1
|
Li Y, Feng T, Zhao Y, Zhang X, Chen H, Xia P, Yang D, Liang Z. Medicinal and edible homologous poly/oligo-saccharides: Structural features, effect on intestinal flora and preventing and treating type 2 diabetes, and their applications: A review. Int J Biol Macromol 2025; 305:141031. [PMID: 39965679 DOI: 10.1016/j.ijbiomac.2025.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is the third most common chronic metabolic disorder worldwide and seriously dangerous. Novel therapeutics are sought due to the paucity of safe and effective metabolic disorder-related diabetes medicines. Intestinal flora impacts glucose and lipid balance, making it a unique T2DM therapeutic target. Due to gut fermentation, poly/oligo-saccharides are highly beneficial prebiotic carbohydrates for intestinal health. Moreover, supplementation with naturally occurring medicinal and edible homologous traditional Chinese medicines (MEHTCM) poly/oligo-saccharides has significant antidiabetic effects with few side effects. Now, a comprehensive review of research developments of MEHTCM poly/oligo-saccharides was presented to explore their prospects. We outlined the structural characteristics, structure classification, and structure-activity relationships. Notably, structure-activity relationships illustrated that molecular weight, monosaccharide composition, and glycosidic bond type could influence the hypoglycemic activity and prebiotic effect of MEHTCM poly/oligo-saccharides. Additionally, the review systematically summarized the effect and potential mechanism of MEHTCM poly/oligo-saccharide on T2DM, focusing on gut microbiota. The potential applications in formulations for special medical purposes, common food, health care product, agriculture and other fields have also been summarized. This review emphasizes MEHTCM poly/oligo-saccharides' potential as prebiotics for T2DM treatment. This information provides new insights and a theoretical foundation for MEHTCM poly/oligo-saccharide nutritional and medicinal research.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tinghui Feng
- College of Life Sciences, Northwest A & F University, Xi'an 710000, China
| | - Yaxin Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Wang L, Zhu X, Liu H, Sun B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem 2025; 463:141111. [PMID: 39260169 DOI: 10.1016/j.foodchem.2024.141111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the idea of medicine and food homology (MFH), which highlights the intimate relationship between food and medicine, has gained international recognition. Specifically, MFH substances have the ability to serve as both food and medicine. Many foods have been reported to have good nutritional and medical values, not only for satiety but also for nourishing the body and treating diseases pharmacologically. As modern scientific research has progressed, the concept of MFH has been emphasized and developed in a way that has never been seen before. Therefore, in this paper, we reviewed the development history of MFH substances, summarized some typical bioactive ingredients, and recognized pharmacological effects. In addition, we further discussed the application of MFH substances in the food field, with the goal of providing ideas and references for the research and development of MFH in the food industry as well as the progress of related industries.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xuecheng Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
3
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Nie C, Lan J, Guo H, Ouyang Q, Zhao Y, Wang P, Wang R, Li Y, Wang X, Fang B, Zhan J, Zhu L, Chen C, Zhang W, Liao H, Liu R. Codonopsis pilosula polysaccharides (CPP) intervention alleviates sterigmatocystin (STC)-induced liver injury and gut microbiota dysbiosis. Int J Biol Macromol 2024; 275:133190. [PMID: 38897503 DOI: 10.1016/j.ijbiomac.2024.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Codonopsis pilosula polysaccharides (CPP), the main active ingredient of Codonopsis pilosula, has gained significant attention as a liver-protective agent. Previous studies have demonstrated that CPP could alleviate gut microbiota dysbiosis in colitis or obese mice. However, the effects of CPP on mycotoxin-induced liver injury and gut microbiota dysbiosis are still poorly understood. In this study, we aimed to investigate the protective effects of CPP on sterigmatocystin (STC)-induced liver injury, as well as its regulatory effects on gut microbiota. Our results revealed that CPP intervention significantly alleviated STC-induced liver injury, as evidenced by decreased liver index, reduced liver histopathological changes, and modulation of related molecular markers. Additionally, we found that CPP could alleviate liver injury by reducing liver inflammation and oxidative stress, inhibiting hepatocyte apoptosis, and regulating lipid metabolism. Notably, we also observed that CPP could alleviate STC-induced gut microbiota dysbiosis by modulating the diversity and richness of gut microbiota, suggesting that gut microbiota modulation may also serve as a mechanism for CPP-mediated remission of liver injury. In summary, our study not only provided a new theoretical basis for understanding the hepatotoxicity of STC and the protective effects of CPP against STC-induced liver injury, but also provided new perspectives for the application of CPP in the fields of food, healthcare products, and medicine.
