1
|
Garcia‐Perez P, Garcia‐Oliveira P, Finimundy TC, Pinela J, Calhelha RC, Nenadić M, Soković M, Simal‐Gandara J, Barros L, Prieto MA. Authenticity and Bioactive Markers Search in the Phenolic-Rich Extracts of Asteraceae Medicinal Plants Through Integrative Computational Chemometrics. Food Sci Nutr 2025; 13:e4720. [PMID: 39850842 PMCID: PMC11756552 DOI: 10.1002/fsn3.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
The Asteraceae family has been of significant concern for ethnobotanical studies, thanks to its health-promoting properties linked to a plethora of bioactive compounds, among which phenolic compounds play a critical role. In this work, a workflow based on computational chemometrics was employed to assess the authenticity and biomarker search of five key Asteraceae species commonly employed in traditional medicine. The UHPLC-DAD-ESI/MS-MS phenolic profile of Asteraceae extracts was combined with the evaluation of several in vitro biological properties. Caffeoylquinic acids (CQAs), chicoric acids, and flavonoid glycosides were reported as authenticity markers of Achillea millefolium, Taraxacum officinale, and Arnica montana, respectively. The integration of phenolic profile and in vitro bioactivities provide insights for the identification of trans 3,5-O-dicaffeoylquinic acid (3,5-O-diCQA) and isorhamnetin glycosides as the major antioxidant agents in Asteraceae extracts, whereas several CQAs and caffeoyl-deoxy-octulopyranosonic acids have been reported as responsible for their cytotoxic and anti-inflammatory activities. These results shed light on the authentication and quality evaluation of Asteraceae extracts, along with the characterization of their functional properties, leading to their application in the design of novel plant-based functional foods.
Collapse
Affiliation(s)
- Pascual Garcia‐Perez
- Department of Food Technology, Nutrition and Food ScienceVeterinary Faculty, University of MurciaMurciaSpain
| | - Paula Garcia‐Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVIUniversidade de VigoVigoSpain
| | | | - Jose Pinela
- CIMO, LA SusTECInstituto Politécnico de BragançaBragançaPortugal
| | | | - Marija Nenadić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVIUniversidade de VigoVigoSpain
| | - Lillian Barros
- CIMO, LA SusTECInstituto Politécnico de BragançaBragançaPortugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVIUniversidade de VigoVigoSpain
| |
Collapse
|
2
|
Liava V, Fernandes Â, Reis F, Finimundy T, Mandim F, Pinela J, Stojković D, Ferreira ICFR, Barros L, Petropoulos SA. How Does Domestic Cooking Affect the Biochemical Properties of Wild Edible Greens of the Asteraceae Family? Foods 2024; 13:2677. [PMID: 39272443 PMCID: PMC11394576 DOI: 10.3390/foods13172677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Wild edible greens are a key ingredient of the so-called Mediterranean diet and they are commonly used in various local dishes in their raw or processed form. Domestic processing of edible greens may affect their nutritional value and chemical profile. In this work, six wild species (e.g., Cichorium spinosum L. (S1); Centaurea raphanina subsp. mixta (DC.) Runemark (S2); Picris echioides (L.) Holub (S3); Urospermum picroides (L.) Scop. ex. F.W. Schmidt (S4); Sonchus oleraceus L. (S5); and S. asper L. (S6)) were assessed for the effect of domestic processing (boiling) on chemical composition and bioactivities. Concerning the chemical composition, glucose, oxalic acid, α-tocopherol, and α-linolenic acid were the most abundant compounds, especially in P. echiodes leaves. After decoction, mainly sugars, tocopherols, and oxalic acid were decreased. The species and processing affected the phenolic compounds content and antioxidant, cytotoxicity, and anti-inflammatory activities. Specific compounds were not previously detected in the studied species, while hydroethanolic extracts contained a higher total phenolic compound content. Hydroethanolic and aqueous extracts were effective towards a range of bacterial and fungi strains. Therefore, the consumption of leaves has health-promoting properties owing to the bioactive compounds and can be integrated into healthy diets. However, domestic cooking may affect the chemical profile and bioactivities of the edible leaves, especially in the case of free sugars and phenolic compound content where a significant reduction was recorded in leaves after decoction. On the other hand, domestic processing could be beneficial since it reduces the oxalic acid content in edible leaves, which is considered an antinutritional factor.
