1
|
Sharma DK. Current advancements in nanoparticles for vaccines and drug delivery for the treatment of tuberculosis. J Microbiol Methods 2025; 232-234:107138. [PMID: 40280241 DOI: 10.1016/j.mimet.2025.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Since the early centuries until the present, tuberculosis has been a global illness with no cure. However, the sickness remains dormant in the afflicted individuals in certain circumstances. Due to the thick lipid mycobacterial wall and the challenging medication delivery into the bacterial cell, treatment is complex at this point. Over the past utics., there has been a growth in the function of nanomaterials in tuberculosis (TB) management, especially in the domains of early diagnosis, vaccine, and therapy. It has been demonstrated that nanomaterials are effective in quickly and accurately identifying tuberculosis germs. Additionally, novel nanocarriers have shown great promise for improved medication delivery and immunization, possibly increasing drug concentrations in target organs while lowering the frequency of treatments. Furthermore, the engineering of antigen carriers is a promising area of tuberculosis research that may lead to the successful creation of a novel class of potent TB vaccines. This article addresses tuberculosis infection diagnosis, pathophysiology, immunology, and advanced nanoparticles to deliver TB vaccines and anti-TB drugs. The challenges and prospects for the future in creating secure and functional nanoparticles for tuberculosis treatment and diagnosis for the good health and well-being of the patient are also discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Chandpa HH, Panda AK, Meena CL, Meena J. Beyond the polysaccharide and glycoconjugate vaccines for Streptococcus pneumoniae: Does protein/peptide nanovaccines hold promises? Vaccine 2023; 41:7515-7524. [PMID: 37980259 DOI: 10.1016/j.vaccine.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Streptococcus pneumoniae having almost 98 serotypes and being common cause of acute otitis media, pneumonia, bacteremia, meningitis etc., which results in high mortality and morbidity globally. Although vaccines like PCV-13 and PPV-23 are available, some problems like serotype replacement and poor immunogenicity in children, old age and immunocompromised people has been observed. To overcome these drawbacks protein/peptide-based vaccine can be a good strategy as these provides wide serotype coverage. However, immunogenicity of protein subunit vaccines is lower, that issue can be solved by using adjuvants. Recently nanoparticles as an adjuvant for vaccine delivery being used, which has provided not only good immunogenicity but also improved delivery and efficiency of protein-based vaccines. In this review we have discussed the latest advancement of nanoparticles-based protein/peptide vaccine delivery for Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur, New Delhi 110044, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
3
|
Harshitha M, Nayak A, Disha S, Akshath US, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Nanovaccines to Combat Aeromonas hydrophila Infections in Warm-Water Aquaculture: Opportunities and Challenges. Vaccines (Basel) 2023; 11:1555. [PMID: 37896958 PMCID: PMC10611256 DOI: 10.3390/vaccines11101555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.
Collapse
Affiliation(s)
- Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Uchangi Satyaprasad Akshath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Saurabh Dubey
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | | | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore 575018, India
| |
Collapse
|
4
|
Tanzi L, Rubes D, Bavaro T, Sollogoub M, Serra M, Zhang Y, Terreni M. Controlled Decoration of [60]Fullerene with Polymannan Analogues and Amino Acid Derivatives through Malondiamide-Based Linkers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092776. [PMID: 35566127 PMCID: PMC9101093 DOI: 10.3390/molecules27092776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
In the last few years, nanomaterials based on fullerene have begun to be considered promising tools in the development of efficient adjuvant/delivery systems for vaccination, thanks to their several advantages such as biocompatibility, size, and easy preparation and modification. In this work we reported the chemoenzymatic synthesis of natural polymannan analogues (di- and tri-mannan oligosaccharides characterized by α1,6man and/or α1,2man motifs) endowed with an anomeric propargyl group. These sugar derivatives were submitted to 1,3 Huisgen dipolar cycloaddition with a malondiamide-based chain equipped with two azido terminal groups. The obtained sugar-modified malondiamide derivatives were used to functionalize the surface of Buckminster fullerene (C60) in a highly controlled fashion, and yields (11–41%) higher than those so far reported by employing analogue linkers. The same strategy has been exploited to obtain C60 endowed with natural and unnatural amino acid derivatives. Finally, the first double functionalization of fullerene with both sugar- and amino acid-modified malondiamide chains was successfully performed, paving the way to the possible derivatization of fullerenes with immunogenic sugars and more complex antigenic peptides.
Collapse
Affiliation(s)
- Lisa Tanzi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; (L.T.); (D.R.); (T.B.); (M.T.)
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, Place Jussieu 4, 75005 Paris, France;
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; (L.T.); (D.R.); (T.B.); (M.T.)
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; (L.T.); (D.R.); (T.B.); (M.T.)
| | - Matthieu Sollogoub
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, Place Jussieu 4, 75005 Paris, France;
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; (L.T.); (D.R.); (T.B.); (M.T.)
- Correspondence: (M.S.); (Y.Z.)
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, Place Jussieu 4, 75005 Paris, France;
- Correspondence: (M.S.); (Y.Z.)
