive surgery. Furthermore, despite the increased biofilm resistance to rifampicin, results from this study support its use in staphylococcal PJI. The Translational Potential of this Article Like for many biomaterial-associated infections, staphylococci are a common cause of PJI. Their ability to adhere to surfaces and produce biofilms on medical devices is proposed to play a role. However, clinical studies where biofilm properties are directly linked to patient outcome are scarce. This study demonstrates that the majority of staphylococci isolated from first-time PJI were biofilm producers with increased antimicrobial resistance. Patients suffering an infection caused by a staphylococcal strain with strong biofilm production ability had a five-fold greater risk of recurrent infection. This novel finding suggests the importance of evaluating biofilm production as a diagnostic procedure for the guidance of treatment decisions in PJI.
Collapse
Affiliation(s)
- Karin Svensson Malchau
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Tillander
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magdalena Zaborowska
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hoffman
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iñigo Lasa
- Microbial Pathogenesis Research Unit, Public University of Navarre, Pamplona, Spain
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Malchau
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
32
|
Padhi SK, Baglieri N, Bonino V, Agostino A, Operti L, Batalu ND, Chifiriuc MC, Popa M, Burdusel M, Grigoroscuta MA, Aldica GV, Radu D, Badica P, Truccato M. Antimicrobial Activity of MgB 2 Powders Produced via Reactive Liquid Infiltration Method. Molecules 2021; 26:4966. [PMID: 34443553 PMCID: PMC8399391 DOI: 10.3390/molecules26164966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/05/2022] Open
Abstract
We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar.
Collapse
Affiliation(s)
- Santanu Kumar Padhi
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Nicoletta Baglieri
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Valentina Bonino
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Angelo Agostino
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Lorenza Operti
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Nicolae Dan Batalu
- Metallic Materials Science, Physical Metallurgy Department, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania; (M.C.C.); (M.P.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Marcela Popa
- Faculty of Biology, Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania; (M.C.C.); (M.P.)
| | - Mihail Burdusel
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Mihai Alexandru Grigoroscuta
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Gheorghe Virgil Aldica
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Dana Radu
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Petre Badica
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Marco Truccato
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| |
Collapse
|
33
|
Funk GA, Menuey EM, Ensminger WP, Kilway KV, McIff TE. Elution of rifampin and vancomycin from a weight-bearing silorane-based bone cement. Bone Joint Res 2021; 10:277-284. [PMID: 33845590 PMCID: PMC8077179 DOI: 10.1302/2046-3758.104.bjr-2020-0430.r1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. METHODS For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. RESULTS The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. CONCLUSION SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277-284.
Collapse
Affiliation(s)
- Grahmm August Funk
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elizabeth M Menuey
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - William P Ensminger
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kathleen V Kilway
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Terence E McIff
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
34
|
Zlotnicki J, Gabrielli A, Urish KL, Brothers KM. Clinical Evidence of Current Irrigation Practices and the Use of Oral Antibiotics to Prevent and Treat Periprosthetic Joint Infection. Orthop Clin North Am 2021; 52:93-101. [PMID: 33752842 PMCID: PMC7990073 DOI: 10.1016/j.ocl.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jason Zlotnicki
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Alexandra Gabrielli
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
35
|
Brooks JR, Dusane DH, Moore K, Gupta T, Delury C, Aiken SS, Laycock PA, Sullivan AC, Granger JF, Dipane MV, McPherson EJ, Stoodley P. Pseudomonas aeruginosa biofilm killing beyond the spacer by antibiotic-loaded calcium sulfate beads: an in vitro study. J Bone Jt Infect 2021; 6:119-129. [PMID: 34084700 PMCID: PMC8137860 DOI: 10.5194/jbji-6-119-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Bacterial biofilms are an important virulence factor in
chronic periprosthetic joint infection (PJI) and other orthopedic infection
since they are highly tolerant to antibiotics and host immunity. Antibiotics
are mixed into carriers such as bone cement and calcium sulfate bone void
fillers to achieve sustained high concentrations of antibiotics required to
more effectively manage biofilm infections through local release. The effect
of antibiotic diffusion from antibiotic-loaded calcium sulfate beads
(ALCS-B) in combination with PMMA bone cement spacers on the spread and
killing of Pseudomonas aeruginosa Xen41 (PA-Xen41) biofilm was investigated using a “large agar
plate” model scaled for clinical relevance. Methods: Bioluminescent
PA-Xen41 biofilms grown on discs of various orthopedic materials were placed within a large agar plate containing a PMMA full-size mock “spacer”
unloaded or loaded with vancomycin and tobramycin, with or without ALCS-B.
