1
|
Zhang Y, Xiao Z, Li Q, Ke Y, Gu X, Pan K, Long Q, Guo Y, Yu X, Teng X, Liu L, He L, Hou D. A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects. Int J Pharm 2025; 670:125150. [PMID: 39746582 DOI: 10.1016/j.ijpharm.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Timolol maleate (TM), a hydrophilic small molecule, is widely used in the clinical management of glaucoma. However, the complex physiological barriers of the eyes result in suboptimal bioavailability for traditional ophthalmic formulations. To address these challenges, we have developed an innovative pharmaceutical formulation. The nanoparticles (NPs) were formulated by a multi-step optimization process involving a Plackett-Burman design (PBD), steepest ascent design (SAD), and Box-Behnken design (BBD) to obtain TM-HA/CS@ED NPs. It was then encapsulated in an in situ gel (ISG) system consisting of deacetylated gellan gum (DGG) and xanthan gum (XG) to yield the TM-HA/CS@ED NPs ISG. The formulation demonstrated favorable safety in a series of ocular irritation assays and was characterized as a pseudoplastic fluid by rheological analyses, enhancing spreadability on the ocular surface and prolonging the retention time. Moreover, the NPs exposed after ISG dissolution exhibited strong mucosal adhesion and hydrophobicity, facilitating the hydrophilic TM to penetrate the corneal barrier. In vitro and in vivo retention evaluations and tear elimination pharmacokinetic study confirmed that TM-HA/CS@ED NPs ISG showed superior precorneal retention ability, and favorable sustained drug concentrations, resulting in sustained and stable transcorneal permeation into the eyes and significant intraocular pressure (IOP) lowering efficacy with a duration of 12 h. These results provide valuable insights into the design of ophthalmic drug delivery systems for water-soluble drugs and therapeutic interventions for glaucoma.
Collapse
Affiliation(s)
- Yangrong Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhenping Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qinyu Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuancheng Ke
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuemin Gu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kangyiran Pan
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qinqiang Long
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongbin Guo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiao Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xifeng Teng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Liu
- Guangzhou Huangpu District New Drug Application Service Center, Guangzhou 510663, PR China.
| | - Lin He
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528458, PR China.
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Ribeiro Reis AP, Ioannidou E, Stuart KV, Wagner SK, Foster PJ, Khawaja AP, Petzold A, Sivaprasad S, Pontikos N, Keane PA, Balaskas K, Patel PJ. Macular, choroidal and disc associations across women's reproductive life stages: a scoping review from menarche to post-menopause. Eye (Lond) 2025; 39:402-411. [PMID: 39814872 PMCID: PMC11794579 DOI: 10.1038/s41433-025-03592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/17/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Oestrogen and progesterone fluctuate cyclically in women throughout their adult lives. Although these hormones cross the blood-retinal barrier and bind to intraocular receptors, their effects remain unclear. We present the first review to date on associations between posterior pole structures-specifically the macula, choroid, and optic disc-and both the menstrual cycle and post-menopausal period, utilising multimodal imaging techniques in healthy adult non-pregnant women. We excluded studies on contraception and hormonal replacement therapy, focusing solely on physiological associations. Despite the comprehensive scope of our review, limited data and inconsistent reporting among studies prevented the establishment of meaningful trends. Across menstrual cycle phases, choroidal thickness (CHT) was the most consistently reported parameter, with thinning during the luteal phase compared to the follicular phase. Conversely, no significant differences were observed in macular or disc morphology across the cycle, likely reflecting a preserved structure despite potential fluctuations in blood flow and perfusion. Studies comparing pre- and post-menopausal associations, after adjusting for age or body mass index (BMI), failed to reveal meaningful trends, highlighting the difficulty in separating the effect of age from hormonal declines in older women. Understanding how hormonal cycles impact the posterior pole in women is crucial for addressing sex differences in various ocular pathologies. Research on female-specific factors is still sparse, and interestingly, the majority of affiliations in the reviewed articles did not originate from regions with the highest biomedical research funding and publication rates. We encourage further studies focusing on female-specific variables and provide recommendations for future designs.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Reis
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.
| | - Estelle Ioannidou
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Kelsey V Stuart
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Siegfried K Wagner
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Paul J Foster
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Axel Petzold
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Sobha Sivaprasad
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Nikolas Pontikos
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Pearse A Keane
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Konstantinos Balaskas
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Praveen J Patel
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
3
|
Nayak U, Halagali P, Panchal KN, Tippavajhala VK, Mudgal J, Radhakrishnan R, Manikkath J. Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. Curr Pharm Des 2025; 31:443-460. [PMID: 39318210 DOI: 10.2174/0113816128328722240828184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations. OBJECTIVE This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based CNS targeted drug delivery. METHODS An extensive literature search was conducted, comprising the initial development of nanoparticle- based CNS-targeted drug delivery approaches to the latest advancements using various online search tools. RESULTS The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the BBB during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here. CONCLUSION Important properties and pathways that determine the penetration of nanoparticles across the CNS are reviewed in this article, along with recent advances in the field.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Khushi N Panchal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S102TA, UK
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
4
|
Yu Rice Y, Dolan DG, Bandara SB, Morgan RE, Garry M, Tsuji J. Considerations and derivations of permitted daily exposure limits for impurities from intravitreal pharmaceutical products. Regul Toxicol Pharmacol 2025; 155:105745. [PMID: 39581257 DOI: 10.1016/j.yrtph.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Intravitreal (IVT) injection is an uncommon route of parenteral administration for therapeutic medications, but one of the most important for the treatment of ocular diseases, especially those related to macular degeneration. Nonetheless, there are currently no regulatory guidelines that specifically address how to establish a permitted daily exposure (PDE) for impurities and residual process reagents in IVT pharmaceutical drug products given the unique vulnerability of ocular tissues. The establishment of PDEs for IVT administration is complicated by the limited understanding of metabolism and clearance of small molecular weight chemicals from the human vitreous humor (VH), a problem compounded by the limited IVT-specific toxicological data. In this paper, we describe a feasible and comprehensive methodology for deriving PDE limits for impurities and residual process reagents from IVT drug products, as exemplified by five case studies, including inorganic elements, formic acid, polyethylene glycols, acetic acid, and caprolactam. The five case studies were selected to cover compounds with a wide range of impurity sources and toxicological data availability. The proposed framework considers both local ocular and systemic toxicity endpoints and advances the goal of a harmonized, science-based approach for deriving IVT PDE limits.