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; (L.T.); (D.R.); (T.B.); (M.T.)
| |
Collapse
|
5
|
Tanzi L, Terreni M, Zhang Y. Synthesis and biological application of glyco- and peptide derivatives of fullerene C60. Eur J Med Chem 2022; 230:114104. [DOI: 10.1016/j.ejmech.2022.114104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023]
|
6
|
An efficient and safe MUC1-dendritic cell-derived exosome conjugate vaccine elicits potent cellular and humoral immunity and tumor inhibition in vivo. Acta Biomater 2022; 138:491-504. [PMID: 34757230 DOI: 10.1016/j.actbio.2021.10.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022]
Abstract
Antitumor vaccines are a promising strategy for preventing or treating cancers by eliciting antitumor immune responses and inducing protective immunity against specific antigens expressed on tumor cells. Vaccine formulations that enhance the humoral and cellular immune responses of vaccine candidates would be highly beneficial but are still limited. Here we developed an antitumor vaccine candidate by conjugating a MUC1 glycopeptide antigen to dendritic cell-derived exosomes (Dex). In vivo, the MUC1-Dex construct induced high MUC1-specific IgG antibody titers with strong binding affinities for MUC1-positive tumor cells and promoted cytokine secretion. Moreover, CD8+ T cells from immunized mice exhibited strong cytotoxicity against MUC1-positive tumor cells. Importantly, in both preventative and therapeutic tumor-bearing mouse models, the construct inhibited tumor growth and prolonged survival. Collectively, these results demonstrate that Dex is a promising vaccine carrier that can be used as adjuvant to enhance the immunological efficacy of tumor vaccines. STATEMENT OF SIGNIFICANCE.
Collapse
|
7
|
Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm 2021; 165:345-360. [PMID: 34052428 DOI: 10.1016/j.ejpb.2021.05.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Lyophilization of nanoparticle (NP) suspensions is a promising technology to improve stability, especially during long-term storage, and offers new routes of administration in solid state. Although considered as a gentle drying process, freeze-drying is also known to cause several stresses leading to physical instability, e.g. aggregation, fusion, or content leakage. NPs are heterogeneous regarding their physico-chemical properties which renders them different in their sensitivity to lyophilization stress and upon storage. But still basic concepts can be deducted. We summarize basic colloidal stabilization mechanisms of NPs in the liquid and the dried state. Furthermore, we give information about stresses occurring during the freezing and the drying step of lyophilization. Subsequently, we review the most commonly investigated NP types including lipophilic, polymeric, or vesicular NPs regarding their particle properties, stabilization mechanisms in the liquid state, and important freeze-drying process, formulation and storage strategies. Finally, practical advice is provided to facilitate purposeful formulation and process development to achieve NP lyophilizates with high colloidal stability.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany.
| |
Collapse
|
8
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
9
|
Wang F, Hao J, Li N, Xing G, Hu M, Zhang G. Integrated System for Purification and Assembly of PCV Cap Nano Vaccine Based on Targeting Peptide Ligand. Int J Nanomedicine 2020; 15:8507-8517. [PMID: 33154640 PMCID: PMC7608655 DOI: 10.2147/ijn.s274427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The vaccine design has shifted from attenuated or inactivated whole pathogen vaccines to more pure and defined subunit vaccines. The purification of antigen proteins, especially the precise display of antigen regions, has become a key step affecting the effectiveness of subunit vaccines. Materials and Methods This work presents the application of molecular docking for a peptide ligand designed for PCV2 Cap purification and assembly in one step. Based on the PCV2 Cap protein affinity peptide (L11-DYWWQSWE), the amino terminal of PCV2 Cap was covalently coupled with the polylactic acid–glycolic acid copolymer (PLGA) carboxyl terminal through the EDC/NHS method. Results The PLGA had an average diameter of 106 nm. The average diameter increased to 122 nm after the PCV2 Cap protein conjugation, and the Zeta potential shifted from −13.7 mV to −9.6 mV, indicating that the PCV2 Cap protein stably binds to the PLGA. Compared with the free PCV2 Cap protein group, the neutralizing antibody titer was significantly increased on the 14th day after the PLGA-Cap immunization (P < 0.05). The neutralizing antibody level was extremely significant on the 28th day (P < 0.001). The CCK-8 analysis showed that PLGA-Cap had an obvious cytotoxic effect on RAW264.7 cells at the PLGA nanoparticle concentration up to 200 μg/mL but had no obvious cytotoxic effect on DC2.4 cells. Compared with the Cap protein group, the antigen-presenting cells had a stronger antigen uptake capacity and a higher fluorescence in the PLGA-Cap group. The immune effect showed that the level of the neutralizing antibody produced by this structure is much better than that of purified protein and helps improve the immune system response. Conclusion This technology provides a potential new perspective for the rapid enrichment of the antigen protein with the affinity peptide ligand.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Junfang Hao
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.,College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, People's Republic of China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450000, People's Republic of China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
10
|
Huang CH, Huang CY, Ho HM, Lee CH, Lai PT, Wu SC, Liu SJ, Huang MH. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J Immunother Cancer 2020; 8:jitc-2020-001022. [PMID: 33037116 PMCID: PMC7549439 DOI: 10.1136/jitc-2020-001022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. METHODS The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. RESULTS Uniform structures with ~200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. CONCLUSIONS In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Hung Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Ti Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Taylor N, Ma W, Kristopeit A, Wang SC, Zydney AL. Evaluation of a sterile filtration process for viral vaccines using a model nanoparticle suspension. Biotechnol Bioeng 2020; 118:106-115. [PMID: 32880898 DOI: 10.1002/bit.27554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023]
Abstract
There is growing interest in the development of new vaccines based on live-attenuated viruses (LAVs) and virus-like particles. The large size of these vaccines, typically 100-400 nm, significantly complicates the use of sterile filtration. The objectives of this study are to examine the performance of several commercial sterile filters for filtration of a cytomegalovirus vaccine candidate (referred to as the LAV) and to develop and evaluate the use of a model nanoparticle suspension to perform a more quantitative assessment. Data obtained with a mixture of 200- and 300-nm fluorescent particles provided yield and pressure profiles that captured the behavior of the viral vaccine. This included the excellent performance of the Sartorius Sartobran P filter, which provided greater than 80% yield of both the vaccine and model particles even though the average particle size was more than 250 nm. The particle yield for the Sartobran P was independent of filtrate flux above 200 L/m2 /h, but increased with increasing particle concentration, varying from less than 10% at concentrations around 107 particles/ml to more than 80% at concentrations above 1010 particles/ml due to saturation of particle capture/binding sites within the filter. These results provide important insights into the factors controlling transmission and fouling during sterile filtration of large vaccine products.