Collapse
Affiliation(s)
- Vasiliki Liava
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Filipa Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| |
Collapse
|
3
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
4
|
Polumackanycz M, Petropoulos SA, Śledziński T, Goyke E, Konopacka A, Plenis A, Viapiana A. Withania somnifera L.: Phenolic Compounds Composition and Biological Activity of Commercial Samples and Its Aqueous and Hydromethanolic Extracts. Antioxidants (Basel) 2023; 12:antiox12030550. [PMID: 36978798 PMCID: PMC10045402 DOI: 10.3390/antiox12030550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
In the present study, the chemical composition and bioactive properties of commercially available Withania somnifera samples were evaluated. The hydromethanolic and aqueous extracts of the tested samples were analyzed in terms of phenolic compound composition, ascorbic acid content, antioxidant and antibacterial activity, and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Polyphenols and ascorbic acid content, as well as the antioxidant activity, were higher in the aqueous extracts than in the hydromethanolic extracts. Generally, aqueous extracts presented higher antioxidant activity than the hydromethanolic ones, especially in the case of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. Moreover, higher amounts of phenolic acids and flavonoids were found in the hydromethanolic extracts compared to the aqueous ones. Regarding the antibacterial properties, samples 4, 6, and 10 showed the best overall performance with growth-inhibitory activities against all the examined bacteria strains. Finally, the aqueous and hydromethanolic extracts were the most efficient extracts in terms of AChE and BChE inhibitory activities, respectively. In conclusion, our results indicate that W. somnifera possesses important bioactive properties which could be attributed to the high amounts of phenolic compounds. However, a great variability was recorded in commercially available products, suggesting significant differences in the origin of product and the processing method.
Collapse
Affiliation(s)
- Milena Polumackanycz
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
- Correspondence: (S.A.P.); (A.V.)
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Elżbieta Goyke
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
- Correspondence: (S.A.P.); (A.V.)
| |
Collapse
|
5
|
Ceccanti C, Finimundy TC, Melgar B, Pereira C, Ferreira ICFR, Barros L. Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chem 2022; 384:132462. [PMID: 35193018 DOI: 10.1016/j.foodchem.2022.132462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
The application of bioactive extracts from Cichorium intybus L. and Plantago coronopus L. species were incorporated as a functional ingredient in fresh egg pasta (Fettuccine). In that sense, a pasta making procedure was accessed using different concentrations of the plant extracts (0.25-0.63 mg/g), drying times (20-420 min) and drying temperatures (40-90 °C; only for P. coronopus enriched pasta), to screen an optimal factor selection in the pasta making procedure and to enhance the bioactive properties of the final product. In the chemical characterisation of the plant extracts, twenty-five phenolic compounds were tentatively identified (twenty compounds belonging to phenolic acid and phenylpropanoid classes and five belonging to the flavonoid sub-class) and a strong synergy between the plant extract concentration and the drying time was showed. The analysed antioxidant properties were enhanced by the phenolic compounds of the extracts and a new functional food with higher bioactive quality was developed.