The amount of biofilm spread and log reduction on discs at varying distances
from the spacer was assessed by bioluminescent imaging and viable cell
counts. Results: For the unloaded spacer control, PA-Xen41 spread from the
biofilm to cover the entire plate. The loaded spacer generated a 3 cm zone of
inhibition and significantly reduced biofilm bacteria on the discs
immediately adjacent to the spacer but low or zero reductions on those further away. The combination of ALCS-B and a loaded PMMA spacer greatly
reduced bacterial spread and resulted in significantly greater biofilm
reductions on discs at all distances from the spacer. Discussion: The
addition of ALCS-B to an antibiotic-loaded spacer mimic increased the area of antibiotic coverage and efficacy against biofilm, suggesting that a
combination of these depots may provide greater physical antibiotic coverage
and more effective dead space management, particularly in zones where the
spread of antibiotic is limited by diffusion (zones with little or no fluid
motion).
Collapse
Affiliation(s)
- Jacob R Brooks
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Devendra H Dusane
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Kelly Moore
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Tripti Gupta
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Craig Delury
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire, ST5 5NL, UK
| | - Sean S Aiken
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire, ST5 5NL, UK
| | - Phillip A Laycock
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire, ST5 5NL, UK
| | - Anne C Sullivan
- Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey F Granger
- Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Matthew V Dipane
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Edward J McPherson
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA.,Department of Orthopaedics, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA.,National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Department of Mechanical Engineering, University of Southampton, Southampton, UK
| |
Collapse
|
36
|
Lee YH, Chiu CC, Chang CY. Engineered photo-chemical therapeutic nanocomposites provide effective antibiofilm and microbicidal activities against bacterial infections in porous devices. Biomater Sci 2021; 9:1739-1753. [PMID: 33432933 DOI: 10.1039/d0bm01814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Today, prosthetic joint infection (PJI) is still a relatively rare but devastating complication following total hip and/or knee arthroplasty. The treatment of PJI is difficult due to a number of obstacles, such as microbial drug resistance, biofilm protection, and insufficient immune activity, which dramatically diminish the cure rate of PJI to <50%. To efficiently eradicate the bacteria hiding in the implant, photo-chemical joint antibacterial therapeutics based on indocyanine green (ICG) and rifampicin (RIF) co-loaded PLGA nanoparticles (IRPNPs) were developed in this study. The IRPNPs were first characterized as a spherical nanostructure with a size of 266 ± 18.2 nm and a surface charge of -28 ± 1.6 mV. In comparison with freely dissolved ICG, the IRPNPs may confer enhanced thermal stability to the encapsulated ICG and are able to provide a comparable hyperthermic effect and increased production of singlet oxygen under 808 nm near infrared (NIR) exposure with an intensity of 6 W cm-2. Based on the spectrophotometric analysis, the IRPNPs with ≥20-/3.52 μM ICG/RIF were able to provide remarkable antibiofilm and antimicrobial effects against bacteria in a porous silicon bead upon NIR exposure in vitro. Through the analysis of the microbial population index in an animal study, ≥70% Staphylococcus capitis subsp. urealyticus grown in a porous silicon bead in vivo can be successfully eliminated without organ damage or inflammatory lesions around the implant by using IRPNPs + NIR irradiation every 72 h for 9 days. The resulting bactericidal efficacy was approximately three-fold higher than that resulting from using an equal amount of free RIF alone. Taken together, we anticipate that IRPNP-mediated photochemotherapy can serve as a feasible antibacterial approach for PJI treatment in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China. and Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
| | - Chen-Chih Chiu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
| | - Chin-Yuan Chang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
| |
Collapse
|
37
|
Ferreira M, Pinto SN, Aires-da-Silva F, Bettencourt A, Aguiar SI, Gaspar MM. Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms. Pharmaceutics 2021; 13:pharmaceutics13030321. [PMID: 33801281 PMCID: PMC7999762 DOI: 10.3390/pharmaceutics13030321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a major public health concern. Current therapies are hampered by reduced penetration of antibiotics through biofilm and low accumulation levels at infected sites, requiring prolonged usage. To overcome these, repurposing antibiotics in combination with nanotechnological platforms is one of the most appealing fast-track and cost-effective approaches. In the present work, we assessed the potential therapeutic benefit of three antibiotics, vancomycin, levofloxacin and rifabutin (RFB), through their incorporation in liposomes. Free RFB displayed the utmost antibacterial effect with MIC and MBIC50 below 0.006 µg/mL towards a methicillin susceptible S. aureus (MSSA). RFB was selected for further in vitro studies and the influence of different lipid compositions on bacterial biofilm interactions was evaluated. Although positively charged RFB liposomes displayed the highest interaction with MSSA biofilms, RFB incorporated in negatively charged liposomes displayed lower MBIC50 values in comparison to the antibiotic in the free form. Preliminary safety assessment on all RFB formulations towards osteoblast and fibroblast cell lines demonstrated that a reduction on cell viability was only observed for the positively charged liposomes. Overall, negatively charged RFB liposomes are a promising approach against biofilm S. aureus infections and further in vivo studies should be performed.