Collapse
Affiliation(s)
- Yi Yu Rice
- Amgen Inc., Thousand Oaks, CA, 93010, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Furtado J, Geraldo LH, Leser FS, Bartkowiak B, Poulet M, Park H, Robinson M, Pibouin-Fragner L, Eichmann A, Boyé K. Interplay between Netrin-1 and Norrin controls arteriovenous zonation of blood-retina barrier integrity. Proc Natl Acad Sci U S A 2024; 121:e2408674121. [PMID: 39693351 DOI: 10.1073/pnas.2408674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/26/2024] [Indexed: 12/20/2024] Open
Abstract
The integrity of the blood-retina barrier (BRB) is crucial for phototransduction and vision, by tightly restricting transport of molecules between the blood and surrounding neuronal cells. Breakdown of the BRB leads to the development of retinal diseases. Here, we show that Netrin-1/Unc5b and Norrin/Lrp5 signaling establish a zonated endothelial cell gene expression program that controls BRB integrity. Using single-cell RNA sequencing (scRNA-seq) of postnatal BRB-competent mouse retina endothelial cells (ECs), we identify >100 BRB genes encoding Wnt signaling components, tight junction proteins, and ion and nutrient transporters. We find that BRB gene expression is zonated across arteries, capillaries, and veins and regulated by opposing gradients of the Netrin-1 receptor Unc5b and Lrp5-β-catenin signaling between retinal arterioles and venules. Mice deficient for Ntn1 or Unc5b display more BRB leakage at the arterial end of the vasculature, while Lrp5 loss of function causes predominantly venular BRB leakage. ScRNA-seq of Ntn1 and Unc5b mutant ECs reveals down-regulated β-catenin signaling and BRB gene expression that is rescued by Ctnnb1 overactivation, along with BRB integrity. Mechanistically, we demonstrate that Netrin-1 and Norrin additively enhance β-catenin transcriptional activity and Lrp5 phosphorylation via the Discs large homologue 1 (Dlg1) scaffolding protein, and endothelial Lrp5-Unc5b function converges in protection of capillary BRB integrity. These findings explain how arteriovenous zonation is established and maintained in the BRB and reveal that BRB gene expression is regulated at the level of endothelial subtypes.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Luiz Henrique Geraldo
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Felipe Saceanu Leser
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Bartlomiej Bartkowiak
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06511
| | - Mathilde Poulet
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Hyojin Park
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
| | - Mark Robinson
- Center of Molecular and Cellular Oncology, Department of Internal Medicine, Yale University, School of Medicine, New Haven CT 06511
| | | | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06511
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| | - Kevin Boyé
- Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France
| |
Collapse
|
6
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
7
|
Ribeiro Reis AP, Ioannidou E, Wagner SK, Struyven R, Sun Z, Foster P, Khawaja AP, Petzold A, Sivaprasad S, Pontikos N, Keane PA, Balaskas K, Greco E, Iliodromiti S, Patel PJ. Retinal morphology across the menstrual cycle: insights from the UK Biobank. NPJ WOMEN'S HEALTH 2024; 2:38. [PMID: 39654609 PMCID: PMC11627222 DOI: 10.1038/s44294-024-00042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Oestradiol and progesterone levels are higher in menstruating women than men of the same age, and their receptors are present in their neurosensory retina and retinal pigment epithelium. However, the impact of this hormonal environment on retinal physiology in women remains unclear. Using self-reported menstrual cycle phases as a surrogate for fluctuating hormonal levels, we investigated associations with retinovascular indices on colour fundus photograph and retinal thickness in optical coherence tomography across regularly menstruating women in the UK Biobank. We found no differences in retinal thickness across the cycle; however, vessel density, arteriolar and venular, and fractal dimension were higher in the luteal phase than follicular. The calibre of the central retinal vessels did not differ. This study suggests that the menstrual cycle phase might be associated with retinal microvasculature density in non-invasive imaging. It raises awareness for this understudied area, providing insights into neuroscience fields and epidemiological studies.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Reis
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Estelle Ioannidou
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Siegfried Karl Wagner
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Robbert Struyven
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Zihan Sun
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Paul Foster
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P. Khawaja
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Axel Petzold
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Sobha Sivaprasad
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Nikolas Pontikos
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Pearse A. Keane
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Konstantinos Balaskas
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Elena Greco
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | | | - Praveen J. Patel
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
8
|
Carter RT, Swetledge S, Navarro S, Liu CC, Ineck N, Lewin AC, Donnarumma F, Bodoki E, Stout RW, Astete C, Jung JP, Sabliov CM. The impact of lutein-loaded poly(lactic-co-glycolic acid) nanoparticles following topical application: An in vitro and in vivo study. PLoS One 2024; 19:e0306640. [PMID: 39088452 PMCID: PMC11293729 DOI: 10.1371/journal.pone.0306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 08/03/2024] Open
Abstract
Antioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo. Our first aim was to investigate the impact of blank and lutein loaded PLGA nanoparticles on viability and development of reactive oxygen species in lens epithelial cells in vitro. Photo-oxidative stress was induced by ultraviolet light exposure with cell viability and reactive oxygen species monitored. Next, an in vivo, selenite model was utilized to induce cataract formation in rodents. Eyes were treated topically with both free lutein and lutein loaded nanoparticles (LNP) at varying concentrations. Eyes were monitored for the development of anterior segment changes and cataract formation. The ability of nanodelivered lutein to reach the anterior segment of the eye was evaluated by liquid chromatography coupled to mass spectrometry of aqueous humor samples and liquid chromatography coupled to tandem mass spectrometry (targeted LC-MS/MS) of lenses. LNP had a minimal impact on the viability of lens epithelial cells during the short exposure timeframe (24 h) and at concentrations < 0.2 μg LNP/μl. A significant reduction in the development of reactive oxygen species was also noted. Animals treated with LNPs at an equivalent lutein concentration of 1,278 μg /mL showed the greatest reduction in cataract scores. Lutein delivery to the anterior segment was confirmed through evaluation of aqueous humor and lens sample evaluation. Topical treatment was not associated with the development of secondary keratitis or anterior uveitis when applied once daily for one week. LNPs may be an effective in the treatment of cataracts.
Collapse
Affiliation(s)
- Renee T. Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Navarro
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Chin-C. Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nikole Ineck
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ede Bodoki
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Rhett W. Stout
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Carlos Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cristina M. Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
9
|
Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin Drug Deliv 2024; 21:211-227. [PMID: 38271023 DOI: 10.1080/17425247.2024.2311119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The intricate physiological barriers of the eye and the limited volume of eye drops impede efficient delivery of poorly water-soluble drugs. In the last decade, nanocrystals have emerged as versatile drug delivery systems in various administration routes from bench to bedside. The unique superiorities of nanocrystals, mainly embodied in high drug-loading capacity, good mucosal adhesion and penetration, and greatly improved drug solubility, reveal a promising prospect for ocular delivery of poorly water-soluble drugs. AREAS COVERED This article focuses on the ophthalmic nanocrystal technologies and products that are in the literature, clinical trials, and even on the market. The recent research progress in the preparation, ocular application, and absorption of nanocrystals are highlighted, and the pros and cons of nanocrystals in overcoming the physiological barriers of the eye are also summarized. EXPERT OPINION Nanocrystals have demonstrated success as glucocorticoid eye drops in the treatment of anterior segment diseases. However, the thermodynamic stability of nanocrystals remains the major challenge in product development. New technologies for efficiently optimizing stabilizers and sterilization processes are still expected. Strategies to confer more diverse functions via surface modification are also worth exploration to improve the potential of nanocrystals in delivering poorly water-soluble drugs to posterior segment of the eye.
Collapse
Affiliation(s)
- Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| |
Collapse
|
10
|
Kim JR, Kim SY, Kang H, Kim DI, Yoo HJ, Han SM, Lu P, Moon GD, Hyun DC. Contact Lens with pH Sensitivity for On-Demand Drug Release in Wearing Situation. ACS APPLIED BIO MATERIALS 2023; 6:5372-5384. [PMID: 37967413 DOI: 10.1021/acsabm.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Drug-releasing contact lenses are emerging therapeutic systems for treating ocular diseases. However, their applicability is limited by the burst release of drugs during lens wear and premature drug leakage during packaging, rendering the precise control of release duration or dose difficult. Here, we introduce a pH-sensitive contact lens exhibiting on-demand drug release only during lens wear and negligible premature drug leakage during packaging and transportation, which is accomplished by incorporating drug-loaded mesoporous silica nanoparticles (MSNs) coated with a pH-sensitive polymer into the contact lens. The compositionally optimized pH-sensitive polymer has a lower critical solution temperature (LCST) at >45 °C at pH 7.4, whereas its LCST decreases to <35 °C under acidic conditions (pH ∼ 6.5). Consequently, the MSN-incorporated contact lens sustainably releases the loaded drugs only in the acidic state at 35 °C, which corresponds to lens-wear conditions, through the MSN pores that open because of the shrinkage of polymer chains. Conversely, negligible drug leakage is observed from the contact lens under low-temperature or neutral-pH conditions corresponding to packaging and transportation. Furthermore, compared with the plain contact lens, the pH-sensitive contact lens exhibits good biocompatibility and unchanged bulk characteristics, such as optical (transmittance in the visible-light region), mechanical (elastic modulus and tensile strength), and physical (surface roughness, oxygen permeability, and water content) properties. These findings suggest that the pH-sensitive contact lens can be potentially applied in ocular disease treatment.