Collapse
Affiliation(s)
- Chao Nie
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Jie Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Haiying Guo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Qinqin Ouyang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yunyi Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Jing Zhan
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Longjiao Zhu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Haiping Liao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462000, China.
| |
Collapse
|
5
|
Li J, Cao L, Ji J, Shen M, Gao J. Modulation of Human Gut Microbiota In Vitro by Inulin-Type Fructan from Codonopsis pilosula Roots. Indian J Microbiol 2024; 64:520-528. [PMID: 39010985 PMCID: PMC11246320 DOI: 10.1007/s12088-023-01185-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Inulin-type fructan (ITF) defined as a polydisperse carbohydrate consisting mainly of β-(2-1) fructosyl-fructose links exerts potential prebiotics properties by selectively stimulating the growth of Bifidobacterium and Lactobacillus. This study reported the modulation of human gut microbiota in vitro by ITF from Codonopsis pilosula roots using 16S ribosomal RNA gene sequencing. The microbiota community structure analysis at genus levels showed that 50 mg/mL ITF significantly stimulated the growth of Prevotella and Faecalibacterium. LEfSe analysis showed that ITF at 25 and 50 mg/mL primarily increased the relative abundance of genera Parabacteroides and Alistipes (LDA Score > 4), and genera Prevotella and Faecalibacterium (LDA Score > 4) as well as Acidaminococcus, Megasphaera, Bifidobacterium and Megamonas (LDA Score > 3.5), respectively. Meanwhile, ITF at 25 and 50 mg/mL exhibited the effects of lowering pH values of samples after 24 h fermentation (p < 0.05). The results indicated that ITF likely has potential in stimulating the growth of Prevotella and Faecalibacterium as well as Bifidobacterium of human gut microbiota.
Collapse
Affiliation(s)
- Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Lingya Cao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Jiaojiao Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Mingyue Shen
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001 China
| |
Collapse
|
6
|
Guo H, Lou Y, Hou X, Han Q, Guo Y, Li Z, Guan X, Liu H, Zhang C. A systematic review of the mechanism of action and potential medicinal value of codonopsis pilosula in diseases. Front Pharmacol 2024; 15:1415147. [PMID: 38803438 PMCID: PMC11128667 DOI: 10.3389/fphar.2024.1415147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
As a traditional Chinese medicinal herb with a long history, Codonopsis pilosula (CP) has attracted much attention from the medical community in recent years. This review summarizes the research progress of CP in the medical field in the past 5 years. By searching and analyzing the literature, and combining with Cytoscape software, we comprehensively examined the role and mechanism of action of CP in individual application, combination drug application, and the role and mechanism of action of codonopsis pilosula's active ingredients in a variety of diseases. It also analyzes the medicinal use of CP and its application value in medicine. This review found that CP mainly manifests important roles in several diseases, such as cardiovascular system, nervous system, digestive system, immune system, etc., and regulates the development of many diseases mainly through the mechanisms of inflammation regulation, oxidative stress, immunomodulation and apoptosis. Its rich pharmacological activities and diverse medicinal effects endow CP with broad prospects and application values. This review provides valuable reference and guidance for the further development of CP in traditional Chinese medicine.