Collapse
Affiliation(s)
- Magda Ferreira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra N. Pinto
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Frederico Aires-da-Silva
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
| | - Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra I. Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Correspondence: (S.I.A.); (M.M.G.)
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (S.I.A.); (M.M.G.)
| |
Collapse
|
38
|
Schwarz EM, McLaren AC, Sculco TP, Brause B, Bostrom M, Kates SL, Parvizi J, Alt V, Arnold WV, Carli A, Chen AF, Choe H, Coraça‐Huber DC, Cross M, Ghert M, Hickok N, Jennings JA, Joshi M, Metsemakers W, Ninomiya M, Nishitani K, Oh I, Padgett D, Ricciardi B, Saeed K, Sendi P, Springer B, Stoodley P, Wenke JC. Adjuvant antibiotic-loaded bone cement: Concerns with current use and research to make it work. J Orthop Res 2021; 39:227-239. [PMID: 31997412 PMCID: PMC7390691 DOI: 10.1002/jor.24616] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 02/04/2023]
Abstract
Antibiotic-loaded bone cement (ALBC) is broadly used to treat orthopaedic infections based on the rationale that high-dose local delivery is essential to eradicate biofilm-associated bacteria. However, ALBC formulations are empirically based on drug susceptibility from routine laboratory testing, which is known to have limited clinical relevance for biofilms. There are also dosing concerns with nonstandardized, surgeon-directed, hand-mixed formulations, which have unknown release kinetics. On the basis of our knowledge of in vivo biofilms, pathogen virulence, safety issues with nonstandardized ALBC formulations, and questions about the cost-effectiveness of ALBC, there is a need to evaluate the evidence for this clinical practice. To this end, thought leaders in the field of musculoskeletal infection (MSKI) met on 1 August 2019 to review and debate published and anecdotal information, which highlighted four major concerns about current ALBC use: (a) substantial lack of level 1 evidence to demonstrate efficacy; (b) ALBC formulations become subtherapeutic following early release, which risks induction of antibiotic resistance, and exacerbated infection from microbial colonization of the carrier; (c) the absence of standardized formulation protocols, and Food and Drug Administration-approved high-dose ALBC products to use following resection in MSKI treatment; and (d) absence of a validated assay to determine the minimum biofilm eradication concentration to predict ALBC efficacy against patient specific micro-organisms. Here, we describe these concerns in detail, and propose areas in need of research.