Collapse
Affiliation(s)
- Jong Ryeol Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - So Young Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Hosu Kang
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Da In Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Hye Jin Yoo
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Sung Mi Han
- Optical Convergence Technology Center, Daegu Catholic University, Gyeongsan-si, Gyeongbuk 38430, Korea
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Geon Dae Moon
- Dongnam Regional Division, Korea Institute of Industrial Technology, Busan 46938, Korea
| | - Dong Choon Hyun
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
11
|
Biali M, Auvity S, Cisternino S, Smirnova M, Hacker M, Zeitlinger M, Mairinger S, Tournier N, Bauer M, Langer O. Dissimilar Effect of P-Glycoprotein and Breast Cancer Resistance Protein Inhibition on the Distribution of Erlotinib to the Retina and Brain in Humans and Mice. Mol Pharm 2023; 20:5877-5887. [PMID: 37883694 PMCID: PMC10630959 DOI: 10.1021/acs.molpharmaceut.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 μg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.
Collapse
Affiliation(s)
- Myriam
El Biali
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Sylvain Auvity
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Salvatore Cisternino
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Maria Smirnova
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Marcus Hacker
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS,
Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, 91401 Orsay, France
| | - Martin Bauer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Canovai A, Tribble JR, Jöe M, Westerlund DY, Amato R, Trounce IA, Dal Monte M, Williams PA. Pyrroloquinoline quinone drives ATP synthesis in vitro and in vivo and provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2023; 11:146. [PMID: 37684640 PMCID: PMC10486004 DOI: 10.1186/s40478-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.
Collapse
Affiliation(s)
- Alessio Canovai
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, Pisa, Italy
| | - James R. Tribble
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Y. Westerlund
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Ian A. Trounce
- Department of Surgery, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Ophthalmology, University of Melbourne, Melbourne, VIC Australia
| | | | - Pete A. Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Yuan W, Zhao F, Liu X, Xu J. Development of corneal contact lens materials and current clinical application of contact lenses: A review. Biointerphases 2023; 18:050801. [PMID: 37756594 DOI: 10.1116/6.0002618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Xiaoyu Liu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| | - Jun Xu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| |
Collapse
|
14
|
Zhang H, Guo Y, Yang Y, Wang Y, Zhang Y, Zhuang J, Zhang Y, Shen M, Zhao J, Zhang R, Qiu Y, Li S, Hu J, Li W, Wu J, Xu H, Fliesler SJ, Liao Y, Liu Z. MAP4Ks inhibition promotes retinal neuron regeneration from Müller glia in adult mice. NPJ Regen Med 2023; 8:36. [PMID: 37443319 DOI: 10.1038/s41536-023-00310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Mammalian Müller glia (MG) possess limited regenerative capacities. However, the intrinsic capacity of mammalian MG to transdifferentiate to generate mature neurons without transgenic manipulations remains speculative. Here we show that MAP4K4, MAP4K6 and MAP4K7, which are conserved Misshapen subfamily of ste20 kinases homologs, repress YAP activity in mammalian MG and therefore restrict their ability to be reprogrammed. However, by treating with a small molecule inhibitor of MAP4K4/6/7, mouse MG regain their ability to proliferate and enter into a retinal progenitor cell (RPC)-like state after NMDA-induced retinal damage; such plasticity was lost in YAP knockout MG. Moreover, spontaneous trans-differentiation of MG into retinal neurons expressing both amacrine and retinal ganglion cell (RGC) markers occurs after inhibitor withdrawal. Taken together, these findings suggest that MAP4Ks block the reprogramming capacity of MG in a YAP-dependent manner in adult mammals, which provides a novel avenue for the pharmaceutical induction of retinal regeneration in vivo.
Collapse
Affiliation(s)
- Houjian Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Yaqiong Yang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuqian Wang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Youwen Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuting Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mei Shen
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiankai Zhao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yan Qiu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shiying Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- Laboratory animal research center, Xiamen University, Xiamen, Fujian, 361102, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate School, Jacobs School of Medicine and Biomedical Sciences, SUNY- University at Buffalo, Buffalo, NY, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
| | - Yi Liao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
15
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J 2023; 290:878-891. [PMID: 34923749 DOI: 10.1111/febs.16330] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The blood-retina barrier (BRB) is the term used to define the properties of the retinal capillaries and the retinal pigment epithelium (RPE), which separate the systemic circulation from the retina. More specifically, the inner blood-retina barrier (iBRB) is used to describe the properties of the endothelial cells that line the microvasculature of the inner retina, while the outer blood-retina barrier (oBRB) refers to the properties of the RPE cells that separate the fenestrated choriocapillaris from the retina. The BRB is not a fixed structure; rather, it is dynamic, with its components making unique contributions to its function and structural integrity, and therefore the retina. For example, while tight junction (TJ) proteins between retinal endothelial cells are the key molecular structures in the maintenance of the iBRB, other cell types surrounding endothelial cells are also important. In fact, this overall structure is termed the neurovascular unit (NVU). The integrity of the BRB is crucial in the maintenance of a 'dry', tightly regulated retinal microenvironment through the regulation of transcellular and paracellular transport. Specifically, breakdown of TJs can result in oedema formation, a hallmark feature of many retinal diseases. Here, we will describe the oBRB briefly, with a more in-depth focus on the structure and function of the iBRB in health and diseased states. Finally, the contribution of the BRB to the pathophysiology of age-related macular degeneration (AMD), diabetic retinopathy (DR) and other rarer retinal diseases will be discussed.
Collapse
Affiliation(s)
- Fionn O'Leary
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
18
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
19
|
Joseph SK, M A A, Thomas S, Nair SC. Nanomedicine as a future therapeutic approach for treating meningitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Exploring the systemic delivery of a poorly water-soluble model drug to the retina using PLGA nanoparticles. Eur J Pharm Sci 2021; 164:105905. [PMID: 34116175 DOI: 10.1016/j.ejps.2021.105905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
During the drug development process, many pharmacologically active compounds are discarded because of poor water solubility, but nanoparticle-based formulations are increasingly proposed as a solution for this problem. We therefore studied the distribution of nanoparticulate carriers and the delivery of their poorly water-soluble cargo to a structure of the central nervous system, the retina, under naive and pathological conditions. The lipophilic fluorescent dye coumarin 6 (Cou6) was encapsulated into poly(lactic-co-glycolic acid) PLGA nanoparticles (NPs). After intravenous administration in rats, we analyzed the distribution of cargo Cou6 and of the NP carrier covalently labeled with Cy5.5 in healthy animals and animals with optic nerve crush (ONC). In vivo real-time retina imaging revealed that Cou6 was rapidly released from PLGA NPs and penetrated the inner blood-retina barrier (BRB) within 15 min and PLGA NPs were gradually eliminated from the retinal blood circulation. Ex vivo microscopy of retinal flat mounts indicated that the Cou6 accumulated predominantly in the extracellular space and to a lesser extent in neurons. While the distribution of Cou6 in healthy animals and post ONC was comparable at early time point post-operation, the elimination of the NPs from the vessels was faster on day 7 post ONC. These results demonstrate the importance of considering different kinetics of nano-carrier and poorly water-soluble cargo, emphasizing the critical role of their parenchymal distribution, i.e. cellular/extracellular, and function of different physiological and pathological conditions.
