1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Morar-Mitrica S, Pohl T, Theisen D, Boll B, Bechtold-Peters K, Schipflinger R, Beyer B, Zierow S, Kammüller M, Pribil A, Schmelzer B, Boehm S, Goetti M, Serno T. An Intra-Company Analysis of Inherent Particles in Biologicals Shapes the Protein Particle Mitigation Strategy Across Development Stages. J Pharm Sci 2023; 112:1476-1484. [PMID: 36731778 DOI: 10.1016/j.xphs.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
To better understand protein aggregation and inherent particle formation in the biologics pipeline at Novartis, a cross-functional team collected and analyzed historical protein particle issues. Inherent particle occurrences from the past 10 years were systematically captured in a protein particle database. Where the root cause was identified, a number of product attributes (such as development stage, process step, or protein format) were trended. Several key themes were revealed: 1) there was a higher propensity for inherent particle formation with non-mAbs than with mAbs; 2) the majority of particles were detected following manufacturing at scale, and were not predicted by the small-scale studies; 3) most issues were related to visible particles, followed by subvisible particles; 4) 50% of the issues were manufacturing related. These learnings became the foundation of a particle mitigation strategy across development and technical transfer, and resulted in a set of preventive actions. Overall, this study provides further insight into a recognized industry challenge and hopes to inspire the biopharmaceutical industry to transparently share their experiences with inherent particles formation.
Collapse
Affiliation(s)
| | - Thomas Pohl
- Biologics Analytical Development, Novartis Pharma, Basel, Switzerland
| | | | | | | | | | - Beate Beyer
- Biologics Drug Substance Development, Sandoz, Schaftenau, Austria
| | - Swen Zierow
- Biologics Drug Substance Development, Sandoz, Schaftenau, Austria
| | - Michael Kammüller
- Translational Medicine - Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Pribil
- Global PAT & Statistics MS&T, Novartis, Schaftenau, Austria
| | - Bernhard Schmelzer
- Biologics Analytical Development Statistics and Modeling, Sandoz, Schaftenau, Austria
| | - Stephan Boehm
- Biologics Drug Product Development, Sandoz, Schaftenau, Austria
| | - Micheline Goetti
- Advanced Accelerator Applicator, a Novartis company, Geneva, Switzerland
| | - Tim Serno
- Biologics Drug Product Development, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
3
|
A humanized minipig model for the toxicological testing of therapeutic recombinant antibodies. Nat Biomed Eng 2022; 6:1248-1256. [PMID: 36138193 DOI: 10.1038/s41551-022-00921-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
The safety of most human recombinant proteins can be evaluated in transgenic mice tolerant to specific human proteins. However, owing to insufficient genetic diversity and to fundamental differences in immune mechanisms, small-animal models of human diseases are often unsuitable for immunogenicity testing and for predicting adverse outcomes in human patients. Most human therapeutic antibodies trigger xenogeneic responses in wild-type animals and thus rapid clearance of the drugs, which makes in vivo toxicological testing of human antibodies challenging. Here we report the generation of Göttingen minipigs carrying a mini-repertoire of human genes for the immunoglobulin heavy chains γ1 and γ4 and the immunoglobulin light chain κ. In line with observations in human patients, the genetically modified minipigs tolerated the clinically non-immunogenic IgG1κ-isotype monoclonal antibodies daratumumab and bevacizumab, and elicited antibodies against the checkpoint inhibitor atezolizumab and the engineered interleukin cergutuzumab amunaleukin. The humanized minipigs can facilitate the safety and efficacy testing of therapeutic antibodies.