Collapse
Affiliation(s)
- Neil Taylor
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Wanli Ma
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Adam Kristopeit
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
12
|
Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y, Zaidi N, Gammon JM, Blobel NJ, Denizeau J, de la Rochere P, Francica BJ, Decker B, Maciejewski M, Cheung J, Yamane H, Smelkinson MG, Francica JR, Laga R, Bernstock JD, Seymour LW, Drake CG, Jewell CM, Lantz O, Piaggio E, Ishizuka AS, Seder RA. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol 2020; 38:320-332. [PMID: 31932728 PMCID: PMC7065950 DOI: 10.1038/s41587-019-0390-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- Avidea Technologies, Inc, Baltimore, MD, USA.
| | - Christine Sedlik
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Faezzah Baharom
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yaling Zhu
- Avidea Technologies, Inc, Baltimore, MD, USA
| | - Ramiro A Ramirez-Valdez
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Kennedy Tobin
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Neeha Zaidi
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Nicolas J Blobel
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jordan Denizeau
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Philippe de la Rochere
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Brian J Francica
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Tempest Therapeutics, San Francisco, CA, USA
| | | | | | - Justin Cheung
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hidehiro Yamane
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Joseph R Francica
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Joshua D Bernstock
- Avidea Technologies, Inc, Baltimore, MD, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | | | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olivier Lantz
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Andrew S Ishizuka
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Avidea Technologies, Inc, Baltimore, MD, USA
| | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Abstract
Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
Collapse
|
14
|
Kim CG, Kye YC, Yun CH. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8 + T Cell Responses. Pharmaceutics 2019; 11:E612. [PMID: 31731667 PMCID: PMC6920862 DOI: 10.3390/pharmaceutics11110612] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023] Open
Abstract
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, Korea
| |
Collapse
|
15
|
Pathak YV. Targeted Delivery of Surface-Modified Nanoparticles: Modulation of Inflammation for Acute Lung Injury. SURFACE MODIFICATION OF NANOPARTICLES FOR TARGETED DRUG DELIVERY 2019. [PMCID: PMC7123653 DOI: 10.1007/978-3-030-06115-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimize the particle clearance, increase the circulation duration, escape the biological protective mechanisms, penetrate through physical barriers, and prolong the residence of the drug at the target site. Among lung diseases, acute lung injury has been considered life-threatening with approximately 190,000 cases and 74,500 deaths per year in the USA. Numerous researches have reported the efficacy of drug-encapsulated nanoparticles in the treatment of acute lung injury. The use of nanoparticles could help minimize the effect of airway defenses in the lung, thus provides a prolonged retention, sustained drug release, and targeted delivery to the lung tissues. Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thoroughly to alleviate the safety concerns. In this chapter, we discuss the targeted pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung injury.
Collapse
Affiliation(s)
- Yashwant V Pathak
- grid.170693.a0000 0001 2353 285XCollege of Pharmacy, University of South Florida, Tampa, FL USA
| |
Collapse
|
16
|
Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. J Control Release 2019; 294:355-371. [DOI: 10.1016/j.jconrel.2018.12.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023]
|
17
|
Shang S, Kats D, Cao L, Morgun E, Velluto D, He Y, Xu Q, Wang CR, Scott EA. Induction of Mycobacterium Tuberculosis Lipid-Specific T Cell Responses by Pulmonary Delivery of Mycolic Acid-Loaded Polymeric Micellar Nanocarriers. Front Immunol 2018; 9:2709. [PMID: 30538700 PMCID: PMC6277542 DOI: 10.3389/fimmu.2018.02709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Mycolic acid (MA), a major lipid component of Mycobacterium tuberculosis (Mtb) cell wall, can be presented by the non-polymorphic antigen presenting molecule CD1b to T cells isolated from Mtb-infected individuals. These MA-specific CD1b-restricted T cells are cytotoxic, produce Th1 cytokines, and form memory populations, suggesting that MA can be explored as a potential subunit vaccine candidate for TB. However, the controlled elicitation of MA-specific T cell responses has been challenging due to difficulties in the targeted delivery of lipid antigens and a lack of suitable animal models. In this study, we generated MA-loaded micellar nanocarriers (MA-Mc) comprised of self-assembled poly(ethylene glycol)-bl-poly(propylene sulfide; PEG-PPS) copolymers conjugated to an acid sensitive fluorophore to enhance intracellular delivery of MA to phagocytic immune cells. Using humanized CD1 transgenic (hCD1Tg) mice, we found these nanobiomaterials to be endocytosed by bone marrow-derived dendritic cells (DCs) and localized to lysosomal compartments. Additionally, MA-Mc demonstrated superior efficacy over free MA in activating MA-specific TCR transgenic (DN1) T cells in vitro. Following intranasal immunization, MA-Mc were primarily taken up by alveolar macrophages and DCs in the lung and induced activation and proliferation of adoptively transferred DN1 T cells. Furthermore, intranasal immunization with MA-Mc induced MA-specific T cell responses in the lungs of hCD1Tg mice. Collectively, our data demonstrates that pulmonary delivery of MA via PEG-PPS micelles to DCs can elicit potent CD1b-restricted T cell responses both in vitro and in vivo and MA-Mc could be explored as subunit vaccines against Mtb infection.