Collapse
|
21
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
El Biali M, Karch R, Philippe C, Haslacher H, Tournier N, Hacker M, Zeitlinger M, Schmidl D, Langer O, Bauer M. ABCB1 and ABCG2 Together Limit the Distribution of ABCB1/ABCG2 Substrates to the Human Retina and the ABCG2 Single Nucleotide Polymorphism Q141K (c.421C> A) May Lead to Increased Drug Exposure. Front Pharmacol 2021; 12:698966. [PMID: 34220523 PMCID: PMC8242189 DOI: 10.3389/fphar.2021.698966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
The widely expressed and poly-specific ABC transporters breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) are co-localized at the blood-brain barrier (BBB) and have shown to limit the brain distribution of several clinically used ABCB1/ABCG2 substrate drugs. It is currently not known to which extent these transporters, which are also expressed at the blood-retinal barrier (BRB), may limit drug distribution to the human eye and whether the ABCG2 reduced-function single-nucleotide polymorphism (SNP) Q141K (c.421C > A) has an impact on retinal drug distribution. Ten healthy male volunteers (five subjects with the c.421CC and c.421CA genotype, respectively) underwent two consecutive positron emission tomography (PET) scans after intravenous injection of the model ABCB1/ABCG2 substrate [11C]tariquidar. The second PET scan was performed with concurrent intravenous infusion of unlabelled tariquidar to inhibit ABCB1 in order to specifically reveal ABCG2 function.In response to ABCB1 inhibition with unlabelled tariquidar, ABCG2 c.421C > A genotype carriers showed significant increases (as compared to the baseline scan) in retinal radiotracer influx K 1 (+62 ± 57%, p = 0.043) and volume of distribution V T (+86 ± 131%, p = 0.043), but no significant changes were observed in subjects with the c.421C > C genotype. Our results provide the first evidence that ABCB1 and ABCG2 may together limit the distribution of systemically administered ABCB1/ABCG2 substrate drugs to the human retina. Functional redundancy between ABCB1 and ABCG2 appears to be compromised in carriers of the c.421C > A SNP who may therefore be more susceptible to transporter-mediated drug-drug interactions at the BRB than non-carriers.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, VIE, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, VIE, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| |
Collapse
|
23
|
Inhalable Thioflavin S for the Detection of Amyloid Beta Deposits in the Retina. Molecules 2021; 26:molecules26040835. [PMID: 33562625 PMCID: PMC7915734 DOI: 10.3390/molecules26040835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022] Open
Abstract
We present an integrated delivery technology herein employing the aerosolized method to repurpose thioflavin S for imaging amyloid beta (Abeta) deposits in the retina as a surrogate of Abeta in the brain for early detection of Alzheimer's disease. The data showed that wild type (WT) mice also have Abeta deposits in the retinae, albeit much less than 5XFAD mice. Further, only in 5XFAD mice, significant Abeta deposits were found associated with retinal ganglion cells (RGCs) in whole-mount and cross-section data. Furthermore, the fluorescent signal depicted from thioflavin S corroborates with Abeta immunohistochemistry staining information. Overall, this probe delivery via inhalation method is also applicable to other Abeta-binding molecules, such as Congo red, curcumin, and thioflavin T. The advantage of imaging retinal amyloid deposits compared to the brain counterparts is that the eye is easily accessible by in vivo imaging and it reduces the effort to design a probe that must cross the formidable blood-brain barrier.
Collapse
|
24
|
Vitamin D Protects against Oxidative Stress and Inflammation in Human Retinal Cells. Antioxidants (Basel) 2020; 9:antiox9090838. [PMID: 32911690 PMCID: PMC7555517 DOI: 10.3390/antiox9090838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening microvascular complication of diabetes and is one of the leading causes of blindness. Oxidative stress and inflammation play a major role in its pathogenesis, and new therapies counteracting these contributors could be of great interest. In the current study, we investigated the role of vitamin D against oxidative stress and inflammation in human retinal pigment epithelium (RPE) and human retinal endothelial cell lines. We demonstrate that vitamin D effectively counteracts the oxidative stress induced by hydrogen peroxide (H2O2). In addition, the increased levels of proinflammatory proteins such as Interleukin (IL)-6, IL-8, Monocyte chemoattractant protein (MCP)-1, Interferon (IFN)-γ, and tumor necrosis factor (TNF)-α triggered by lipopolysaccharide (LPS) exposure were significantly decreased by vitamin D addition. Interestingly, the increased IL-18 only decreased by vitamin D addition in endothelial cells but not in RPE cells, suggesting a main antiangiogenic role under inflammatory conditions. Moreover, H2O2 and LPS induced the alteration and morphological damage of tight junctions in adult retinal pigment epithelium (ARPE-19) cells that were restored under oxidative and inflammatory conditions by the addition of vitamin D to the media. In conclusion, our data suggest that vitamin D could protect the retina by enhancing antioxidant defense and through exhibiting anti-inflammatory properties.
Collapse
|
25
|
Progressive Effects of Sildenafil on Visual Processing in Rats. Neuroscience 2020; 441:131-141. [PMID: 32615234 DOI: 10.1016/j.neuroscience.2020.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Photoreceptors are light-sensitive cells in the retina converting visual stimuli into electrochemical signals. These signals are evaluated and interpreted in the visual pathway, a process referred to as visual processing. Phosphodiesterase type 5 and 6 (PDE5 and 6) are abundant enzymes in retinal vessels and notably photoreceptors where PDE6 is exclusively present. The effects of the PDE inhibitor sildenafil on the visual system, have been studied using electroretinography and a variety of clinical visual tasks. Here we evaluate effects of sildenafil administration by electrophysiological recordings of flash visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) from key regions in the rodent visual pathway. Progressive changes were investigated in female Sprague-Dawley rats at 10 timepoints from 30 min to 28 h after peroral administration of sildenafil (50 mg/kg). Sildenafil caused a significant reduction in the amplitude of VEPs in both visual cortex and superior colliculus, and a significant delay of the VEPs as demonstrated by increased latency of several VEP peaks. Also, sildenafil-treatment significantly reduced the signal-to-noise ratio of SSVEPs. The effects of sildenafil were dependent on the wavelength condition in both assays. Our results support the observation that while PDE6 is a key player in phototransduction, near full inhibition of PDE6 is not enough to abolish the complex process of visual processing. Taken together, VEPs and SSVEPs are effective in demonstrating progressive effects of drug-induced changes in visual processing in rats and as the same paradigms may be applied in humans, representing a promising tool for translational research.
Collapse
|
26
|
Pollock LM, Perkins B, Anand-Apte B. Primary cilia are present on endothelial cells of the hyaloid vasculature but are not required for the development of the blood-retinal barrier. PLoS One 2020; 15:e0225351. [PMID: 32735563 PMCID: PMC7394433 DOI: 10.1371/journal.pone.0225351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Endothelial cilia are found in a variety of tissues including the cranial vasculature of zebrafish embryos. Recently, endothelial cells in the developing mouse retina were reported to also possess primary cilia that are potentially involved in vascular remodeling. Fish carrying mutations in intraflagellar transport (ift) genes have disrupted cilia and have been reported to have an increased rate of spontaneous intracranial hemorrhage (ICH), potentially due to disruption of the sonic hedgehog (shh) signaling pathway. However, it remains unknown whether the endothelial cells forming the retinal microvasculature in zebrafish also possess cilia, and whether endothelial cilia are necessary for development and maintenance of the blood-retinal barrier (BRB). In the present study, we found that the endothelial cells lining the zebrafish hyaloid vasculature possess primary cilia during development. To determine whether endothelial cilia are necessary for BRB integrity, ift57, ift88, and ift172 mutants, which lack cilia, were crossed with the double-transgenic zebrafish strain Tg(l-fabp:DBP-EGFP;flk1:mCherry). This strain expresses a vitamin D-binding protein (DBP) fused to enhanced green fluorescent protein (EGFP) as a tracer in the blood plasma, while the endothelial cells forming the vasculature are tagged by mCherry. The Ift mutant fish develop a functional BRB, indicating that endothelial cilia are not necessary for early BRB integrity. Additionally, although treatment of zebrafish larvae with Shh inhibitor cyclopamine results in BRB breakdown, the Ift mutant fish were not sensitized to cyclopamine-induced BRB breakdown.