Collapse
Affiliation(s)
- Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - YiChen Lou
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaofang Hou
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Cell Biology and Genetics, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Liang W, Sun J, Bai G, Qiu D, Li Q, Dong P, Chen Y, Guo F. Codonopsis radix: a review of resource utilisation, postharvest processing, quality assessment, and its polysaccharide composition. Front Pharmacol 2024; 15:1366556. [PMID: 38746010 PMCID: PMC11091420 DOI: 10.3389/fphar.2024.1366556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Codonopsis radix is the dried root of C. pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, or C. tangshen Oliv., constitutes a botanical medicine with a profound historical lineage. It encompasses an array of bioactive constituents, including polyacetylenes, phenylpropanoids, alkaloids, triterpenoids, and polysaccharides, conferring upon it substantial medicinal and edible values. Consequently, it has garnered widespread attention from numerous scholars. In recent years, driven by advancements in modern traditional Chinese medicine, considerable strides have been taken in exploring resources utilization, traditional processing, quality evaluation and polysaccharide research of Codonopsis radix. However, there is a lack of systematic and comprehensive reporting on these research results. This paper provides a summary of recent advances in Codonopsis research, identifies existing issues in Codonopsis studies, and offers insights into future research directions. The aim is to provide insights and literature support for forthcoming investigations into Codonopsis.
Collapse
Affiliation(s)
- Wei Liang
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Daiyu Qiu
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qian Li
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Chen Z, Shi Q, Liu X, Lu G, Yang J, Luo W, Yang F. Codonopsis Radix Inhibits the Inflammatory Response and Oxidative Stress in Chronic Obstructive Pulmonary Disease Mice through Regulation of the Nrf2/NF-κB Signaling Pathway. Pharmacology 2024; 109:266-281. [PMID: 38615654 DOI: 10.1159/000538490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a nonspecific chronic inflammatory lung disease with no known cure. Codonopsis Radix (CR) has been shown to exhibit anti-inflammatory and antioxidant effects. Therefore, this study aimed to investigate the potential anti-inflammatory effects of different CR varieties on COPD mice. METHODS Sixty male-specified pathogen-free grade C57BL/6J mice were randomly divided into 6 groups, 10 mice in each group. The COPD mice model was induced by cigarette smoke extract combined with lipopolysaccharide, and the mice in each group were given corresponding drugs. Lung function was assessed in all mice. Lung tissues were stained with hematoxylin-eosin, Masson, and periodic acid-Schiff stains, and serum levels of interleukin (IL)-8 and tumor necrosis factor (TNF)-α were detected using an ELISA. Further, serum and lung tissue levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by colorimetric assay. Network pharmacology and molecular docking were used to predict signaling pathways, which were validated by Western blot analysis. RESULTS Compared with the COPD group, the mice in each dosing group of CR exhibited significant reductions in serum IL-8 and TNF-α levels, serum and lung tissue MDA levels, and pathological lung tissue damage, alongside elevations in lung function and SOD levels (p < 0.01). Western blot analysis also indicated significant downregulation of p-p65/p65 and p-IκB-α/IκB-α protein expression, alongside significant upregulation of Nrf2 protein expression in the lung tissues of mice treated with CR (p < 0.01). CONCLUSION In summary, CR effectively enhances lung function, minimizes lung tissue damage, and inhibits inflammation and oxidative stress in mice with COPD. Additionally, these findings suggest that inhibition of the Nrf2/NF-κB axis may be a key mechanism of action of CR in the alleviation of COPD.
Collapse
Affiliation(s)
- Zhengjun Chen
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China,
| | - Qi Shi
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuxia Liu
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guodi Lu
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenrong Luo
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Fude Yang
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
9
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Dar AA, Abrol V, Singh N, Gashash EA, Dar SA. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:491-506. [PMID: 37316180 DOI: 10.1002/pca.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Chromatography and spectroscopy are nowadays well-validated techniques allowing to isolate and purify different class of natural products from the genus Codonopsis. Several categories of phytochemicals with drug like properties have been selectively extracted, isolated, characterised by this methodology. OBJECTIVES The present review aims to provide up-to-date and comprehensive information on the chromatography, phytochemistry and pharmacology of natural products of Codonopsis with an emphasis on the search for natural products having various biological activities and the semi-synthetic derivatives of bioactive ones and to highlight current gaps in knowledge. MATERIALS AND METHODS A literature search was performed in the SciFinder Scholar, PubMed, Medline, and Scopus databases. RESULTS During the period covered in this review, several classes of compounds have been reported from genus Codonopsis. Codonopsis pilosula and Codonopsis lanceolata are the most popular in the genus especially as per phytochemical and bioactive studies. Phytochemical investigation demonstrates that Codonopsis species contain mainly xanthones, flavonoids, alkaloids, polyacetylenes, phenylpropanoids, triterpenoids and polysaccharides, which contribute to numerous bioactivities. The major bioactive compounds isolated were used for semi-synthetic modification to increase the chance to discover lead compound. CONCLUSIONS It can be concluded that genus Codonopsis has been used as traditional medicines and food materials around the world over years due to chemical constituents with diverse structural types, exhibiting extensive pharmacological activities in immune system, blood system, cardiovascular system, central nervous system, digestive system, and so forth, with almost no obvious toxicity and side effect. Therefore, Codonopsis can be used as a promising ethnopharmacological plant source.