Collapse
Affiliation(s)
- Costanza Ceccanti
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Bruno Melgar
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
6
|
Wang GN, Li YP, Yuan SK, Zhang H, Ren J, Ren X, Liu JX. The intestinal absorption mechanism of chicoric acid and its bioavailability improvement with chitosan. Heliyon 2022; 8:e09955. [PMID: 35874082 PMCID: PMC9304723 DOI: 10.1016/j.heliyon.2022.e09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Chicoric acid (CA), an active phenolic acid of Echinacea purpurea (Linn.) Moench, has been demonstrated to exhibit antioxidative, antiviral and immunological activities. A prior study showed that CA is a water-soluble compound with low bioavailability. The current study was performed to study the intestinal absorption mechanism of CA and improve its bioavailability using natural biodegradable chitosan. A Caco-2 monolayer cell model was established to characterise the mechanisms involved in the intestinal absorption of CA. The bioavailability improvement of CA was studied in Sprague–Dawley rats after oral (20 mg/kg) administration of 0.5% chitosan. In vitro, the results showed that the absorption transport of CA was fairly poor, with Papp values of 8.2 × 10−8 to 2.1 × 10−7 cm/s in the absorption direction and 1.5 × 10−7 to 2.6 × 10−7 cm/s in the secretory direction. The permeability was increased by EDTA and chitosan in both directions. Moreover, the transport through the intestinal monolayer was H+ dependent, and P-glycoprotein and OATP2B1 transporters were involved in the intestinal transport of CA. In vivo, the absorption of CA was increased and accelerated with chitosan in rats because the bioavailability was 1.74-fold that of the prototype drug. The above mentioned results indicated that CA was a poor absorption drug and that paracellular and carrier-mediated trancellular transport both participated in its transport route. Chitosan is an excellent absorption enhancer for CA. The transport characteristics uncovered in this study lay the groundwork for further studies directed toward the development and utilisation of its new formulations.
Collapse
Affiliation(s)
- Geng Nan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Yi Peng Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Si Kun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei, 071000, PR China
| | - Hu Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Ju Xiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| |
Collapse
|
7
|
Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030762. [PMID: 35164026 PMCID: PMC8840168 DOI: 10.3390/molecules27030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-β-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.
Collapse
|
8
|
The effect of Brazilian propolis type-3 against oral microbiota and volatile sulfur compounds in subjects with morning breath malodor. Clin Oral Investig 2021; 26:1531-1541. [PMID: 34392403 DOI: 10.1007/s00784-021-04125-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate propolis type-3 mouthrinse effects on the concentration of volatile sulfur compounds (VSCs) and on tongue dorsum microbial profile. MATERIALS AND METHODS A three-step double-blind, crossover, randomized study with 10 individuals divided into three groups: I-placebo (P); II-ethanolic extract of propolis type-3 3% (EEP); and III-chlorhexidine 0.12% (CHX) and instructed to rinse twice daily for 5 days. Each experimental period was followed by a 21-day washout interval. Morning mouth breath was assessed by VSC concentrations and microbiological samples were obtained from tongue dorsum at baseline and the end of period of rinses and analyzed using checkerboard DNA-DNA hybridization technique for 39 bacterial species. RESULTS CHX and EEP presented the lowest VSC concentration when compared with placebo (p < 0.05). Even in the absence of mechanical plaque control, CHX and EEP treatments reduced VSC levels and there were no statistical differences for VSC measurement between CHX and EEP. There was a significant reduction in mean counts of 10 species including some VSC producers (Prevotella intermedia, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) by EEP. Total counts of organisms, gram-negative and gram-positive bacterial species showed a decrease for EEP and CHX (p < 0.05). In addition, no statistical difference was observed between EEP and CHX (p > 0.05). A positive correlation was observed between decrease of bacterial counts and decrease of VCSs concentration for the EEP and CHX. CONCLUSIONS The use of a 3% propolis type-3 mouthrinse is an effective way to prevent morning bad breath. Thus, propolis may be a promising agent for the treatment of halitosis. CLINICAL RELEVANCE Propolis type-3 may be used as adjuvant treatment for morning breath malodor.