Collapse
Affiliation(s)
- Lana M. Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
27
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
28
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn J, Fuchs DT, Kramerov AA, Ljubimov AV, Dumitrascu OM, Rodriguez AR, Barron E, Hinton DR, Black KL, Miller CA, Mirzaei N, Koronyo-Hamaoui M. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol 2020; 139:813-836. [PMID: 32043162 PMCID: PMC7181564 DOI: 10.1007/s00401-020-02134-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/27/2023]
Abstract
Pericyte loss and deficient vascular platelet-derived growth factor receptor-β (PDGFRβ) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid β-protein (Aβ) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aβ deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRβ in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRβ loss significantly associated with increased retinal vascular Aβ40 and Aβ42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRβ and Aβ40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aβ burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRβ loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Andrei A Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oana M Dumitrascu
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony R Rodriguez
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020; 12:E269. [PMID: 32188045 PMCID: PMC7151081 DOI: 10.3390/pharmaceutics12030269] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Conde-Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Molecular Imaging Group. University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Hellinen L, Sato K, Reinisalo M, Kidron H, Rilla K, Tachikawa M, Uchida Y, Terasaki T, Urtti A. Quantitative Protein Expression in the Human Retinal Pigment Epithelium: Comparison Between Apical and Basolateral Plasma Membranes With Emphasis on Transporters. Invest Ophthalmol Vis Sci 2020; 60:5022-5034. [PMID: 31791063 DOI: 10.1167/iovs.19-27328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal pigment epithelium (RPE) limits the xenobiotic entry from the systemic blood stream to the eye. RPE surface transporters can be important in ocular drug distribution, but it has been unclear whether they are expressed on the apical, basal, or both cellular surfaces. In this paper, we provide quantitative comparison of apical and basolateral RPE surface proteomes. Methods We separated the apical and basolateral membranes of differentiated human fetal RPE (hfRPE) cells by combining apical membrane peeling and sucrose density gradient centrifugation. The membrane fractions were analyzed with quantitative targeted absolute proteomics (QTAP) and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to reveal the membrane protein localization on the RPE cell surfaces. We quantitated 15 transporters in unfractionated RPE cells and scaled their expression to tissue level. Results Several proteins involved in visual cycle, cell adhesion, and ion and nutrient transport were expressed on the hfRPE plasma membranes. Most drug transporters showed similar abundance on both RPE surfaces, whereas large neutral amino acids transporter 1 (LAT1), p-glycoprotein (P-gp), and monocarboxylate transporter 1 (MCT1) showed modest apical enrichment. Many solute carriers (SLC) that are potential prodrug targets were present on both cellular surfaces, whereas putative sodium-coupled neutral amino acid transporter 7 (SNAT7) and riboflavin transporter (RFT3) were enriched on the basolateral and sodium- and chloride-dependent neutral and basic amino acid transporter (ATB0+) on the apical membrane. Conclusions Comprehensive quantitative information of the RPE surface proteomes was reported for the first time. The scientific community can use the data to further increase understanding of the RPE functions. In addition, we provide insights for transporter protein localization in the human RPE and the significance for ocular pharmacokinetics.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kazuki Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, Department of Ophthalmology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
32
|
Barabas P, Augustine J, Fernández JA, McGeown JG, McGahon MK, Curtis TM. Ion channels and myogenic activity in retinal arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:187-226. [PMID: 32402639 DOI: 10.1016/bs.ctm.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinal pressure autoregulation is an important mechanism that protects the retina by stabilizing retinal blood flow during changes in arterial or intraocular pressure. Similar to other vascular beds, retinal pressure autoregulation is thought to be mediated largely through the myogenic response of small arteries and arterioles which constrict when transmural pressure increases or dilate when it decreases. Over recent years, we and others have investigated the signaling pathways underlying the myogenic response in retinal arterioles, with particular emphasis on the involvement of different ion channels expressed in the smooth muscle layer of these vessels. Here, we review and extend previous work on the expression and spatial distribution of the plasma membrane and sarcoplasmic reticulum ion channels present in retinal vascular smooth muscle cells (VSMCs) and discuss their contribution to pressure-induced myogenic tone in retinal arterioles. This includes new data demonstrating that several key players and modulators of the myogenic response show distinctively heterogeneous expression along the length of the retinal arteriolar network, suggesting differences in myogenic signaling between larger and smaller pre-capillary arterioles. Our immunohistochemical investigations have also highlighted the presence of actin-containing microstructures called myobridges that connect the retinal VSMCs to one another. Although further work is still needed, studies to date investigating myogenic mechanisms in the retina have contributed to a better understanding of how blood flow is regulated in this tissue. They also provide a basis to direct future research into retinal diseases where blood flow changes contribute to the pathology.
Collapse
Affiliation(s)
- Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - José A Fernández
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Mary K McGahon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
33
|
Srinivasan VM, Lang FF, Chen SR, Chen MM, Gumin J, Johnson J, Burkhardt JK, Kan P. Advances in endovascular neuro-oncology: endovascular selective intra-arterial (ESIA) infusion of targeted biologic therapy for brain tumors. J Neurointerv Surg 2020; 12:197-203. [PMID: 31676690 DOI: 10.1136/neurintsurg-2019-015137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Malignant gliomas continue to have a poor clinical outcome with available therapies. In the past few years, new targeted biologic therapies have been studied, with promising results. However, owing to problems with ineffective IV delivery of these newer agents, an alternative, more direct delivery mechanism is needed. Simultaneously, advancements in neuroendovascular technology have allowed endovascular selective intra-arterial approaches to delivery. This method has the potential to increase drug delivery and selectively target tumor vasculature. OBJECTIVE To review the history of IA therapy for brain tumors, prior failures and successes, the emergence of new technologies and therapies, and the future direction of this young field. METHODS A comprehensive literature search of two databases (PubMed, Ovid Medline) was performed for several terms including 'brain tumor', 'glioma', and 'endovascular intra-arterial'. Forty-five relevant articles were identified via a systematic review following PRISMA guidelines. Additional relevant articles were selected for further in-depth review. Emphasis was given to articles discussing selective intra-arterial intracranial delivery using microcatheters. RESULTS Endovascular intra-arterial therapy with chemotherapy has had mixed results, with currently active trials using temozolomide, cetuximab, and bevacizumab. Prior attempts at IA chemotherapy with older-generation medications did not surpass the efficacy of IV administration. Advances in neuro-oncology have brought to the forefront new targeted biologic therapies. CONCLUSIONS In this review, we discuss the emerging field of endovascular neuro-oncology, a field that applies modern neuroendovascular techniques to the delivery of new therapeutic agents to brain tumors. The development of targeted therapies for brain tumors has been concurrent with the development of microcatheter technology, which has made superselective distal intracranial arterial access feasible and safe.