Collapse
Affiliation(s)
- Shaobin Shang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Dina Kats
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Diana Velluto
- Diabetes Research Institute and Cell Transplant Center, University of Miami School of Medicine, Miami, FL, United States
| | - Ying He
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Qichen Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Evan A Scott
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Simpson Querrey Institute, Northwestern University, Chicago, IL, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| |
Collapse
|
18
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
19
|
Xu K, Liang ZC, Ding X, Hu H, Liu S, Nurmik M, Bi S, Hu F, Ji Z, Ren J, Yang S, Yang YY, Li L. Nanomaterials in the Prevention, Diagnosis, and Treatment of Mycobacterium Tuberculosis Infections. Adv Healthc Mater 2018; 7. [PMID: 28941042 DOI: 10.1002/adhm.201700509] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/23/2017] [Indexed: 11/10/2022]
Abstract
Despite the tremendous advancements that have been made in biomedical research, Mycobacterium tuberculosis (TB) still remains one of the top 10 causes of death worldwide, outpacing the Human Immunodeficiency Virus as a leading cause of death from an infectious disease. In the light of such significant disease burden, tremendous efforts have been made worldwide to stem this burgeoning spread of disease. The use of nanomaterials in TB management has increased in the past decade, particularly in the areas of early TB detection, prevention, and treatment. Nanomaterials have been proven to be efficacious in the rapid and accurate detection of TB pathogens. Novel nanocarriers have also shown tremendous promise in improving drug delivery, potentially enhancing drug concentrations in target organs while at the same time, reducing treatment frequency. In addition, the engineering of antigen nanocarriers represents an exciting front in TB research, potentially paving the way for the successful development of a new class of effective TB vaccines. This article discusses epidemiology and pathogenesis of TB infections, current TB therapeutics, advanced nanomaterials for anti-TB drug delivery, and TB vaccines. In addition, challenges and future perspectives in developing safe and effective nanomaterials in TB diagnosis and therapy are also presented.
Collapse
Affiliation(s)
- Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Xin Ding
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Haiyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Martin Nurmik
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Sheng Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Feishu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Jingjing Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| |
Collapse
|
20
|
Levit SL, Stwodah RM, Tang C. Rapid, Room Temperature Nanoparticle Drying and Low-Energy Reconstitution via Electrospinning. J Pharm Sci 2017; 107:807-813. [PMID: 29107044 DOI: 10.1016/j.xphs.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Nanoparticle formulations offer advantages over free drugs; however, stability of the nanoparticle dispersions is a significant obstacle, and drying is often required for long-term size stability. The main limitation of current drying methods is particle aggregation upon reconstitution which can be overcome with sonication (impractical in a clinical setting) or large amounts of cryoprotectants (result in hypertonic dispersions). Therefore, new approaches to nanoparticle drying are necessary. We demonstrate conversion of nanoparticle dispersions to a dry, thermostable form via electrospinning. As a proof-of-concept, polyethylene glycol stabilized nanoparticles and polyvinyl alcohol were blended and electrospun into ∼300 nm fibers. Following electrospinning, nanoparticles were stored for at least 7 months and redispersed with low osmolarity to their original size without sonication. The nanoparticles redisperse to their original size when the fiber diameter and nanoparticle diameter are comparable (nanoparticle:nanofiber ratio ∼1). Nanoparticles with liquid cores and larger particles better maintained their size when compared to nanoparticles with solid cores and smaller particles, respectively. Storing the nanoparticles within nanofibers appears to prevent Ostwald ripening improving thermostability. Overall, this novel approach enables rapid, continuous drying of nanoparticles at room temperature to facilitate long-term nanoparticle storage. Improved nanoparticle drying techniques will enhance clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Shani L Levit
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Ratib M Stwodah
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Christina Tang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284.
| |
Collapse
|
21
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
22
|
Genta I, Colonna C, Conti B, Caliceti P, Salmaso S, Speziale P, Pietrocola G, Chiesa E, Modena T, Dorati R. CNA-loaded PLGA nanoparticles improve humoral response againstS. aureus-mediated infections in a mouse model: subcutaneous vs. nasal administration strategy. J Microencapsul 2016; 33:750-762. [DOI: 10.1080/02652048.2016.1260661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ida Genta
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Claudia Colonna
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical Sciences, University of Padua, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical Sciences, University of Padua, Padova, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Bruno C, Agnolon V, Berti F, Bufali S, O'Hagan DT, Baudner BC. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Eur J Pharm Biopharm 2016; 105:1-8. [PMID: 27224856 DOI: 10.1016/j.ejpb.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/02/2016] [Accepted: 05/15/2016] [Indexed: 12/24/2022]
Abstract
The design of safe and potent adjuvants able to enhance and modulate antigen-specific immunity is of great interest for vaccine research and development. In the present study, negatively charged poly(lactide-co-glycolide) (PLG) nanoparticles have been combined with a synthetic immunepotentiator molecule targeting the Toll-like receptor 7. The selection of appropriate preparation and freeze-drying conditions resulted in a PLG-based adjuvant with well-defined and stable physico-chemical properties. The adjuvanticity of such nanosystem has later been evaluated in the mouse model with a diphtheria-tetanus-pertussis (DTaP) vaccine, on the basis of the current need to improve the efficacy of acellular pertussis (aP) vaccines. DTaP antigens were adsorbed onto PLG nanoparticles surface, allowing the co-delivery of TLR7a and multiple antigens through a single formulation. The entrapment of TLR7a into PLG nanoparticles resulted in enhanced IgG and IgG2a antibody titers. Notably, the immune potentiator effect of TLR7a was less evident when it was used in not-entrapped form, indicating that co-localization of TLR7a and antigens is required to adequately stimulate immune responses. In conclusion, the rational selection of adjuvants and formulation here described resulted as a highly valuable approach to potentiate and better tailor DTaP vaccine immunogenicity.