Collapse
Affiliation(s)
- Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research University of Rochester Rochester New York
| | - Alex C. McLaren
- Department of Orthopaedic Surgery, College of Medicine‐Phoenix University of Arizona Phoenix Arizona
| | - Thomas P. Sculco
- Department of Orthopaedic Surgery, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Barry Brause
- Department of Infectious Diseases, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Mathias Bostrom
- Department of Orthopaedic Surgery, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Stephen L. Kates
- Department of Orthopaedic Surgery Virginia Commonwealth University Richmond Virginia
| | - Javad Parvizi
- Department of Orthopaedics Rothman Institute at Thomas Jefferson University Hospital Philadelphia Pennsylvania
| | - Volker Alt
- Department of Trauma Surgery University Medical Centre Regensburg Regensburg Germany
| | - William V. Arnold
- Department of Orthopaedics Rothman Institute at Thomas Jefferson University Hospital Philadelphia Pennsylvania
| | - Alberto Carli
- Department of Orthopaedic Surgery, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Antonia F. Chen
- Department of Orthopaedics, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts
| | - Hyonmin Choe
- Department of Orthopaedic Yokohama City University Yokohama Japan
| | - Débora C. Coraça‐Huber
- Department of Orthopaedic Surgery, Experimental Orthopedics, Research Laboratory for Biofilms and Implant Associated Infections Medical University of Innsbruck Innsbruck Austria
| | - Michael Cross
- Department of Orthopaedic Surgery, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Michelle Ghert
- Division of Orthopaedic Surgery, Department of Surgery McMaster University Hamilton Ontario Canada
| | - Noreen Hickok
- Department of Orthopaedic Surgery, Department of Biochemistry & Molecular Biology Thomas Jefferson University Philadelphia Pennsylvania
| | | | - Manjari Joshi
- Division of Infectious Diseases, R Adams Cowley Shock Trauma Center University of Maryland Baltimore Maryland
| | | | - Mark Ninomiya
- Department of Orthopaedics, Center for Musculoskeletal Research University of Rochester Rochester New York
| | - Kohei Nishitani
- Department of Orthopaedic Surgery Graduate School of Medicine, Kyoto University Sakyo Kyoto Japan
| | - Irvin Oh
- Department of Orthopaedics, Center for Musculoskeletal Research University of Rochester Rochester New York
| | - Douglas Padgett
- Department of Orthopaedic Surgery, Weill Cornell Medicine Hospital for Special Surgery New York New York
| | - Benjamin Ricciardi
- Department of Orthopaedics, Center for Musculoskeletal Research University of Rochester Rochester New York
| | - Kordo Saeed
- Southampton University Hospitals NHS Foundation Trust, Department of Microbiology, Microbiology and Innovation Research Unit (MIRU) and University of Southampton, School of Medicine Southampton UK
| | - Parham Sendi
- Institute for Infectious Diseases University of Bern, Bern and Department of Infectious Diseases, Hospital Epidemiology and Department of Orthopaedics and Traumatology, University of Basel Basel Switzerland
- Department of Orthopaedics and Traumatology University Hospital Basel Basel Switzerland
| | - Bryan Springer
- Department of Orthopaedic Surgery, OrthoCarolina Hip and Knee Center Atrium Musculoskeletal Institute Charlotte North Carolina
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and Orthopaedics The Ohio State University Columbus Ohio
| | - Joseph C. Wenke
- Orthopaedic Trauma Department U.S. Army Institute of Surgical Research Fort Sam Houston Texas
| | | |
Collapse
|
39
|
Kuiper JWP, Hogervorst JMA, Herpers BL, Bakker AD, Klein-Nulend J, Nolte PA, Krom BP. The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells in vitro. BIOFOULING 2021; 37:184-193. [PMID: 33615928 DOI: 10.1080/08927014.2021.1887151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this in vitro study the effect of XZ.700, a new endolysin, on methicillin resistant Staphylococcus aureus (MRSA) biofilms grown on titanium was evaluated. Biofilms of S. aureus USA300 were grown statically and under flow, and treatment with XZ.700 was compared with povidone-iodine (PVP-I) and gentamicin. To evaluate the cytotoxic effects of XZ.700 and derived biofilm lysates, human osteocyte-like cells were exposed to biofilm supernatants, and metabolism and proliferation were quantified. XZ.700 showed a significant, concentration dependent reduction in biofilm viability, compared with carrier controls. Metabolism and proliferation of human osteocyte-like cells were not affected by XZ.700 or lysates, unlike PVP-I and gentamicin lysates which significantly inhibited proliferation. Using time-lapse microscopy, rapid biofilm killing and removal was observed for XZ.700. In comparison, PVP-I and gentamicin showed slower biofilm killing, with no apparent biofilm removal. In conclusion, XZ.700 reduced MRSA biofilms, especially under flow condition, without toxicity for surrounding bone cells.