Collapse
|
4
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
5
|
Katz JS, Chou DK, Christian TR, Das TK, Patel M, Singh SN, Wen Y. Emerging Challenges and Innovations in Surfactant-mediated Stabilization of Biologic Formulations. J Pharm Sci 2021; 111:919-932. [PMID: 34883096 DOI: 10.1016/j.xphs.2021.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Biologics may be subjected to various destabilizing conditions during manufacturing, transportation, storage, and use. Therefore, biologics must be appropriately formulated to meet their desired quality target product profiles. In the formulations of protein-based biologics, one critical component is surfactant. Polysorbate 80 and Polysorbate 20 remain the most commonly used surfactants. Surfactants can stabilize proteins through different mechanisms and help the proteins withstand destabilization stresses. However, the challenges associated with surfactants, for instance, impurities, degradation, and potential triggering of adverse immune responses, have been encountered. Therefore, there are continued efforts to develop novel surfactants to overcome these challenges associated with traditional surfactants. Meanwhile, surfactants have also found their use in formulations of newer and novel modalities, namely, antibody-drug conjugates, bispecific antibodies, and adeno-associated viruses (AAV). This review provides an updated in-depth discussion of surfactants in the above-mentioned areas, namely mechanism of action of surfactants, a critical review of challenges with surfactants and current mitigation approaches, and emerging technologies to develop novel surfactants. In addition, gaps, current mitigations, and future directions have been presented to trigger further discussion and research to facilitate the use and development of novel surfactants.
Collapse
Affiliation(s)
- Joshua S Katz
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, DE 19803, USA.
| | - Danny K Chou
- Compassion BioSolution, LLC, Lomita, CA 90717, USA
| | | | - Tapan K Das
- Bristol Myers Squibb, Biologics Development, New Brunswick, NJ 08903, USA
| | - Mayank Patel
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Shubhadra N Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, PA 19426, USA
| | - Yi Wen
- Lilly Research Laboratory, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
6
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
7
|
Uchino T, Miyazaki Y, Yamazaki T, Kagawa Y. Immunogenicity of protein aggregates of a monoclonal antibody generated by forced shaking stress with siliconized and nonsiliconized syringes in BALB/c mice. ACTA ACUST UNITED AC 2017. [PMID: 28639328 DOI: 10.1111/jphp.12765] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the immunogenicity of protein aggregates of monoclonal antibodies (mAbs), generated by forced shaking stress with siliconized and nonsiliconized syringes in a mouse model. METHODS Samples were filled in siliconized and nonsiliconized syringes with shaking and headspace air. Characterization studies were performed using high-performance size-exclusion chromatography, nanoparticle tracking analysis, flow cytometry, micro-flow imaging and resonant mass measurement. The samples (10 or 100 μg) were subcutaneously injected into BALB/c mice for 21 days, and the anti-drug antibody (ADA) concentrations were monitored. KEY FINDINGS In samples shaken with siliconized syringes [SO (+)], large amounts of submicron and subvisible protein aggregates were formed by interactions with silicone oil droplets. The characteristics of protein aggregates differed between the mAb solution and shaken samples, which strongly indicates that silicone oil accelerates protein aggregation. When administered at low doses, the ADA concentration in all samples increased with repeated injections, and SO (+) induced the highest immunogenicity. However, when administered at high doses, ADA concentration decreased following prolonged repeated administration for tolerance. CONCLUSIONS These results indicated that mAb protein aggregation induced immunogenicity in mice, and SO (+) induced higher immunogenicity than samples shaken with nonsiliconized syringe.
Collapse
Affiliation(s)
- Tomonobu Uchino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasunori Miyazaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuto Yamazaki
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Smith C, Li Z, Holman R, Pan F, Campbell RA, Campana M, Li P, Webster JRP, Bishop S, Narwal R, Uddin S, van der Walle CF, Lu JR. Antibody adsorption on the surface of water studied by neutron reflection. MAbs 2017; 9:466-475. [PMID: 28353420 DOI: 10.1080/19420862.2016.1276141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody 'COE-3' as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied.