Collapse
Affiliation(s)
- Alamgir A Dar
- Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, India
| | - Vidushi Abrol
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nasseb Singh
- Synthetic Organic Chemistry Laboratory, Faculty of Sciences, Shri Mata Vaishno Devi University, Katra, India
| | - Ebtesam A Gashash
- Department of Chemistry, Faculty of Arts and Science in Balijurashi, Al-Baha University, Baha, Saudi Arabia
| | - Showket A Dar
- Division of Social and Basic Science, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Ganderbal, India
| |
Collapse
|
11
|
Wang M, Cheong KL. Preparation, Structural Characterisation, and Bioactivities of Fructans: A Review. Molecules 2023; 28:molecules28041613. [PMID: 36838601 PMCID: PMC9967297 DOI: 10.3390/molecules28041613] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Polysaccharides are important components of higher plants and have attracted increasing attention due to their many nutraceutical benefits in humans. Fructans, heterogeneous fructose polymers that serve as storage carbohydrates in various plants, represent one of the most important types of natural polysaccharides. Fructans have various physiological and therapeutic effects, which are beneficial to health, and have the ability to prevent or treat various diseases, allowing their wide use in the food, nutraceutical, and pharmaceutical industries. This article reviews the occurrence, metabolism, preparation, characterisation, analysis, and bioactivity of fructans. Further, their molecular weight, monosaccharide composition, linkages, and structural determination are described. Taken together, this review provides a theoretical foundation for further research into the structure-function relationships of fructans, as well as valuable new information and directions for further research and application of fructans in functional foods.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|
12
|
Gang R, Komakech R, Chung Y, Okello D, Kim WJ, Moon BC, Yim NH, Kang Y. In vitro propagation of Codonopsis pilosula (Franch.) Nannf. using apical shoot segments and phytochemical assessments of the maternal and regenerated plants. BMC PLANT BIOLOGY 2023; 23:33. [PMID: 36642714 PMCID: PMC9841653 DOI: 10.1186/s12870-022-03950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Codonopsis pilosula (Franch.) Nannf. is a medicinal plant traditionally used in China, Korea, and Japan to treat many diseases including poor gastrointestinal function, low immunity, gastric ulcers, and chronic gastritis. The increasing therapeutic and preventive use of C. pilosula has subsequently led to depletion of the natural populations of this species thus necessitating propagation of this important medicinal plant. Here, we developed an efficient and effective in vitro propagation protocol for C. pilosula using apical shoot segments. We tested various plant tissue culture media for the growth of C. pilosula and evaluated the effects of plant growth regulators on the shoot proliferation and rooting of regenerated C. pilosula plants. Furthermore, the tissues (roots and shoots) of maternal and in vitro-regenerated C. pilosula plants were subjected to Fourier-transform near-infrared (FT-NIR) spectrometry, Gas chromatography-mass spectrometry (GC-MS), and their total flavonoids, phenolics, and antioxidant capacity were determined and compared. RESULTS Full-strength Murashige and Skoog (MS) medium augmented with vitamins and benzylaminopurine (1.5 mg·L-1) regenerated the highest shoot number (12 ± 0.46) per explant. MS medium augmented with indole-3-acetic acid (1.0 mg·L-1) produced the highest root number (9 ± 0.89) and maximum root length (20.88 ± 1.48 mm) from regenerated C. pilosula shoots. The survival rate of in vitro-regenerated C. pilosula plants was 94.00% after acclimatization. The maternal and in vitro-regenerated C. pilosula plant tissues showed similar FT-NIR spectra, total phenolics, total flavonoids, phytochemical composition, and antioxidant activity. Randomly amplified polymorphic DNA (RAPD) test confirmed the genetic fidelity of regenerated C. pilosula plants. CONCLUSIONS The proposed in vitro propagation protocol may be useful for the rapid mass multiplication and production of high quality C. pilosula as well as for germplasm preservation to ensure sustainable supply amidst the ever-increasing demand.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, Kampala, Uganda
| | - Yuseong Chung
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Denis Okello