Collapse
Affiliation(s)
- Jesse W P Kuiper
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bjorn L Herpers
- Department of Medical Microbiology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter A Nolte
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Shah NB, Hersh BL, Kreger A, Sayeed A, Bullock AG, Rothenberger SD, Klatt B, Hamlin B, Urish KL. Benefits and Adverse Events Associated With Extended Antibiotic Use in Total Knee Arthroplasty Periprosthetic Joint Infection. Clin Infect Dis 2021; 70:559-565. [PMID: 30944931 DOI: 10.1093/cid/ciz261] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Total knee arthroplasty (TKA) periprosthetic joint infection (PJI) can be managed with debridement, antibiotic therapy, and implant retention (DAIR). Oral antibiotics can be used after DAIR for an extended time period to improve outcomes. The objective of this study was to compare DAIR failure rates and adverse events between an initial course of intravenous antibiotic therapy and the addition of extended treatment with oral antibiotics. METHODS A multicenter observational study of patients diagnosed with a TKA PJI who underwent DAIR was performed. The primary outcome of interest was the failure rate derived from the survival time between the DAIR procedure and future treatment failure. RESULTS One hundred eight patients met inclusion criteria; 47% (n = 51) received an extended course of oral antibiotics. These patients had a statistically significant lower failure rate compared to those who received only intravenous antibiotics (hazard ratio, 2.47; P = .009). Multivariable analysis demonstrated that extended antibiotics independently predicted treatment success, controlling for other variables. There was no significant difference in failure rates between an extended course of oral antibiotics less or more than 12 months (P = .23). No significant difference in the rates of adverse events was observed between patients who received an initial course of antibiotics alone and those who received a combination of initial and extended antibiotic therapy (P = .59). CONCLUSIONS Extending therapy with oral antibiotics had superior infection-free survival for TKA PJI managed with DAIR. There was no increase in adverse events, demonstrating safety. After 1 year, there appears to be no significant benefit associated with continued antibiotic therapy.
Collapse
Affiliation(s)
- Neel B Shah
- Division of Infectious Disease, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Beverly L Hersh
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Kreger
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aatif Sayeed
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew G Bullock
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott D Rothenberger
- Center for Research on Health Care Data Center, Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Klatt
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Hamlin
- Bone and Joint Center, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth L Urish
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Arthritis and Arthroplasty Design Group, Bone and Joint Center, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Bioengineering, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Wang M, Li H, Yang Y, Yuan K, Zhou F, Liu H, Zhou Q, Yang S, Tang T. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioact Mater 2020; 6:1318-1329. [PMID: 33210025 PMCID: PMC7658329 DOI: 10.1016/j.bioactmat.2020.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Large bone defects face a high risk of pathogen exposure due to open wounds, which leads to high infection rates and delayed bone union. To promote successful repair of infectious bone defects, fabrication of a scaffold with dual functions of osteo-induction and bacterial inhibition is required. This study describes creation of an engineered progenitor cell line (C3H10T1/2) capable of doxycycline (DOX)-mediated release of bone morphogenetic protein-2 (BMP2). Three-dimensional bioprinting technology enabled creation of scaffolds, comprising polycaprolactone/mesoporous bioactive glass/DOX and bioink, containing these engineered cells. In vivo and in vitro experiments confirmed that the scaffold could actively secrete BMP2 to significantly promote osteoblast differentiation and induce ectopic bone formation. Additionally, the scaffold exhibited broad-spectrum antibacterial capacity, thereby ensuring the survival of embedded engineered cells when facing high risk of infection. These findings demonstrated the efficacy of this bioprinted scaffold to release BMP2 in a controlled manner and prevent the occurrence of infection; thus, showing its potential for repairing infectious bone defects. Genetic engineering and 3D bioprinting. Dual-functional. Suitable for infectious bone defect repair.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Haibei Liu
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Qinghui Zhou
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|
42
|
Adjunctive Use of Phage Sb-1 in Antibiotics Enhances Inhibitory Biofilm Growth Activity versus Rifampin-Resistant Staphylococcus aureus Strains. Antibiotics (Basel) 2020; 9:antibiotics9110749. [PMID: 33138034 PMCID: PMC7692760 DOI: 10.3390/antibiotics9110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Effective antimicrobials are crucial for managing Staphylococcus aureus implant-associated bone infections (IABIs), particularly for infections due to rifampin-resistant S. aureus (RRSA). Failure to remove the implant results in persistent infection; thus, prolonged suppressive antibiotic therapy may be a reasonable alternative. However, a high incidence of adverse events can necessitate the discontinuation of therapy. In this scenario, commercial Staphylococcal bacteriophage Sb-1 combined with antibiotics is an option, showing a promising synergistic activity to facilitate the treatment of biofilm infections. Therefore, we evaluated the efficacy of the inhibitory activity of five antibiotics (doxycycline, levofloxacin, clindamycin, linezolid, and rifampin) alone or combined with phage Sb-1 (106 PFU/mL) in a simultaneous and staggered manner, to combat five clinical RRSA strains and the laboratory strain MRSA ATCC 43300 in 72 h by isothermal microcalorimetry. The synergistic effects were observed when phage Sb-1 (106 PFU/mL) combined with antibiotics had at least 2 log-reduction lower concentrations, represented by a fractional biofilm inhibitory concentration (FBIC) of <0.25. Among the antibiotics that we tested, the synergistic effect of all six strains was achieved in phage/doxycycline and phage/linezolid combinations in a staggered manner, whereas a distinctly noticeable improvement in inhibitory activity was observed in the phage/doxycycline combination with a low concentration of doxycycline. Moreover, phage/levofloxacin and phage/clindamycin combinations also showed a synergistic inhibitory effect against five strains and four strains, respectively. Interestingly, the synergistic inhibitory activity was also observed in the doxycycline-resistant and levofloxacin-resistant profile strains. However, no inhibitory activity was observed for all of the combinations in a simultaneous manner, as well as for the phage/rifampin combination in a staggered manner. These results have implications for alternative, combined, and prolonged suppressive antimicrobial treatment approaches.