Collapse
Affiliation(s)
- Charles Smith
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Zongyi Li
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Robert Holman
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | - Fang Pan
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| | | | - Mario Campana
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | - Peixun Li
- c ISIS Neutron Facility, STFC , Chilton, Didcot , UK
| | | | - Steven Bishop
- d Formulation Sciences, MedImmune LLC , Gaithersburg , MD , USA
| | | | - Shahid Uddin
- e Formulation Sciences , MedImmune Ltd , Cambridge , UK
| | | | - Jian R Lu
- a Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Manchester , UK
| |
Collapse
|
9
|
Jiskoot W, Kijanka G, Randolph TW, Carpenter JF, Koulov AV, Mahler HC, Joubert MK, Jawa V, Narhi LO. Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges. J Pharm Sci 2016; 105:1567-1575. [PMID: 27044944 PMCID: PMC4846475 DOI: 10.1016/j.xphs.2016.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022]
Abstract
The success of clinical and commercial therapeutic proteins is rapidly increasing, but their potential immunogenicity is an ongoing concern. Most of the studies that have been conducted over the past few years to examine the importance of various product-related attributes (in particular several types of aggregates and particles) and treatment regimen (such as dose, dosing schedule, and route of administration) in the development of unwanted immune responses have utilized one of a variety of mouse models. In this review, we discuss the utility and drawbacks of different mouse models that have been used for this purpose. Moreover, we summarize the lessons these models have taught us and some of the challenges they present. Finally, we provide recommendations for future research utilizing mouse models to improve our understanding of critical factors that may contribute to protein immunogenicity.
Collapse
Affiliation(s)
- Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, RA Leiden 2300, The Netherlands
| | - Grzegorz Kijanka
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, RA Leiden 2300, The Netherlands
| | - Theodore W Randolph
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado - Boulder, Boulder, Colorado 80309
| | - John F Carpenter
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Atanas V Koulov
- Pharma Technical Development (Europe) Biologics, Basel 4070, Switzerland
| | | | - Marisa K Joubert
- Amgen Inc., Process Development, Thousand Oaks, California 91320
| | - Vibha Jawa
- Amgen Inc., Medical Sciences, Thousand Oaks, California 91320
| | - Linda O Narhi
- Amgen Inc., Process Development, Thousand Oaks, California 91320.
| |
Collapse
|
10
|
van Aerts LAGJM, De Smet K, Reichmann G, van der Laan JW, Schneider CK. Biosimilars entering the clinic without animal studies. A paradigm shift in the European Union. MAbs 2015; 6:1155-62. [PMID: 25517301 PMCID: PMC4622966 DOI: 10.4161/mabs.29848] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of biosimilars has spread from Europe to other regions throughout the world, and many regions have drafted regulatory guidelines for their development. Recently, a paradigm shift in regulatory thinking on the non-clinical development of biosimilars has emerged in Europe: In vivo testing should follow a step-wise approach rather than being performed by default. To not require animal testing at all in some instances can well be seen as a revolutionary, but science-based, step. Here, we describe the internal discussions that led to this paradigm shift. The mainstay for the establishment of biosimilarity is the pharmaceutical comparability based on extensive physicochemical and biological characterization. Pharmacodynamic comparability can be evaluated in in vitro assays, whereas pharmacokinetic comparability is best evaluated in clinical studies. It is considered highly unlikely that new safety issues would arise when comparability has been demonstrated based on physicochemical and in vitro comparative studies.