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
- Department of Biological Sciences, Kabale University, P.O Box 317, Kabale, Uganda
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu, 41062, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
13
|
Jiang LY, Kan YN, Yu ZP, Jian BY, Yao SJ, Lv LY, Liu JC. Prebiotic Effects of Chinese Herbal Polysaccharides on NAFLD Amelioration: The Preclinical Progress. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by fatty degeneration of liver cells, and there are currently no effective treatments. Numerous investigations have demonstrated that Chinese herbal medicines (CHMs) are effective against NAFLD. Polysaccharides (PS), the major components of most CHM, are primarily taken orally to be degraded and fermented by gut microbiota, which makes them a promising multivalent and multifunctional prebiotic candidate for NAFLD. In this review, the experimental evidence to prevent and treat NAFLD using the unique prebiotic effects of PS isolated from CHM are summarized to discuss additional treatment options for NAFLD.
Collapse
Affiliation(s)
- Li-Yan Jiang
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Yu-Na Kan
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhi-Pu Yu
- Department of Equipment, The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, China
| | - Bai-Yu Jian
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Shu-Juan Yao
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Li-Yan Lv
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Ji-Cheng Liu
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
14
|
The Obesity Amelioration Effect in High-Fat-Diet Fed Mice of a Homogeneous Polysaccharide from Codonopsis pilosula. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165348. [PMID: 36014584 PMCID: PMC9415953 DOI: 10.3390/molecules27165348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
A homogeneous polysaccharide coded as CPP-1 was extracted and purified from the root of Codonopsis pilosula (Franch.) Nannf. by water extraction, ethanol precipitation, and column chromatography. Its structure was analyzed by HPGPC-ELSD, HPLC, GC-MS, FT-IR, and NMR techniques. The results indicated that CPP-1 was composed of mannose (Man), glucose (Glc), galactose (Gal), and arabinose (Ara) at a molar ratio of 5.86 : 51.69 : 34.34 : 8.08. The methylation analysis revealed that the main glycosidic linkage types of CPP-1 were (1→)-linked-Glc residue, (1→3)-linked-Glc residues, (1→4)-linked-Gal residue, (1→2,3,4)-linked-Glc residue, (1→)-linked-Man residue, (1→3,4)-linked-Glc residue, and (1→)-linked-Ara residue. In vivo efficacy trial illustrated that CPP-1 supplements could alleviate HFD-induced mice obesity significantly, as well as improve obesity-induced disorders of glucose metabolism, alleviate insulin resistance, and improve the effects of lipid metabolism. The findings indicate that this polysaccharide has the potential for the treatment of obesity.
Collapse
|
15
|
Shao YY, Zhao YN, Sun YF, Guo Y, Zhang X, Chang ZP, Hou RG, Gao J. Investigation of the internalization and transport mechanism of Codonopsis Radix polysaccharide both in mice and Caco-2 cells. Int J Biol Macromol 2022; 215:23-35. [PMID: 35718143 DOI: 10.1016/j.ijbiomac.2022.06.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
For Codonopsis Radix polysaccharides (CRPs), oral administration is generally considered the most convenient route for patients. However, the details of its absorption and transport mechanisms remain unclear. In this study, we aimed to evaluate the oral absorption of CPA (an inulin-type fructan extracted from CRPs) in mice and Caco-2 cells. It was labeled with fluorescein isothiocyanate, and the fluorescence derivative (FCPA) was used to trace the behavior of CPA. The results showed that FCPA could be absorbed after oral administration and has a wide tissue distribution, including in the stomach, intestine, kidneys, and liver. FCPA was poorly absorbed, and its internalization was time- and energy-dependent, as well as dependent on cholesterol- and dynamin-mediated endocytosis. Confocal laser scanning microscopy showed successful cellular internalization of FCPA from the cytoplasm to the nucleus. In addition, we found that FCPA was trafficked to endosomes and lysosomes, and that tubulin was required for its intracellular transport. These findings add new details to our knowledge of the internalization and transport mechanisms of CPA, which may prove useful to the development and application of oral formulations of CRPs.