Collapse
Affiliation(s)
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen R Chen
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa M Chen
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
Furubayashi T, Inoue D, Nishiyama N, Tanaka A, Yutani R, Kimura S, Katsumi H, Yamamoto A, Sakane T. Comparison of Various Cell Lines and Three-Dimensional Mucociliary Tissue Model Systems to Estimate Drug Permeability Using an In Vitro Transport Study to Predict Nasal Drug Absorption in Rats. Pharmaceutics 2020; 12:pharmaceutics12010079. [PMID: 31963555 PMCID: PMC7023391 DOI: 10.3390/pharmaceutics12010079] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, various types of cultured cells have been used to research the mechanisms of transport and metabolism of drugs. Although many studies using cultured cell systems have been published, a comparison of different cultured cell systems has never been reported. In this study, Caco-2, Calu-3, Madin–Darby canine kidney (MDCK), EpiAirway and MucilAir were used as popular in vitro cell culture systems, and the permeability of model compounds across these cell systems was evaluated to compare barrier characteristics and to clarify their usefulness as an estimation system for nasal drug absorption in rats. MDCK unexpectedly showed the best correlation (r = 0.949) with the fractional absorption (Fn) in rats. Secondly, a high correlation was observed in Calu-3 (r = 0.898). Also, Caco-2 (r = 0.787) and MucilAir (r = 0.750) showed a relatively good correlation with Fn. The correlation between Fn and permeability to EpiAirway was the poorest (r = 0.550). Because EpiAirway forms leakier tight junctions than other cell culture systems, the paracellular permeability was likely overestimated with this system. On the other hand, because MDCK formed such tight cellular junctions that compounds of paracellular model were less likely permeated, the paracellular permeability could be underestimated. Calu-3, Caco-2 and MucilAir form suitable cellular junctions and barriers, indicating that those cell systems enable the precise estimation of nasal drug absorption.
Collapse
Affiliation(s)
- Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (A.T.); (R.Y.)
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan; (D.I.); (N.N.)
- Correspondence: (T.F.); (T.S.); Tel.: +81-78-441-7531 (T.F.); +81-78-441-7530 (T.S.)
| | - Daisuke Inoue
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan; (D.I.); (N.N.)
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Noriko Nishiyama
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan; (D.I.); (N.N.)
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (A.T.); (R.Y.)
| | - Reiko Yutani
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (A.T.); (R.Y.)
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan;
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (H.K.); (A.Y.)
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (H.K.); (A.Y.)
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (A.T.); (R.Y.)
- Correspondence: (T.F.); (T.S.); Tel.: +81-78-441-7531 (T.F.); +81-78-441-7530 (T.S.)
| |
Collapse
|
35
|
Liu X, Pan G. Roles of Drug Transporters in Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:467-504. [PMID: 31571172 PMCID: PMC7120327 DOI: 10.1007/978-981-13-7647-4_10] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by retinal pigment epithelial (RPE) cells in collaboration with Bruch's membrane and the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and molecular movement between the ocular vascular beds and retinal tissues and to prevent leakage of macromolecules and other potentially harmful agents into the retina, keeping the microenvironment of the retina and retinal neurons. These functions are mainly attributed to absent fenestrations of RCECs, tight junctions, expression of a great diversity of transporters, and coverage of pericytes and glial cells. BRB existence also becomes a reason that systemic administration for some drugs is not suitable for the treatment of retinal diseases. Some diseases (such as diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions, RCEC death, and transporter expression. This chapter will illustrate function of BRB, expressions and functions of these transporters, and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- grid.254147.10000 0000 9776 7793School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Guoyu Pan
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai China
| |
Collapse
|
36
|
Luo ZW, Wang HT, Wang N, Sheng WW, Jin M, Lu Y, Bai YJ, Zou SQ, Pang YL, Xu H, Zhang X. Establishment of an adult zebrafish model of retinal neurodegeneration induced by NMDA. Int J Ophthalmol 2019; 12:1250-1261. [PMID: 31456914 PMCID: PMC6694058 DOI: 10.18240/ijo.2019.08.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
AIM To establish a model of retinal neurodegeneration induced by N-Methyl-D-aspartic acid (NMDA) in adult zebrafish. METHODS We compared the effects of three different NMDA delivery methods on retinal neurodegeneration in adult zebrafish: immersion (I.M.), intravitreal injection (I.V.), and intraperitoneal injection (I.P.), and examined retinal pathology and degeneration by hematoxylin and eosin and TUNEL staining in the treated zebrafish. Effects of the NMDA receptor antagonist MK-801 and the natural product resveratrol on NMDA-induced retinal neurodegeneration were also assessed. RESULTS The thickened inner retina was seen in histology with 100 µmol/L NMDA by I.M. administration. Significant apoptosis in the retinal ganglion cell layer and retinal thickness reduction occurred in 0.5 mol/L NMDA I.P. administration group.Seizure-like behavioral changes, but no retinal histological alteration occurred in 16 mg/kg NMDA I.P. administration group. Resveratrol and MK-801 prevented NMDA-induced retinal neurodegeneration in the zebrafish. CONCLUSION Among the three drug administration methods, I.V. injection of NMDA is the most suitable for establishment of an acute retinal damage model in zebrafish. I.M. with NMDA is likely the best for use as a chronic retinal damage model. I.P. treatment with NMDA causes brain damage. Resveratrol and MK801 may be a clinically valuable treatment for retinal neurodegeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Han-Tsing Wang
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Ning Wang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Wei-Wei Sheng
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Yi-Jiang Bai
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Su-Qi Zou
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Yu-Lian Pang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
37
|
Mutlu Z, Shams Es‐haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater 2019; 8:e1801390. [PMID: 30938941 DOI: 10.1002/adhm.201801390] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Indexed: 12/28/2022]
Abstract
Exploiting contact lenses for ocular drug delivery is an emerging field in the area of biomedical engineering and advanced healthcare materials. Despite all the research conducted in this area, still, new technologies are in their early stages of the development, and more work must be done in terms of clinical trials to commercialize these technologies. A great challenge in using contact lenses for drug delivery is to achieve a prolonged drug release profile within the therapeutic range for various eye-related problems and diseases. In general, desired release kinetics to avoid the initial burst release is the zero-order kinetics within the therapeutic range. This review highlights the new technologies developed to achieve efficient and extended drug delivery. It also provides an overview of the materials and methods for fabrication of contact lenses and their mechanical and optical properties.
Collapse
Affiliation(s)
- Zeynep Mutlu
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Siamak Shams Es‐haghi
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Mukerrem Cakmak
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
- School of Mechanical EngineeringPurdue University West Lafayette IN 47907‐2088 USA
| |
Collapse
|
38
|
Tega Y, Yamazaki Y, Akanuma SI, Kubo Y, Hosoya KI. Impact of Nicotine Transport across the Blood-Brain Barrier: Carrier-Mediated Transport of Nicotine and Interaction with Central Nervous System Drugs. Biol Pharm Bull 2018; 41:1330-1336. [PMID: 30175770 DOI: 10.1248/bpb.b18-00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotine, an addictive substance, is absorbed from the lungs following inhalation of tobacco smoke, and distributed to various tissues such as liver, brain, and retina. Recent in vivo and in vitro studies suggest the involvement of a carrier-mediated transport process in nicotine transport in the lung, liver, and inner blood-retinal barrier. In addition, in vivo studies of influx and efflux transport of nicotine across the blood-brain barrier (BBB) revealed that blood-to-brain influx transport of nicotine is more dominant than brain-to-blood efflux transport of nicotine. Uptake studies in TR-BBB13 cells, which are an in vitro model cell line of the BBB, suggest the involvement of H+/organic cation antiporter, which is distinct from typical organic cation transporters, in nicotine transport at the BBB. Moreover, inhibition studies in TR-BBB13 cells showed that nicotine uptake was significantly reduced by central nervous system (CNS) drugs, such as antidepressants, anti-Alzheimer's disease drugs, and anti-Parkinson's disease drugs, suggesting that the nicotine transport system can recognize these molecules. The cumulative evidence would be helpful to improve our understanding of smoking-CNS drug interaction for providing appropriate medication.