Collapse
|
11
|
Narhi LO, Corvari V, Ripple DC, Afonina N, Cecchini I, Defelippis MR, Garidel P, Herre A, Koulov AV, Lubiniecki T, Mahler HC, Mangiagalli P, Nesta D, Perez-Ramirez B, Polozova A, Rossi M, Schmidt R, Simler R, Singh S, Spitznagel TM, Weiskopf A, Wuchner K. Subvisible (2-100 μm) Particle Analysis During Biotherapeutic Drug Product Development: Part 1, Considerations and Strategy. J Pharm Sci 2015; 104:1899-1908. [DOI: 10.1002/jps.24437] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022]
|
12
|
Telikepalli S, Shinogle HE, Thapa PS, Kim JH, Deshpande M, Jawa V, Middaugh CR, Narhi LO, Joubert MK, Volkin DB. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting. J Pharm Sci 2015; 104:1575-91. [PMID: 25753756 DOI: 10.1002/jps.24379] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size-enriched into different size bins by low-speed centrifugation or a combination of gravitational sedimentation and fluorescence-activated cell sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5-10 μm in size displayed elevated cytokine release profiles compared with other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared with controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by microflow imaging, transmission electron microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in vitro PBMC studies to rank-order the immunogenic potential of various types of mAb particles are discussed.
Collapse
Affiliation(s)
- Srivalli Telikepalli
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giese C, Marx U. Human immunity in vitro - solving immunogenicity and more. Adv Drug Deliv Rev 2014; 69-70:103-22. [PMID: 24447895 DOI: 10.1016/j.addr.2013.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 12/24/2022]
Abstract
It has been widely recognised that the phylogenetic distance between laboratory animals and humans limits the former's predictive value for immunogenicity testing of biopharmaceuticals and nanostructure-based drug delivery and adjuvant systems. 2D in vitro assays have been established in conventional culture plates with little success so far. Here, we detail the status of various 3D approaches to emulate innate immunity in non-lymphoid organs and adaptive immune response in human professional lymphoid immune organs in vitro. We stress the tight relationship between the necessarily changing architecture of professional lymphoid organs at rest and when activated by pathogens, and match it with the immunity identified in vitro. Recommendations for further improvements of lymphoid tissue architecture relevant to the development of a sustainable adaptive immune response in vitro are summarized. In the end, we sketch a forecast of translational innovations in the field to model systemic innate and adaptive immunity in vitro.
Collapse
Affiliation(s)
| | - Uwe Marx
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
14
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
15
|
Werk T, Volkin DB, Mahler HC. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharm Sci 2014; 53:95-108. [DOI: 10.1016/j.ejps.2013.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
|
16
|
Baker AE, Mantz AR, Chiu ML. Raman spectroscopy characterization of antibody phases in serum. MAbs 2014; 6:1509-17. [PMID: 25484036 PMCID: PMC4622053 DOI: 10.4161/19420862.2014.975100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 01/13/2023] Open
Abstract
When administered in serum, an efficacious therapeutic antibody should be homogeneous to minimize immune reactions or injection site irritation during administration. Monoclonal antibody (mAb) phase separation is one type of inhomogeneity observed in serum, and thus screening potential phase separation of mAbs in serum could guide lead optimization. However, serum contains numerous components, making it difficult to resolve mAb/serum mixtures at a scale amenable to analysis in a discovery setting. To address these challenges, a miniaturized assay was developed that combined confocal microscopy with Raman spectroscopy. The method was examined using CNTO607, a poorly-soluble anti-interleukin-13 human mAb, and CNTO3930, a soluble anti-respiratory syncytial virus humanized mAb. When CNTO607 was diluted into serum above 4.5 mg/mL, phase separation occurred, resulting in droplet formation. Raman spectra of droplet phases in mixtures included bands at 1240 and 1670 cm(-1), which are typical of mAb β-sheets, and lacked bands at 1270 and 1655 cm(-1), which are typical of α-helices. The continuous phases included bands at 1270 and 1655 cm(-1) and lacked those at 1240 and 1670 cm(-1). Therefore, CNTO607 appeared to be sequestered within the droplets, while albumin and other α-helix-forming serum proteins remained within the continuous phases. In contrast, CNTO3930 formed only one phase, and its Raman spectra contained bands at 1240, 1670, 1270 and 1655 cm,(-1) demonstrating homogeneous distribution of components. Our results indicate that this plate-based method utilizing confocal Raman spectroscopy to probe liquid-liquid phases in mAb/serum mixtures can provide a screen for phase separation of mAb candidates in a discovery setting.