Collapse
Affiliation(s)
- Yun-Yun Shao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yi-Nan Zhao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yi-Fan Sun
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Yao Guo
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Xiao Zhang
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Zhuang-Peng Chang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Rui-Gang Hou
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China
| | - Jianping Gao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China.
| |
Collapse
|
16
|
Cao L, Du C, Zhai X, Li J, Meng J, Shao Y, Gao J. Codonopsis pilosula Polysaccharide Improved Spleen Deficiency in Mice by Modulating Gut Microbiota and Energy Related Metabolisms. Front Pharmacol 2022; 13:862763. [PMID: 35559259 PMCID: PMC9086242 DOI: 10.3389/fphar.2022.862763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
Codonopsis Radix (CR) is an important traditional Chinese medicine used for the treatment of spleen deficiency syndrome (SDS). Codonopsis pilosula polysaccharides (CPP) in CR are considered to be responsible for tonifying the spleen function; however, the mechanisms of the polysaccharides have remained unclear. This study aimed to investigate the treatment mechanisms of CPP in SDS mice using a combinational strategy of 16S rRNA gene sequencing and targeted metabolomics. Here, studies demonstrated that CPP had invigorating effect in vivo in Sennae Folium-induced SDS in mice by organ indexes, D-xylose determination, gastrointestinal hormones levels and goblet cells observation. Antibiotic treatment revealed that the intestinal microbiota was required for the invigorating spleen effect of CPP. Furthermore, gut microbiota analysis found that CPP significantly enriched probiotic Lactobacillus and decreased the abundance of some opportunistic pathogens, such as Enterococcus and Shigella. The metabolic profile analysis of the colonic content revealed that 25 chemicals were altered significantly by CPP, including amino acids, organic acids, fatty acids, carbohydrates and carnitine etc., which are mainly related to "energy conversion" related processes such as amino acids metabolism, tricarboxylic acid cycle, and nitrogen metabolism. Spearman's correlation assays displayed there were strong correlations among biochemical indicators-gut microbiota-metabolomics. In summary, these results provided a new perspective for CPP improving SDS by regulating energy metabolism related bacteria and pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Guo Y, Shao YY, Zhao YN, Zhang X, Chang ZP, Sun YF, Liu JJ, Gao J, Hou RG. Pharmacokinetics, distribution and excretion of inulin-type fructan CPA after oral or intravenous administration to mice. Food Funct 2022; 13:4130-4141. [PMID: 35316828 DOI: 10.1039/d1fo04327g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work has been to establish and validate a simple and efficient method to detect the concentration of inulin-type fructan CPA from the roots of Codonopsis pilosula (Franch.) Nannf. in biosamples, and then apply it to evaluate the pharmacokinetics behavior, distribution character in tissue and excretion in mice. In this work, fluorescein isothiocyanate (FITC) was used to label CPA. Then FCPA was intravenously and orally administered to mice at different doses. In both i.v and p.o administration, FCPA concentration slowly declined in the circulatory system with a much longer T1/2 and MRT. After p.o administration, the area under the time curve (AUC0-∞) was dose-dependently increased. Taken together, FCPA showed poor absorption and wide tissue distribution. These pharmacokinetic results yield helpful insights into the pharmacological actions of FCPA.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yun-Yun Shao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Nan Zhao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Xiao Zhang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Zhuang-Peng Chang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Fan Sun
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jun-Jin Liu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jianping Gao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Rui-Gang Hou
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| |
Collapse
|
18
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