Collapse
|
43
|
Koch JA, Pust TM, Cappellini AJ, Mandell JB, Ma D, Shah NB, Brothers KM, Urish KL. Staphylococcus epidermidis Biofilms Have a High Tolerance to Antibiotics in Periprosthetic Joint Infection. Life (Basel) 2020; 10:E253. [PMID: 33114423 PMCID: PMC7693748 DOI: 10.3390/life10110253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023] Open
Abstract
Both Staphylococcus aureus and Staphylococcus epidermidis are commonly associated with periprosthetic joint infections (PJIs). The treatment of PJI can be challenging because biofilms are assumed to have an increased intolerance to antibiotics. This makes the treatment of PJI challenging from a clinical perspective. Although S. aureus has been previously demonstrated to have increased biofilm antibiotic tolerance, this has not been well established with Staphylococcus epidermidis. A prospective registry of PJI S. epidermidis isolates was developed. The efficacy of clinically relevant antibiotics was quantified against these isolates. S. epidermidis planktonic minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were collected using clinical laboratory standard index (CLSI) assays for eight antibiotics (doxycycline, vancomycin, daptomycin, clindamycin, rifampin, nafcillin, and trimethoprim/sulfamethoxazole). Mature biofilms were grown in vitro, after which minimum biofilm inhibitory concentration (MBIC) and minimum biofilm bactericidal concentration (MBBC) were quantified. Only rifampin and doxycycline had a measurable MBIC across all tested isolates. Based on MBBC, 64% of S. epidermidis biofilms could be eliminated by rifampin, whereas only 18% by doxycycline. S. epidermidis biofilm was observed to have a high tolerance to antibiotics as compared to planktonic culture. Isolate biofilm antibiotic tolerance varied to a larger degree than was seen in planktonic cultures.
Collapse
Affiliation(s)
- John A. Koch
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Taylor M. Pust
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Alex J. Cappellini
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Jonathan B. Mandell
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Neel B. Shah
- Division of Infectious Disease, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA;
| | - Kimberly M. Brothers
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
| | - Kenneth L. Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (J.A.K.); (T.M.P.); (A.J.C.); (J.B.M.); (D.M); (K.M.B.)
- The Bone and Joint Center, Magee Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Synthesis, ADMET Properties, and In Vitro Antimicrobial and Antibiofilm Activity of 5-Nitro-2-thiophenecarbaldehyde N-((E)-(5-Nitrothienyl)methylidene)hydrazone (KTU-286) against Staphylococcus aureus with Defined Resistance Mechanisms. Antibiotics (Basel) 2020; 9:antibiotics9090612. [PMID: 32957471 PMCID: PMC7558474 DOI: 10.3390/antibiotics9090612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug-resistant Staphylococcus aureus is responsible for high morbidity and mortality worldwide. New therapeutic options are needed to fight the increasing antimicrobial resistance among S. aureus in the clinical setting. We, therefore, characterized the in silico absorption, distribution, metabolism, elimination, and toxicity (ADMET) and in vitro antimicrobial activity of 5-nitro-2-thiophenecarbaldehyde N-((E)-(5-nitrothienyl)methylidene)hydrazone (KTU-286) against drug-resistant S. aureus strains with genetically defined resistance mechanisms. The antimicrobial activity of KTU-286 was determined by CLSI recommendations. The ADMET properties were estimated by using in silico modeling. The activity on biofilm integrity was examined by crystal violet assay. KTU-286 demonstrated low estimated toxicity and low skin permeability. The highest antimicrobial activity was observed among pan-susceptible (Pan-S) S. aureus (minimal inhibitory concentration (MIC) 0.5–2.0 µg/mL, IC50 = 0.460 µg/mL), followed by vancomycin resistant S. aureus (VRSA) (MIC 4.0 µg/mL, IC50 = 1.697 µg/mL) and methicillin-resistant S. aureus (MRSA) (MIC 1.0–16.0 µg/mL, IC50 = 2.282 µg/mL). KTU-286 resulted in significant (p < 0.05) loss of S. aureus biofilm integrity in vitro. Further studies are needed for a better understanding of safety, synergistic relationship, and therapeutic potency of KTU-286.