Collapse
Affiliation(s)
| | - Amber R Mantz
- Janssen Supply Chain; Process Science and Advanced Analytics; Spring House, PA USA
| | - Mark L Chiu
- Janssen R&D; Biotech CoE; Spring House, PA USA
| |
Collapse
|
17
|
Torosantucci R, Schöneich C, Jiskoot W. Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharm Res 2013; 31:541-53. [DOI: 10.1007/s11095-013-1199-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
18
|
Couston RG, Skoda MW, Uddin S, van der Walle CF. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. MAbs 2012. [PMID: 23196810 DOI: 10.4161/mabs.22522] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested ("mAb-1") showed highest surface loading to silica at pH 7.4 (~12 mg/m(2)), with lower surface loading at pH 5.5 (~5.5 mg/m(2), further from its pI of 8.99) and to hydrophobized silica (~2 mg/m(2)). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50-5000 mg/L, pH 5.5, and 50-2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO₂ surface at near saturation with an end-on" orientation, while the outer mAb-1 layer was sparse and molecules had a "side-on" orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO₂ surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding.
Collapse
Affiliation(s)
- Ruairidh G Couston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
19
|
The future of protein particle characterization and understanding its potential to diminish the immunogenicity of biopharmaceuticals: A shared perspective. J Pharm Sci 2012; 101:3580-5. [DOI: 10.1002/jps.23247] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022]
|
20
|
Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs 2012; 4:740-52. [PMID: 22951518 DOI: 10.4161/mabs.22066] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The presence of protein aggregates in biopharmaceutical formulations is of great concern for safety and efficacy reasons. The aim of this study was to correlate the type and amount of IgG monoclonal antibody aggregates with their immunogenic potential. IgG degradation was obtained by freeze-thawing cycles, pH-shift cycles, heating, shaking and metal-catalyzed oxidation. The size, amount, morphology and type of intermolecular bonds of aggregates, as well as structural changes and epitope integrity were characterized. These formulations were injected in mice transgenic (TG) for human genes for Ig heavy and light chains and their non-transgenic (NTG) counterparts. Anti-drug antibody (ADA) titers were determined by bridging ELISA. Both unstressed IgG and freeze-thawed formulation did not induce measurable ADA levels. A mild antibody response was obtained in a fairly small percentage of mice, when injected with shaken, pH-shifted and heated formulations. The metal-catalyzed oxidized IgG formulation was the most immunogenic one, in both ADA titers and number of responders. The overall titers of NTG responders were significantly higher than the ones produced by TG mice, whereas there was no significant difference between the overall number of TG and NTG responders. This study reinforces the important role of protein aggregates on immunogenicity of therapeutic proteins and provides new insight into the immunogenic potential of different types of IgG aggregates. The results indicate that the quality of the IgG aggregates has more impact on the development of an immune response than their quantity or size.
Collapse
Affiliation(s)
- Vasco Filipe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Marszal E, Fowler E. Workshop on predictive science of the immunogenicity aspects of particles in biopharmaceutical products. J Pharm Sci 2012; 101:3555-9. [PMID: 22736535 DOI: 10.1002/jps.23243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
Abstract
Particles in protein therapeutics and concerns for a potential correlation with product immunogenicity are increasingly becoming the focus of recent publications and scientific forums. The consensus of academic, industrial, and regulatory scientists is that this area is not well understood and will require in-depth research because of the potential impact on the product safety and efficacy. This commentary presents a summary of the 1-day workshop entitled "Predictive Science of the Immunogenicity Aspects of Particles in Biopharmaceutical Products," which discussed the current state of analytical resources for quantitation and characterization of protein aggregates and potential paths for developing predictive preclinical tools.
Collapse
Affiliation(s)
- Ewa Marszal
- Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|