19
|
Marks H, Grześkowiak Ł, Martinez-Vallespin B, Dietz H, Zentek J. Porcine and Chicken Intestinal Epithelial Cell Models for Screening Phytogenic Feed Additives—Chances and Limitations in Use as Alternatives to Feeding Trials. Microorganisms 2022; 10:microorganisms10030629. [PMID: 35336204 PMCID: PMC8951747 DOI: 10.3390/microorganisms10030629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Numerous bioactive plant additives have shown various positive effects in pigs and chickens. The demand for feed additives of natural origin has increased rapidly in recent years to support the health of farm animals and thus minimize the need for antibiotics and other drugs. Although only in vivo experiments can fully represent their effect on the organism, the establishment of reliable in vitro methods is becoming increasingly important in the goal of reducing the use of animals in experiments. The use of cell models requires strict control of the experimental conditions so that reliability and reproducibility can be achieved. In particular, the intestinal porcine epithelial cell line IPEC-J2 represents a promising model for the development of new additives. It offers the possibility to investigate antioxidative, antimicrobial, anti- or pro-proliferative and antiviral effects. However, the use of IPEC-J2 is limited due to its purely epithelial origin and some differences in its morphology and functionality compared to the in vivo situation. With regard to chickens, the development of a reliable intestinal epithelial cell model has attracted the attention of researchers in recent years. Although a promising model was presented lately, further studies are needed to enable the standardized use of a chicken cell line for testing phytogenic feed additives. Finally, co-cultivation of the currently available cell lines with other cell lines and the development of organoids will open up further application possibilities. Special emphasis was given to the IPEC-J2 cell model. Therefore, all publications that investigated plant derived compounds in this cell line were considered. The section on chicken cell lines is based on publications describing the development of chicken intestinal epithelial cell models.
Collapse
Affiliation(s)
- Hannah Marks
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
- Correspondence:
| | - Łukasz Grześkowiak
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Beatriz Martinez-Vallespin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572 Bremerhaven, Germany;
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany; (Ł.G.); (B.M.-V.); (J.Z.)
| |
Collapse
|
20
|
Ultrasonic-Assisted Extraction of Codonopsis pilosula Glucofructan: Optimization, Structure, and Immunoregulatory Activity. Nutrients 2022; 14:nu14050927. [PMID: 35267905 PMCID: PMC8912531 DOI: 10.3390/nu14050927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, multiple edible polysaccharides from Codonopsis pilosula were mainly isolated with high average molecular weights and exhibited various bioactivities, but it was proven that low-molecular-weight polysaccharides could exert stronger activities due to the superior water solubility and permeability. In the present study, the water-soluble polysaccharide C. pilosula with low molecular weight was isolated under ultrasonic assistance at 30 °C, the extraction process was optimized via response surface method (RSM), and the structure and immunoregulatory activity were further investigated. The maximum yield (4.86%) for crude polysaccharides (cCPPs) was obtained under following parameters: ultrasonic power of 370 W, liquid/material ratio of 33 mL/g, ultrasonic time of 81 min. Subsequently, the cCPPs were further purified through dialysis and Sephadex G-25 column to acquire purified polysaccharide (CPPs). Structural analysis indicated that CPPs was a glucofructan (average molecular weight of 4.23 × 103 Da) with (2→1)-β-D-Fruf and (1→)-α-D-Glcp as the backbone branched by (2→6)-β-D-Fruf. Additionally, CPPs could enhance immunoregulatory function by stimulating NO production and cytokine (IL-6 and TNF-α) secretion of RAW264.7 macrophages dose-dependently, which presented no cytotoxic effects. These data suggest that CPPs have the potential to be used as a nutritional dietary compound and natural immunostimulant supplement in the food industry.