Collapse
|
45
|
Lamret F, Colin M, Mongaret C, Gangloff SC, Reffuveille F. Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies. Antibiotics (Basel) 2020; 9:E547. [PMID: 32867208 PMCID: PMC7558573 DOI: 10.3390/antibiotics9090547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, Staphylococcus aureus is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of Staphylococcus aureus in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections.
Collapse
Affiliation(s)
- Fabien Lamret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Marius Colin
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Céline Mongaret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
- Service Pharmacie, CHU Reims, 51097 Reims, France
| | - Sophie C. Gangloff
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Fany Reffuveille
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| |
Collapse
|
46
|
Stoodley P, Brooks J, Peters CW, Jiang N, Delury CP, Laycock PA, Aiken SS, Dusane DH. Prevention and Killing Efficacy of Carbapenem Resistant Enterobacteriaceae (CRE) and Vancomycin Resistant Enterococci (VRE) Biofilms by Antibiotic-Loaded Calcium Sulfate Beads. MATERIALS 2020; 13:ma13153258. [PMID: 32707995 PMCID: PMC7436038 DOI: 10.3390/ma13153258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococci (VRE) have emerged as multidrug-resistant (MDR) pathogens associated with periprosthetic joint infections (PJI). In this study, we evaluated the efficacy of antibiotic-loaded calcium sulfate beads (ALCSB) in inhibiting bacterial growth, encouraging biofilm formation and killing preformed biofilms of CRE and VRE. Three strains of Klebsiella pneumoniae (KP) and a strain of Enterococcus faecalis (EF) were used. ALCSB of 4.8-mm diameter were loaded with vancomycin (V) and gentamicin (G), V and rifampicin (R), V and tobramycin (T) or R and meropenem (M), and placed onto tryptic soy agar (TSA), spread with one of the test strains and incubated for 24 h at 37 °C. Beads were transferred daily onto fresh TSA spread plates and the zone of inhibition (ZOI) was recorded until no inhibition was observed. ALCSB containing R + M or R + V produced the most extensive ZOI up to 5 weeks. Biofilm prevention efficacy was investigated by challenging ALCSB daily with 5 × 105 CFU/mL bacterial cells and analyzing for biofilm formation at challenges 1, 2 and 3. In the biofilm killing experiments, ALCSB were added to pre-grown 3-day biofilms of KP and EF strains, which were then analyzed at days 1 and 3 post-exposure. The CFU counts and confocal images of the attached cells showed that ALCSB treatment reduced colonization and biofilm formation significantly (5–7 logs) with combinations of R + M or R + V, compared to unloaded beads. This study provides evidence that the local release of antibiotics from ALCSB may be useful in treating the biofilms of multidrug-resistant strains of CRE and VRE.
Collapse
Affiliation(s)
- Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (J.B.); (C.W.P.); (N.J.)
- National Centre for Advanced Tribology, Faculty of Engineering and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Department of Orthopaedic, The Ohio State University, Columbus, OH 43210, USA
| | - Jacob Brooks
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (J.B.); (C.W.P.); (N.J.)
| | - Casey W. Peters
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (J.B.); (C.W.P.); (N.J.)
| | - Nan Jiang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (J.B.); (C.W.P.); (N.J.)
| | - Craig P. Delury
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.P.D.); (P.A.L.); (S.S.A.)
| | - Phillip A. Laycock
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.P.D.); (P.A.L.); (S.S.A.)
| | - Sean S. Aiken
- Biocomposites Ltd., Keele Science Park, Keele, Staffordshire ST5 5NL, UK; (C.P.D.); (P.A.L.); (S.S.A.)
| | - Devendra H. Dusane
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (J.B.); (C.W.P.); (N.J.)