Collapse
|
9
|
Garcia-Oliveira P, Barral M, Carpena M, Gullón P, Fraga-Corral M, Otero P, Prieto MA, Simal-Gandara J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct 2021; 12:2850-2873. [PMID: 33683253 DOI: 10.1039/d0fo03433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional plants have been used in the treatment of disease and pain due to their beneficial properties such as antioxidant, antiinflammation, analgesic, and antibiotic activities. The Asteraceae family is one of the most common groups of plants used in folk medicine. The species Achillea millefolium, Arnica montana, Bellis perennis, Calendula officinalis, Chamaemelum nobile, Eupatorium cannabinum, Helichrysum stoechas, and Taraxacum officinale have been used in different remedies in Northwest Spain. Besides health benefits, some of them like C. nobile and H. stoechas are already employed in cooking and culinary uses, including cocktails, desserts, and savory dishes. This study aimed to review the current information on nutritive and beneficial properties and bioactive compounds of these plants, which are not mainly used as foods but are possible candidates for this purpose. The report highlights their current uses and suitability for the development of new functional food industrial applications. Phenolic compounds, essential oils, and sesquiterpene lactones are some of the most important compounds, being related to different bioactivities. Hence, they could be interesting for the development of new functional foods.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Taher RF, Raslan MA, Masoud MA, Nassar MI, Aboutabl ME. HPLC-ESI/MS profiling, phytoconstituent isolation and evaluation of renal function, oxidative stress and inflammation in gentamicin-induced nephrotoxicity in rats of Ficus spragueana Mildbr. & Burret. Biomed Chromatogr 2021; 35:e5135. [PMID: 33818792 DOI: 10.1002/bmc.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Ficus spragueana Mildbr. & Burret (family Moraceae) was reported to have various biological activities. However, its activity in treatment of renal injury has not been investigated yet. The current study aimed to evaluate the effects of F. spragueana leaf extract on nephrotoxicity caused by gentamicin. Gentamicin is an important broad-spectrum antibiotic; nevertheless, it exhibits serious nephrotoxic adverse effects. HPLC-ESI/MS spectrometric analysis of the extract revealed the presence of 37 phenolic compounds. Moreover, five compounds were isolated from the leaf extract, and identified on the basis of spectroscopic analysis. The isolated compounds were syringic acid (1), p-coumaric acid (2), 3',5' O-dicaffeoylquinic acid (3), luteolin-8-C-β-D glucopyranoside (orientin) (4) and 8-methoxy kaempferol-3-O-[α-L-rhamnopyranosyl (1→2) β-D-glucopyranoside] (5). The gentamicin-induced nephrotoxicity model was used to evaluate the protective effect of F. spragueana on renal toxicity biomarkers throughout the development of acute kidney injury. Administration of extract led to improvement in kidney function through inhibition of kidney injury molecule-1, creatinine, blood urea nitrogen and total bilirubin, as well as decreasing the inflammatory markers interlukin1-beta and myeloperoxidase. Furthermore, it reduced the oxidative stress by increasing reduced glutathione and total antioxidant capacity levels while decreasing malondialdehyde and nitric oxide content, and improved renal histopathological injuries.
Collapse
Affiliation(s)
- Rehab F Taher
- Natural Compounds Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| | - Mahmoud I Nassar
- Natural Compounds Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| | - Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Division, National Research Centre (ID 60014618), Giza, Egypt
| |
Collapse
|
11
|
Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. PLANTS 2021; 10:plants10010135. [PMID: 33440883 PMCID: PMC7827524 DOI: 10.3390/plants10010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/16/2023]
Abstract
A large number of plants produce secondary metabolites known as allelochemicals that are capable of inhibiting the germination of competitive species. This process is known as allelopathy and is mediated by several classes of chemicals, among which phenolic compounds are the most frequent. Thus, plant allelochemicals can be used to control weeds in agricultural systems. In the present work, we analyzed the phenolic profile and phytotoxic potential of different extracts (pure water or water: ethanol 50:50) from Scrophulariastriata plants that were collected from two ecological regions in Iran (Pahleh and Lizan). The total polyphenolic content (TPC), as evaluated by the Folin-Ciocolteau method, ranged from 28.3 mg/g in the aqueous extract obtained from the Lizan ecotype to 39.6 mg/g in the hydroalcoholic extract obtained from the Pahleh ecotype. Moreover, HPLC analysis was aimed at determining the content of eight phenolic compounds, namely eugenol, rosmarinic acid, hesperetin, hesperedin, trans-ferulic acid, vanillin, and caffeic acid. According to the results, rosmarinic acid appeared to be the most abundant component. The phytotoxic activities of S.striata extracts were examined on the seed germination of a crop species, Lepidium sativum, and two weeds, Chenopodium album and Malva sylvestris. All extracts showed inhibitory effects on these species. The efficiency of these inhibitory effects depended on the type of plant species, origin, and concentration of extract. The highest phytotoxic activity was caused by approximately 1% concentration of extract. The most susceptible weed was M. sylvestris. The extracts that were obtained from the Pahleh ecotype, notably the hydroalcoholic ones, showed higher phytotoxicity against L. sativum, C. album and M. sylvestris. These results encourage further studies to support the use of S. striata as a source of bioherbicides.