Collapse
Affiliation(s)
- Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuhei Yamazaki
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
39
|
You Q, Hopf T, Hintz W, Rannabauer S, Voigt N, van Wachem B, Henrich-Noack P, Sabel BA. Major effects on blood-retina barrier passage by minor alterations in design of polybutylcyanoacrylate nanoparticles. J Drug Target 2018; 27:338-346. [DOI: 10.1080/1061186x.2018.1531416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qing You
- Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Talea Hopf
- Institute of Process Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Werner Hintz
- Institute of Process Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefan Rannabauer
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - Nadine Voigt
- Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - B. van Wachem
- Institute of Process Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
40
|
Srinivas N, Maffuid K, Kashuba ADM. Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System. Clin Pharmacokinet 2018; 57:1059-1074. [PMID: 29464550 PMCID: PMC6062484 DOI: 10.1007/s40262-018-0632-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer's disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.
Collapse
Affiliation(s)
- Nithya Srinivas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
41
|
A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release 2018; 281:97-118. [PMID: 29782944 DOI: 10.1016/j.jconrel.2018.05.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
With the prevalence of electronic devices and an aging population, the number of people affected with eye disease is increasing year by year. In spite of a large number of eye drops on the market, most of them do not perform sufficiently, due to rapid clearance mechanisms and ocular barriers. To enhance drug delivery to the eye, a number of novel formulations for ocular diseases have been investigated over recent decades, aiming to increase drug retention and permeation while also allowing for sustained drug release over prolonged periods. The contact lens, initially used to correct visual acuity and beautify female eyes, is one such novel formulation with outstanding potential. Recently, contact lenses have been extensively used for ocular drug delivery to enhance ocular bioavailability and reduce side effects, and are particularly suitable for the treatment of chronic diseases, and thus are of interest to ophthalmic scientists. This review summarizes contact lens classification, methods of preparation, strategies for integrating drugs into lenses, in vitro and in vivo studies, and clinical applications. This review also discusses the current state of ocular drug therapy and provides an outlook for future therapeutic opportunities in the field of ocular drug delivery.
Collapse
|
42
|
Kubo Y, Akanuma SI, Hosoya KI. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin Drug Metab Toxicol 2018; 14:513-531. [PMID: 29719158 DOI: 10.1080/17425255.2018.1472764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The blood-retinal barrier (BRB) is the barrier separating the blood and neural retina, and transport systems for low-weight molecules at the BRB are expected to be useful for developing drugs for the treatment of ocular neural disorders and maintaining a healthy retina. Areas covered: This review discusses blood-to-retina and retina-to-blood transport of drugs and nutrients at the BRB. In particular, P-gp (ABCB1/MDR1) has low impact on the transport of cationic drugs at the BRB, suggesting a significant role of novel organic cation transporters in influx and efflux transport of lipophilic cationic drugs between blood and the retina. The transport of pravastatin at the BRB involves transporters including organic anion transporting polypeptide 1a4 (Oatp1a4). Recent studies have shown the involvement of solute carrier transporters in the blood-to-retina transport of nutrients including riboflavin, L-ornithine, β-alanine, and L-histidine, implying that dipeptide transport at the BRB is minimal. Expert opinion: Novel organic cation transport systems and the elimination-dominant transport of pravastatin at the BRB are expected to be useful in systemic drug delivery to the neural retina without CNS side effects. The mechanism of nutrient transport at the BRB is expected to provide a new strategy for delivery of nutrient-mimetic drugs.
Collapse
Affiliation(s)
- Yoshiyuki Kubo
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Shin-Ichi Akanuma
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Ken-Ichi Hosoya
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| |
Collapse
|
43
|
Tatke A, Janga KY, Avula B, Wang X, Jablonski MM, Khan IA, Majumdar S. P-glycoprotein Restricts Ocular Penetration of Loperamide across the Blood-Ocular Barriers: a Comparative Study in Mdr1a Knock-out and Wild Type Sprague Dawley Rats. AAPS PharmSciTech 2018. [PMID: 29520587 DOI: 10.1208/s12249-018-0979-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The current research was undertaken to determine the existence and magnitude of P-glycoprotein (P-gp) expression on the blood-ocular barriers by studying the ocular penetration of loperamide, a specific P-gp substrate, in P-gp (Mdr1a) knock-out (KO) and wild type (WT) Sprague Dawley rats. A clear, stable, sterile solution of loperamide (1 mg/mL), for intravenous administration, was formulated and evaluated. Ocular distribution was studied in P-gp KO and WT rats following intravenous administration of loperamide (at two doses). The drug levels in plasma, aqueous humor (AH), and vitreous humor (VH) samples were determined with the aid of UHPLC-Q-TOF-MS/MS, and the AH/plasma (D AH ) and VH/plasma (D VH ) distribution ratios were estimated. Electroretinography (ERG), ultrastructural analyses, and histology studies were carried out, in both KO and WT rats, to detect any drug-induced functional and/or structural alterations in the retina. Dose-related loperamide levels were observed in the plasma of both WT and KO rats. The loperamide concentrations in the AH and VH of KO rats were significantly higher compared to that observed in the WT rats, at the lower dose. However, a marked increase in the D AH and D VH was noted in the KO rats. ERG, ultrastructure, and histology studies did not indicate any drug-induced toxic effects in the retina under the test conditions. The results from these studies demonstrate that P-gp blocks the penetration of loperamide into the ocular tissues from the systemic circulation and that the effect is more pronounced at lower plasma loperamide concentrations.
Collapse
|
44
|
Vellonen KS, Hellinen L, Mannermaa E, Ruponen M, Urtti A, Kidron H. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev 2018; 126:3-22. [PMID: 29248478 DOI: 10.1016/j.addr.2017.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
The eye is protected by several tissues that limit the permeability and entry of potentially harmful substances, but also hamper the delivery of drugs in the treatment of ocular diseases. Active transport across the ocular barriers may affect drug distribution, but the impact of drug transporters on ocular drug delivery is not well known. We have collected and critically reviewed the literature for ocular expression and activity of known drug transporters. The review concentrates on drug transporters that have been functionally characterized in ocular tissues or primary cells and on transporters for which there is available expression data at the protein level. Species differences are highlighted, since these may explain observed inconsistencies in the influence of specific transporters on drug disposition. There is variable evidence about the pharmacokinetic role of transporters in ocular tissues. The strongest evidence for the role of active transport is available for the blood-retinal barrier. We explored the role of active transport in the cornea and blood retinal barrier with pharmacokinetic simulations. The simulations show that the active transport is important only in the case of specific parameter combinations.
Collapse
|
45
|
Abstract
The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.