Collapse
Affiliation(s)
- Cristina Bruno
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy; Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Valentina Agnolon
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy; Università degli Studi di Padova, Via Ugo Bassi 58b, 35121 Padova, Italy.
| | | | - Simone Bufali
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy.
| | - Derek T O'Hagan
- GSK Vaccines, 350 Massachusetts Ave, Cambridge, 02139 MA, USA. derek.t.o'
| | | |
Collapse
|
24
|
Siri M, Grasselli M, Alonso SDV. Albumin-based nanoparticle trehalose lyophilisation stress-down to preserve structure/function and enhanced binding. J Pharm Biomed Anal 2016; 126:66-74. [PMID: 27174378 DOI: 10.1016/j.jpba.2016.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
The aim of this study was to preserve albumin nanoparticle structure/function during the lyophilisation process. Bovine serum albumin nanoparticles were obtained by γ-irradiation. Nanoparticles were lyophilised in buffer, miliQ water or in trehalose/miliQ solution. The size and charge of the nanoparticles were tested after lyophilisation by light scattering and Z potential. The most relevant results in size of BSA nanoparticle were those lyophilised in PBS between 20 and 350nm, assembled in different aggregates, and negative Z potential obtained was 37±8mV in all, and those nanoparticles lyophilised with trehalose had a size range of 70±2nm and a negative Z potential of 20±5mV. Structure determination of surface aminoacids SH groups in the BSA NP lyophilised in PBS showed an increase in the free SH groups. Different aggregates had different amount of SH groups exposure from 55 to 938 (from smaller to bigger aggregates), whereas BSA NP lyophilised with trehalose showed no significant difference if compared with BSA NP. The binding properties of the BSA nanoparticle with a theragnostic probe (merocyanine 540) were studied after lyophilisation. Results showed more affinity between the BSA NP lyophilised with trehalose than that observed with non lyophilised BSA NP. As a result, the lyophilisation condition in trehalose 100μM solution is the best one to preserve the BSA NP structure/function and the one with the enhance binding affinity of the BSA NP.
Collapse
Affiliation(s)
- Macarena Siri
- Laboratorio de Biomembranas (LBM), and GBEyB, Grupo Vinculado IMBICE-CONICET; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Mariano Grasselli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), and GBEyB, Grupo Vinculado IMBICE-CONICET; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Silvia Del V Alonso
- Laboratorio de Biomembranas (LBM), and GBEyB, Grupo Vinculado IMBICE-CONICET; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina.
| |
Collapse
|
25
|
Ahmed KK, Geary SM, Salem AK. Development and Evaluation of Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine. J Pharm Sci 2016; 105:1173-9. [PMID: 26886334 DOI: 10.1016/j.xphs.2015.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022]
Abstract
Immune adjuvants are important components of current and prospective cancer vaccines. In this study, we aimed at evaluating the use of a synthetic lipid A derivative, pentaerythritol lipid A (PET lipid A), loaded into poly(lactic-co-glycolic acid) particles, as a potential cancer vaccine adjuvant. Poly(lactic-co-glycolic acid) particles (size range: 250-600 nm) were successfully formulated to include PET lipid A and/or the model tumor antigen, chicken ovalbumin (OVA). It was shown that particulated PET lipid A had a distinct advantage at promoting secretion of the immune potentiating cytokine, IL-12p70, and upregulating key costimulatory surface proteins, CD86 and CD40, in murine dendritic cells in vitro. In a murine tumor model, involving prophylactic vaccination with various permutations of soluble versus particulated formulations of OVA with or without PET lipid A, modest benefit was observed in terms of OVA-specific cell-mediated immune responses when PET lipid A was delivered in particles. These findings translated into a corresponding trend toward increased survival of mice challenged with OVA-expressing tumor cells (E.G7). In terms of translation of safe adjuvants into the clinic, these results promote the concept of delivering toll-like receptor-4 agonists in particles because doing so improves their adjuvant properties, while decreasing the chances of adverse effects due to off-target uptake by nonphagocytic cells.
Collapse
Affiliation(s)
- Kawther K Ahmed
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
26
|
Hayashi M, Aoshi T, Kogai Y, Nomi D, Haseda Y, Kuroda E, Kobiyama K, Ishii KJ. Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant. Vaccine 2016; 34:306-12. [DOI: 10.1016/j.vaccine.2015.11.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022]
|
27
|
Shah RR, O'Hagan DT, Amiji MM, Brito LA. The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond) 2015; 9:2671-81. [PMID: 25529570 DOI: 10.2217/nnm.14.193] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.
Collapse
Affiliation(s)
- Ruchi R Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
28
|
Pavot V, Berthet M, Rességuier J, Legaz S, Handké N, Gilbert SC, Paul S, Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond) 2015; 9:2703-18. [PMID: 25529572 DOI: 10.2217/nnm.14.156] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.