Collapse
|
21
|
Li Y, Sun T, Hong Y, Qiao T, Wang Y, Li W, Tang S, Yang X, Li J, Li X, Zhou Z, Xiao Y. Mixture of Five Fermented Herbs ( Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Front Microbiol 2021; 12:725196. [PMID: 34764942 PMCID: PMC8576326 DOI: 10.3389/fmicb.2021.725196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
To explore the feasibility of using fermented Chinese herbal mixture Zhihuasi Tk (Z. Tk) supplementation to increase the swine production, the protective effect of dietary supplementation with Z. Tk on the intestinal oxidative stress model and the regulation of both growth performance and intestinal microbiota of weaned piglets were investigated in vitro. Our results showed that the addition of Z. Tk increased the cell viability, prevented the decrease of glutathione peroxidase, and significantly increased the total antioxidant capacity and reduced the damage caused by H2O2 to the tight junction proteins of the porcine small intestinal epithelial cell line (IPEC-J2). Furthermore, weaned piglets supplemented with either 2 kg/ton zinc oxide (ZnO) or 4 kg/ton of Z. Tk in the diet increased body weight as well as average daily feed intake and daily gain, while the feed conversion rate and diarrhea rate decreased within 0–35 days. Results of the taxonomic structure of the intestinal microbiota showed that, in 21 days after weaning, the Firmicutes/Bacteroidetes ratio in experimental group was increased, while the abundance of beneficial bacteria such, as Lactobacillus, was increased by Z. Tk, showing inhibitory effect on pathogenic bacteria such as members of Proteobacteria. In summary, dietary supplementation with Z. Tk maintained the intestinal microbiota in a favorable state for the host to effectively reduce the abnormal changes in the intestinal microbial structure and improved growth performance of weaned piglets. Therefore, Z. Tk may potentially function as a substitute for ZnO in feed additives for weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yong Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Qiao
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Shi Tang
- COFCO Feed Co., Ltd., Beijing, China
| | - Xin Yang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jie Li
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaowen Li
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Yang S, Sun J, Gu D, Li P, Yao L, Shi D, Guo S, Liu C. Antioxidant activities of sulfated Codonopsis polysaccharides in acute oxidative stress. J Food Biochem 2021; 45:e13974. [PMID: 34694015 DOI: 10.1111/jfbc.13974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the protective effect of sulfated Codonopsis polysaccharides (SCP) on acute oxidative stress. SCP was modified by chlorosulfonic acid-pyridine method from Codonopsis polysaccharides (CP), which had 34.48% of sulfate content determined by ultrasonic-acidic barium chromate spectrophotometry. The analysis of Fourier transform-infrared spectroscopy (FT-IR) appeared an absorption peak of SCP at 811.91 cm-1 , which related to C-O-SO3 . In vitro test, the antioxidant activities of CP and SCP was induced by H2 O2 in RAW264.7 cells, results indicated that SCP and CP could significantly enhance the activity of superoxide dismutase (SOD), glutathione peroxidase (GDH-Px) and catalase (CAT), and nitric oxide (NO) and decrease the level of malondialdehyde (MDA), reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) secreted by RAW264.7 cells compared with modeling group (p < .05). The flow cytometry results also revealed that SCP and CP could markedly inhibit the apoptosis of macrophage induced by acute oxidative stress. In vivo test, 50% ethanol was used to induce mice acute oxidative stress, results indicated that the blood biochemical parameters in mice were restored to normal levels following administration of SCP and CP, andalanineamino transferase (ALT), aspartate transaminase (AST), total protein (TP), albumin (ALB), glucose (GLU), and creatinine (UREA) had significant differences compared with modeling group (p < .05). Quantitative real-time PCR analysis revealed that SCP and CP could promote the expression of Keap1 and Nrf2. In summary, both SCP and CP had protective effects against acute oxidative stress. PRACTICAL APPLICATIONS: Oxidative stress is a kind of stress injury, which can cause a variety of diseases and accelerate physical aging. Codonopsis has many active components, among which Codonopsis polysaccharide has antioxidant effect. Recent studies have found that Codonopsis polysaccharides could be modified by sulfate molecules to obtain higher antioxidant activity. The modified Codonopsis polysaccharides could significantly promote the production of antioxidant enzymes (SOD, CAT, GDH-Px) and reduce the content of oxidative stress marks (ROS, MDA). Moreover, its antioxidant mechanism may be related to the Keap1 /Nrf2 signaling pathway. Therefore, SCP was an effective antioxidant, and could be used as a potential health food with antioxidant and anti-aging effects.
Collapse
Affiliation(s)
- Shijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jiaqi Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Daxing Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Peng Li
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, PR China
| | - Lili Yao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou, PR China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|