Collapse
Affiliation(s)
- Om Prakash Sharma
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Viral Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
46
|
Reid CA, Ertel KJ, Lipinski DM. Improvement of Photoreceptor Targeting via Intravitreal Delivery in Mouse and Human Retina Using Combinatory rAAV2 Capsid Mutant Vectors. Invest Ophthalmol Vis Sci 2017; 58:6429-6439. [PMID: 29260200 PMCID: PMC5736327 DOI: 10.1167/iovs.17-22281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Effective intravitreal gene delivery to cells of the central retina (i.e., photoreceptors) would be of substantial benefit for treating patients with retinal diseases, such as achromatopsia, where retinal detachment from a subretinal may be harmful. Previous studies demonstrated that mutation of the recombinant adeno-associated virus (rAAV) capsid through introduction of peptide insertions or amino acid substitutions dramatically alters vector tropism. Herein, we evaluate the photoreceptor transduction efficiency of three rAAV2/2-based capsid mutant vectors: rAAV2/2[7m8], rAAV2/2[QuadYF+TV], and a chimeric vector incorporating both mutations (termed rAAV2/2[MAX]) following intravitreal delivery in mice. Furthermore, we evaluate the transduction efficiency of rAAV2/2[MAX] using explanted human central retinal samples to address clinical translatability. Methods Vectors containing a GFP or mCherry reporter gene were intravitreally injected into C57BL/6J or Nrl-EGFP mice, respectively. Transduction was assessed in vivo utilizing a custom multiline confocal scanning laser ophthalmoscope. Injected Nrl-EGFP mouse retinas were used to quantify transduced photoreceptors using flow cytometry. Postmortem human retinal tissue was cultured following administration of rAAV2/2[MAX]. C57BL/6J retinas and human explants were cryosectioned to determine vector tropism. Results The chimeric vector rAAV2/2[MAX] transduced significantly higher proportions of the retina than did either single mutant serotypes following intravitreal delivery in murine retina, including inner retinal cells and photoreceptors. Vector rAAV2[MAX] demonstrated transduction of human photoreceptors and ganglion cells. Conclusions Transduction observed via rAAV2/2[MAX] indicates that combining mutations with complementary mechanisms of action in a single vector results in enhanced transduction. rAAV2/2[MAX] also presented the ability to transduce human photoreceptors and ganglion cells, indicating potential for efficient intravitreal vector delivery.
Collapse
Affiliation(s)
- Christopher A Reid
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kristina J Ertel
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel M Lipinski
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Hui F, Nguyen CTO, He Z, Vingrys AJ, Gurrell R, Fish RL, Bui BV. Retinal and Cortical Blood Flow Dynamics Following Systemic Blood-Neural Barrier Disruption. Front Neurosci 2017; 11:568. [PMID: 29075176 PMCID: PMC5643486 DOI: 10.3389/fnins.2017.00568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022] Open
Abstract
To consider whether imaging retinal vasculature may be used as a marker for cortical vessels, we compared fluorescein angiography flow dynamics before and after pharmacological disruption of blood-neural barriers. Sodium fluorescein (1%, 200 μl/kg) was intravenously delivered in anesthetized adult Long Evans rats (n = 44, brain = 18, retina = 26). In the brain cohort, a cranial window was created to allow direct visualization of surface cortical vessels. Video fluorescein angiography was captured using a rodent retinal camera at 30 frames/second and fluorescence intensity profiles were evaluated for the time to reach 50% brightness (half-rise), 50% decay (half-fall), and the plateau level of remnant fluorescence (offset, %). Cortical vessels fluoresced earlier (artery half-rise: 5.6 ± 0.2 s) and decayed faster (half-fall: 10.3 ± 0.2 s) compared to retinal vasculature. Cortical vessels also had a considerably higher offset, particularly in the capillaries/extravascular space (41.4 ± 2.7%) whereas pigment in the retina reduces such residual fluorescence. In a sub-cohort of animals, sodium deoxycholate (DOC, 0.06 M dissolved in sterile saline, 1 mL) was delivered intravenously to cause simultaneous disruption of the blood-brain and blood-retinal barriers. A separate group received saline as vehicle control. Fluorescein angiography was re-measured at 6 and 24 h after drug infusion and evaluated by comparing flow dynamics to the upper quartile (75%) of the control group. Retinal vasculature was more sensitive to DOC-induced disruption with a higher fluorescence offset at 6 h (47.3 ± 10.6%). A delayed effect was seen in cortical vessels with a higher offset evident only at 24 h (65.6 ± 10.1%). Here we have developed a method to quantitatively compare fluorescein angiography dynamics in the retina and superficial cortical vessels. Our results show that systemic disruption of blood-neural barriers causes vascular leakage in both tissues but earlier in the retina suggesting that pharmacological blood-neural barrier disruption may be detected earlier in the eye than in cortical vasculature.
Collapse
Affiliation(s)
- Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Algis J. Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Gurrell
- Neuroscience and Pain Research Unit, Pfizer, Cambridge, United Kingdom
| | - Rebecca L. Fish
- Neuroscience and Pain Research Unit, Pfizer, Cambridge, United Kingdom
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Hays CL, Okafor KC, Fan S, High R, Singh DP, Toris CB. Consequences of Puberty on Efficacy of Intraocular Pressure-Lowering Drugs in Male Dutch-Belted Rabbits. J Ocul Pharmacol Ther 2017; 34:76-84. [PMID: 28820646 DOI: 10.1089/jop.2016.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To investigate the changes in intraocular pressure (IOP), aqueous flow, and outflow facility, as well as efficacy of IOP-lowering drugs before and after sexual development in rabbits. METHODS Male Dutch-belted rabbits were studied at night between the ages of 8 and 44 weeks. During these times, body weight, testicular volume, and serum testosterone were measured to monitor sexual maturity. Ocular measurements included anterior chamber depth, central corneal thickness, IOP, aqueous flow, and outflow facility. Systemic acetazolamide or topical timolol, latanoprost, or saline were administered pre- and postpuberty to assess drug effects on these parameters. RESULTS Body weight, testicular volume, and serum testosterone increased until 28 weeks of age. IOP increased during prepuberty (R2 = 0.49, P = 0.003), dropped significantly during puberty, rising again immediate postpuberty, and changing little thereafter. Postpuberty compared with prepuberty found higher IOP (P < 0.0001), slower aqueous flow (P = 0.008), lower outflow facility (not statistically significant, P = 0.07), increased central cornea thickness, and increased anterior chamber volume. Timolol lowered IOP both pre- and postpuberty, whereas, latanoprost and acetazolamide decreased IOP postpuberty only. CONCLUSIONS As male rabbits mature, the cornea thickens and the anterior chamber volume increases. At the same time, aqueous flow slows, yet, IOP increases. This suggests that decreased outflow facility and/or increased episcleral venous pressure might contribute to the puberty-related changes in IOP. Underdevelopment of tissues of the outflow pathways may contribute to the differences in drug efficacy in rabbits when young compared with after sexual maturity.
Collapse
Affiliation(s)
- Cassandra L Hays
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kingsley C Okafor
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Shan Fan
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Robin High
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Dhirendra P Singh
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Carol B Toris
- 1 Department of Ophthalmology, University of Nebraska Medical Center , Omaha, Nebraska.,2 Department of Ophthalmology, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
49
|
Zhang Y, Han Y, Zhao Y, Lv Y, Hu Y, Tan Y, Bi X, Yu B, Kou J. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway. Front Immunol 2017; 8:925. [PMID: 28855900 PMCID: PMC5557769 DOI: 10.3389/fimmu.2017.00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yuwei Han
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yanni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yang Hu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Xueyuan Bi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
50
|
Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: Cellular basis and development. Vision Res 2017; 139:123-137. [PMID: 28619516 DOI: 10.1016/j.visres.2017.05.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
The blood-retinal barrier (BRB) regulates transport across retinal capillaries maintaining proper neural homeostasis and protecting the neural tissue from potential blood borne toxicity. Loss of the BRB contributes to the pathophysiology of a number of blinding retinal diseases including diabetic retinopathy. In this review, we address the basis of the BRB, including the molecular mechanisms that regulate flux across the retinal vascular bed. The routes of transcellular and paracellular flux are described as well as alterations in these pathways in response to permeabilizing agents in diabetes. Finally, we provide information on exciting new studies that help to elucidate the process of BRB development or barriergenesis and how understanding this process may lead to new opportunities for barrier restoration in diabetic retinopathy.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Carla Ramos
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|