Collapse
Affiliation(s)
- Vincent Pavot
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kunda NK, Alfagih IM, Dennison SR, Somavarapu S, Merchant Z, Hutcheon GA, Saleem IY. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein. Int J Pharm 2015; 492:213-22. [DOI: 10.1016/j.ijpharm.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023]
|
30
|
O’Hagan DT, Fox CB. New generation adjuvants – From empiricism to rational design. Vaccine 2015; 33 Suppl 2:B14-20. [DOI: 10.1016/j.vaccine.2015.01.088] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
|
31
|
Sharma R, Agrawal U, Mody N, Vyas SP. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv 2014; 33:64-79. [PMID: 25499178 DOI: 10.1016/j.biotechadv.2014.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/20/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023]
Abstract
Mucosal sites serve as the main portal for the entry of pathogens and thus immunization through mucosal routes can greatly improve the immunity. Researchers are continuously exploring the vaccination strategies to engender protective mucosal immune responses. Unearthing of mucosal adjuvants, that are safe and effective, is enhancing the magnitude and quality of the protective immune response. Use of nanotechnology based polymeric nanocarrier systems which encapsulate vaccine components for protection of sensitive payload, incorporate mucosal adjuvants to maximize the immune responses and target the mucosal immune system is a key strategy to improve the effectiveness of mucosal vaccines. These advances promise to accelerate the development and testing of new mucosal vaccines against many human diseases. This review focuses on the need for the development of nanocarrier based mucosal vaccines with emphases on the polymeric nanoparticles, their clinical status and future perspectives. This review focuses on the need and new insights for the development of nanoarchitecture governed mucosal vaccination with emphases on the various polymeric nanoparticles, their clinical status and future perspectives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P. 470003 India.
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P. 470003 India.
| | - Nishi Mody
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P. 470003 India.
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P. 470003 India.
| |
Collapse
|
32
|
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci 2014; 62:227-242. [PMID: 24909731 DOI: 10.1016/j.ejps.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite worldwide availability of the vaccines against most of the infectious diseases, BCG and various programs such as Directly Observed Treatment Short course (DOTS) to prevent tuberculosis still remains one of the most deadly forms of the disease affecting millions of people globally. The evolution of multi drug resistant strains (MDR) has increased the complexity further. Although currently available marketed BCG vaccine has shown sufficient protection against childhood tuberculosis, it has failed to prevent the most common form of disease i.e., pulmonary tuberculosis in adults. However, various vaccine candidates have already entered phase I clinical trials and have shown promising outcomes. The most prominent amongst them is the heterologous prime-boost approach, which shows a great promise towards designing and development of a new efficacious tuberculosis vaccine. It has also been shown that the use of various viral and non-viral vectors as carriers for the potential vaccine candidates will further boost their effect on subsequent immunization. In this review, we briefly summarize the potential of a few novel nano-carriers for developing effective vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India.
| | - Priya Dwivedi
- Department of Biotechnology, TRS College, Rewa 486001, MP, India
| | - Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India
| | - Shikha Tyagi
- Department of Biotechnology, IMS Engineering College, Ghaziabad, UP Technical University, UP, India
| | - Tejram Sahu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, TW3/3W15, 12735 Twinbrook Pkwy, Rockville, MD, USA
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
33
|
Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014; 190:563-79. [DOI: 10.1016/j.jconrel.2014.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
|
34
|
Wibowo N, Chuan YP, Seth A, Cordoba Y, Lua LHL, Middelberg APJ. Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation. Vaccine 2014; 32:3664-9. [PMID: 24793947 DOI: 10.1016/j.vaccine.2014.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
Nanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness. We show that the immunogenicity of a sub-unit protein antigen was significantly boosted by formulation with silica nanoparticles even without specific conjugation of antigen to the nanoparticle. We further show that this effect was observed only for virus-sized nanoparticles (50 nm) but not for larger (1,000 nm) particles, demonstrating a pronounced effect of nanoparticle size. This non-attachment approach has potential to radically simplify the development and application of nanoparticle-based formulations, leading to safer and simpler nanoparticle applications in vaccine development.
Collapse
Affiliation(s)
- Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Yap P Chuan
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Arjun Seth
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Yoann Cordoba
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St. Lucia, QLD 4072, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
35
|
Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. Int J Pharm 2014; 465:325-32. [DOI: 10.1016/j.ijpharm.2014.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 01/17/2014] [Accepted: 01/29/2014] [Indexed: 12/17/2022]
|
36
|
Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 2014; 6:797-808. [DOI: 10.1586/14760584.6.5.797] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
|
38
|
Orozco VH, Palacio J, Sierra J, López BL. Increased covalent conjugation of a model antigen to poly(lactic acid)-g-maleic anhydride nanoparticles compared to bare poly(lactic acid) nanoparticles. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3023-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. NANOSCALE 2013; 5:5167-79. [PMID: 23657437 DOI: 10.1039/c3nr00357d] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.