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children′s Hospital, 700 Children′s Drive, Columbus, OH 43205, USA
- Correspondence:
| |
Collapse
|
47
|
Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res 2020; 38:1423-1435. [PMID: 31965585 PMCID: PMC7304545 DOI: 10.1002/jor.24595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs to society and patient morbidity. Advancements in our knowledge of this condition have focused on prevention, diagnosis, and treatment, in order to reduce rates of PJI and improve patient outcomes. Preventive measures such as optimization of patient comorbidities, and perioperative antibiotic usage are intensive areas of current clinical research to reduce the rate of PJI. Improved diagnostic tests such as synovial fluid (SF) α-defensin enzyme-linked immunosorbent assay, and nucleic acid-based tests for serum, SF, and tissue cultures, have improved diagnostic accuracy and organism identification. Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative implant coatings remain promising treatments to improve infection eradication in the setting of PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Elysia A Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Nathan Kaplan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| |
Collapse
|
48
|
Abstract
Osteomyelitis, or inflammation of bone, is most commonly caused by invasion of bacterial pathogens into the skeleton. Bacterial osteomyelitis is notoriously difficult to treat, in part because of the widespread antimicrobial resistance in the preeminent etiologic agent, the Gram-positive bacterium Staphylococcus aureus Bacterial osteomyelitis triggers pathological bone remodeling, which in turn leads to sequestration of infectious foci from innate immune effectors and systemically delivered antimicrobials. Treatment of osteomyelitis therefore typically consists of long courses of antibiotics in conjunction with surgical debridement of necrotic infected tissues. Even with these extreme measures, many patients go on to develop chronic infection or sustain disease comorbidities. A better mechanistic understanding of how bacteria invade, survive within, and trigger pathological remodeling of bone could therefore lead to new therapies aimed at prevention or treatment of osteomyelitis as well as amelioration of disease morbidity. In this minireview, we highlight recent developments in our understanding of how pathogens invade and survive within bone, how bacterial infection or resulting innate immune responses trigger changes in bone remodeling, and how model systems can be leveraged to identify new therapeutic targets. We review the current state of osteomyelitis epidemiology, diagnostics, and therapeutic guidelines to help direct future research in bacterial pathogenesis.
Collapse
|
49
|
Mo F, Ma J, Yang X, Zhang P, Li Q, Zhang J. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153223. [PMID: 32460204 DOI: 10.1016/j.phymed.2020.153223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Candida albicans-related infections are common infections in clinic, among which biofilm-associated infections are most devastating and challenging to overcome. Myricetin (MY) is a plant-derived natural product with various pharmacological activities. Its anti-biofilm effect against C. albicans and its ability to increase the antifungal effect of miconazole nitrate (MN) were unclear and yet need to be explored. HYPOTHESIS/PURPOSE In this study the anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro and in vivo. STUDY DESIGN AND METHODS MY or/and MN were incorporated into a thermosensitive hydrogel (TSH) of poloxamer. The safety of MY or/and MN loaded TSHs towards human umbilical vein endothelial cells (HUVEC) was evaluated by a MTT assay and the in vivo safety towards mice knees was confirmed by histopathological examination. The anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro with C. albicans ATCC 10231 by broth microdilution method, crystal violet staining and scanning electron microscopy (SEM), as well as in vivo in an established mouse model of periprosthetic joint infection (PJI) by SEM, histological analysis, microorganism culture and detection of the serum levels of interleukin-6 (IL-6). The mechanism of action of MY was analyzed by qRT-PCR assay with C. albicans SC5314. RESULTS Our results showed that MY and MN incorporated into TSHs exhibited good stability and safety, excellent temperature sensitivity and controlled drug release property. MY (5-640 µg/ml) exhibited no effect on C. albicans cell viability and MY (≥80 µg/ml) showed a significantly inhibitory effect on biofilm formation. MIC50 (the lowest concentrations of drugs resulting in 50% decrease of C. albicans growth) and MIC80 (the lowest concentrations of drugs resulting in 80% decrease of C. albicans growth) of MN were respectively decreased from 2 µg/ml to 0.5 µg/ml and from 4 µg/ml to 2 µg/ml when used in combination with MY (80 µg/ml). The mouse PJI was effectively prevented by MY and MN incorporated into TSH. CONCLUSIONS Local application of MY and MN incorporated into TSH might be useful for clinical biofilm-associated infections.
Collapse
Affiliation(s)
- Fei Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xianwei Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Peipei Zhang
- Biobank, The first affiliated hospital of Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| |
Collapse
|
50
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|