Collapse
Affiliation(s)
- Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, Convertine A, Stayton PS. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS NANO 2013; 7:3912-25. [PMID: 23590591 PMCID: PMC4042837 DOI: 10.1021/nn305466z] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein subunit vaccines offer important potential advantages over live vaccine vectors but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a redesigned polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8(+) T cell response (0.5% IFN-γ(+) of CD8(+)) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8(+) T cell responses (3.4% IFN-γ(+) of CD8(+)) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4(+)IFN-γ(+) (Th1) responses and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ∼7% antigen-specific CD8(+) T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick S. Stayton
- Corresponding Author Box 355061, University of Washington, Seattle, WA 98195- 1721. Tel: (206) 685-8148.
| |
Collapse
|
41
|
Yan S, Gu W, Xu ZP. Re-considering how particle size and other properties of antigen-adjuvant complexes impact on the immune responses. J Colloid Interface Sci 2012; 395:1-10. [PMID: 23312582 DOI: 10.1016/j.jcis.2012.11.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023]
Abstract
Understanding the influences of particle properties of antigen-adjuvant complexes on immunity is crucial in designing highly active adjuvants for new-generation of vaccines. This paper briefly revisits the current opinions on the size-dependent immunity of various adjuvant particles and then comprehensively discusses a few immunity-determining processes that are affected by the antigen-adjuvant particle properties. These include particle size, surface charge, surface hydrophilicity/lipophilicity, and antigen-adjuvant binding strength. Based on current understandings, we hypothesize that a maximum immune response occurs at a certain antigen-adjuvant particle size. This hypothesis clearly explains the paradoxical opinions on the size-dependent immunity and has also been supported by the data reported by several research groups. Finally, we further hypothesize that there is a similar relationship between any immune response and any measureable antigen-adjuvant particle property, and that there is a maximum immune response when all measureable antigen-adjuvant particle properties are optimized. We believe more attention should be paid to this issue when designing and developing effective adjuvants in future research.
Collapse
Affiliation(s)
- Shiyu Yan
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
42
|
Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol 2012; 12:658-64. [DOI: 10.1097/aci.0b013e3283588c57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Osterberg RE, DeMerlis CC, Hobson DW, McGovern TJ. Trends in Excipient Safety Evaluation. Int J Toxicol 2012; 30:600-10. [DOI: 10.1177/1091581811423582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excipients are used in all drug products and in most food products. New technologies are being tested to increase the amount or rate of absorption of drugs and new and novel excipients may be included among them. New physical approaches such as nanoparticles of drug and excipients or lysosomes may offer better drug delivery especially of hard to absorb or difficult to formulate oral drugs. New excipients may improve or mask the flavor of foods, drugs, and dietary supplements. Recently, impurities in drug products have become subject to greater scrutiny and various international and national guidelines, guidances, and regulations have been proposed and accepted for use; excipient evaluation is included in these efforts. This symposium discussed new developmental concepts, guidelines/guidances and regulations involving impurities in excipients, new drug delivery systems involving excipients, and thoughts for possible improvement to these guidelines to promote faster regulatory acceptance of these substances.
Collapse
|
44
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
45
|
Li X, Sloat BR, Yanasarn N, Cui Z. Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm 2011; 78:107-16. [PMID: 21182941 PMCID: PMC3065961 DOI: 10.1016/j.ejpb.2010.12.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
Abstract
There is a growing interest in identifying the relationship between the size of nanoparticles and their adjuvant activity, but the results from recent studies remain controversial. To address the controversy, it was thought that one should pay attention to the nanoparticle formulations to make sure that the antigen-loaded nanoparticles to be compared are not only different in particle size, but more importantly, as identical to each other as possible in all other formulation properties. In the present study, using ovalbumin (OVA) as a model antigen conjugated onto nanoparticles engineered from lecithin/glyceryl monostearate-in-water emulsions, we prepared OVA-nanoparticles of 230 nm and 708 nm. Before evaluating the immune responses induced by them in a mouse model, we made sure that: (i) the sizes of the two OVA-nanoparticles did not extensively overlap, (ii) the nanoparticles have similar zeta potentials and comparable antigen-loading, and (iii) the nanoparticles did not aggregate when suspended in simulated biological media. We then showed that when subcutaneously injected into mice, the 230 nm OVA-conjugated nanoparticles induced stronger OVA-specific antibody and cellular immune responses than the 708 nm OVA-nanoparticles. Future studies attempting to correlate the size of nanoparticles and their adjuvant activities need to consider formulation parameters to ensure that the particles are different only in size and are stable before and after injection.
Collapse
Affiliation(s)
- Xinran Li
- The University of Texas at Austin, Pharmaceutics Division, College of Pharmacy, Austin, TX 78712
| | - Brian R. Sloat
- The University of Texas at Austin, Pharmaceutics Division, College of Pharmacy, Austin, TX 78712
| | - Nijaporn Yanasarn
- The University of Texas at Austin, Pharmaceutics Division, College of Pharmacy, Austin, TX 78712
| | - Zhengrong Cui
- The University of Texas at Austin, Pharmaceutics Division, College of Pharmacy, Austin, TX 78712
| |
Collapse
|
46
|
Abstract
Over the past few years, new insights into immunobiology and delivery systems have allowed the development of better vaccines and for a wider range of diseases. Currently available vaccines represent outstanding success story in modern medicine and have had a dramatic effect on morbidity and mortality worldwide. Conventional vaccines have been based on live attenuated, or killed, viruses or bacteria, or recombinant proteins from these organisms. The design of live attenuated vaccines depended to some extent on serendipity and resulted in low success rates. Both live attenuated and killed vaccines require handling of live pathogens and are associated with safety problems. Despite the success of vaccines, there is a clear need for novel antigen delivery technologies to improve vaccine efficacy and safety. Antigen stability, safety, and immunogenicity are the key hurdles in development of novel antigen delivery technologies. Nowadays, various novel drug delivery systems are becoming one of the fastest growing sectors in the pharmaceutical and biotechnological industries. Delivery of vaccines via oral, intranasal, transcutaneous, and intradermal routes will decrease the risk of needle-borne diseases and may eliminate the need for trained personnel and sterile equipment. Currently, various techniques involving DNA vaccines, adjuvants, nanoparticles, liposome, microneedle, and NanoMAP technology are being developed and evaluated. This review focuses on the current development of some novel vaccine delivery systems and will explore the non-parenteral routes of vaccine administrations.
Collapse
Affiliation(s)
- Deepika Jain
- School of Pharmaceutical Sciences, Shobhit University, NH-58, Modipuram, Meerut, Uttar Pradesh, 250110, India
| | | | | |
Collapse
|
47
|
Shuaibu MN, Cherif MS, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, Sasaki H, Hirayama K. Effect of nanoparticle coating on the immunogenicity of plasmid DNA vaccine encoding P. yoelii MSP-1 C-terminal. Vaccine 2011; 29:3239-47. [PMID: 21354479 DOI: 10.1016/j.vaccine.2011.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/03/2011] [Accepted: 02/12/2011] [Indexed: 11/30/2022]
Abstract
In order to assess a new strategy for DNA vaccine formulation and delivery, plasmid encoding Plasmodium yoelii MSP-1 C-terminal was formulated with newly designed nanoparticle-an anionic ternary complex of polyethylenimine and γ-polyglutamic acid (pVAX-MSP-1/PEI/γ-PGA), and intravenously administered to C57BL/6 mice in four different doses, three times at 3-week interval. Antibody response as determined by ELISA, IFA and Western blot, was dose-dependent and subsequent challenge with 10(5)P. yoelii-infected red blood cells revealed 33-60% survival in repeated experiments at a dose of 80 μg pDNA/mouse. IgG subtypes and cytokine levels in the serum and culture supernatants of stimulated spleen cells were also measured. Antigen-specific IgG response provoked by the DNA vaccination was dominated by IgG1 and IgG2b. Although the elevation of IL-12p40 and IFN-γ was marginal (P≥0.354) in the coated group, interleukin-4 levels were significantly higher (P≥0.013) in the coated group than in the naked or control group, suggesting a predominant Th2-type CD4(+) T cell response. These results therefore, overall indicate the possibility of selection and optimization of DNA vaccine formulation for intravenous delivery and may be useful in designing a nanoparticle-coated DNA vaccine that could optimally elicit a desired antibody response for various disease conditions.
Collapse
Affiliation(s)
- M N Shuaibu
- Department of Immunogenetics, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral, Mucosal and Cytokine Responses to Hepatitis B Vaccine. Mol Pharm 2011; 8:405-15. [DOI: 10.1021/mp100255c] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chandan Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| | - Amit Rawat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| | - Louisa Hope-Weeks
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas 79409, United States
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| |
Collapse
|
49
|
Khalil NM, Carraro E, Cótica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin Drug Deliv 2010; 8:95-112. [PMID: 21143001 DOI: 10.1517/17425247.2011.543673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) remains one of the greatest challenges in public health. The AIDS virus is now responsible for > 2.5 million new infections worldwide each year. Despite significant advances in understanding the mechanism of viral infection and identifying effective treatment approaches, the search for optimum treatment strategies for AIDS remains a major challenge. Recent advances in the field of drug delivery have provided evidence that engineered nanosystems may contribute to the enhancement of current antiretroviral therapy. AREAS COVERED IN THIS REVIEW This review describes the potential of polymeric nanoparticle-based drug delivery systems in the future treatment of AIDS. Polymeric nanoparticles have been developed to improve physicochemical drug characteristics (by increasing drug solubility and stability), to achieve sustained drug release profile, to provide targeting to the cellular and anatomic human immunodeficiency virus (HIV) latent reservoirs and to be applied as an adjuvant in anti-HIV vaccine formulations. WHAT THE READER WILL GAIN The insight that will be gained is knowledge about the progress in the development of polymeric nanoparticle-based drug delivery systems for antiretroviral drugs as alternative for AIDS treatment and prevention. TAKE HOME MESSAGE The advances in the field of targeted drug delivery can result in more efficient strategies for AIDS treatment and prevention.
Collapse
Affiliation(s)
- Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste/UNICENTRO - Departamento de Farmácia, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava-PR, Brasil
| | | | | | | |
Collapse
|
50
|
Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9:1095-107. [PMID: 20822351 PMCID: PMC2963573 DOI: 10.1586/erv.10.89] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of novel immune adjuvants is emerging as a significant area of vaccine delivery based on the continued necessity to amplify immune responses to a wide array of new antigens that are poorly immunogenic. This article specifically focuses on the application of nanoparticles and microparticles as vaccine adjuvants. Many investigators are in agreement that the size of the particles is crucial to their adjuvant activities. However, reports on correlating the size of particle-based adjuvants and the resultant immune responses have been conflicting, with investigators on both sides of the fence with impressive data in support of the effectiveness of particles with small sizes (submicron) over those with larger sizes (micron) and vice versa, while other investigators reported data that showed submicron- and micron-sized particles are effective to the same degree as immune adjuvants. We have generated a list of biological, immunological and, more importantly, vaccine formulation parameters that may have contributed to the inconsistency from different studies and made recommendations on future studies attempting to correlate the size of particulate adjuvants and the immune responses induced. The information gathered could lead to strategies to optimize the performance of nano-microparticles as immune adjuvants.
Collapse
Affiliation(s)
- Moses O Oyewumi
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA.
| | | | | |
Collapse
|