Collapse
|
12
|
Boghrati Z, Zibaee E, Ayati Z, Amiri MS, Ramezani M, Jamialahmadi T, Emami SA, Sahebkar A. Ethnomedicinal Uses, Phytochemistry and Pharmacology of Different Cichorium Species (Asteraceae): A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:501-546. [PMID: 33861457 DOI: 10.1007/978-3-030-64872-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cichorium species have been used widely in traditional medicine universally. It is reported as a treatment for various respiratory and gastrointestinal disorders, as well as diabetes and rheumatism. A range of constituents including phenolic and poly phenolic compounds, fatty and organic acids and essential oils comprise the chemical composition of Cichorium species. Furthermore, modern investigations on these species has shown different pharmacological activities such as antioxidant, antiproliferative, anti-inflammation, antibacterial, anti-hyperglycemic, antidiabetic and hepatoprotective effects which are associated with divers molecular pathways and mechanisms. In this chapter, we have summarized comprehensive information regarding traditional and ethnomedicinal uses, phytochemical analysis and pharmacological aspects of Cichorium species.
Collapse
Affiliation(s)
- Zahra Boghrati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
13
|
Pedreiro S, da Ressurreição S, Lopes M, Cruz MT, Batista T, Figueirinha A, Ramos F. Crepis vesicaria L. subsp. taraxacifolia Leaves: Nutritional Profile, Phenolic Composition and Biological Properties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E151. [PMID: 33379308 PMCID: PMC7796387 DOI: 10.3390/ijerph18010151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Crepis vesicaria subsp. taraxacifolia (Cv) of Asteraceae family is used as food and in traditional medicine. However there are no studies on its nutritional value, phenolic composition and biological activities. In the present work, a nutritional analysis of Cv leaves was performed and its phenolic content and biological properties evaluated. The nutritional profile was achieved by gas chromatography (GC). A 70% ethanolic extract was prepared and characterized by HLPC-PDA-ESI/MSn. The quantification of chicoric acid was determined by HPLC-PDA. Subsequently, it was evaluated its antioxidant activity by DPPH, ABTS and FRAP methods. The anti-inflammatory activity and cellular viability was assessed in Raw 264.7 macrophages. On wet weight basis, carbohydrates were the most abundant macronutrients (9.99%), followed by minerals (2.74%) (mainly K, Ca and Na), protein (1.04%) and lipids (0.69%), with a low energetic contribution (175.19 KJ/100 g). The Cv extract is constituted essentially by phenolic acids as caffeic, ferulic and quinic acid derivatives being the major phenolic constituent chicoric acid (130.5 mg/g extract). The extract exhibited antioxidant activity in DPPH, ABTS and FRAP assays and inhibited the nitric oxide (NO) production induced by LPS (IC50 = 0.428 ± 0.007 mg/mL) without cytotoxicity at all concentrations tested. Conclusions: Given the nutritional and phenolic profile and antioxidant and anti-inflammatory properties, Cv could be a promising useful source of functional food ingredients.
Collapse
Affiliation(s)
- Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sandrine da Ressurreição
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa Batista
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (S.P.); (M.L.); (M.T.C.); (T.B.); (F.R.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
The Beneficial Health Effects of Vegetables and Wild Edible Greens: The Case of the Mediterranean Diet and Its Sustainability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Mediterranean diet (MD) concept as currently known describes the dietary patterns that were followed in specific regions of the area in the 1950s and 1960s. The broad recognition of its positive effects on the longevity of Mediterranean populations also led to the adoption of this diet in other regions of the world, and scientific interest focused on revealing its health effects. MD is not only linked with eating specific nutritional food products but also with social, religious, environmental, and cultural aspects, thus representing a healthy lifestyle in general. However, modern lifestyles adhere to less healthy diets, alienating people from their heritage. Therefore, considering the increasing evidence of the beneficial health effects of adherence to the MD and the ongoing transitions in consumers’ behavior, the present review focuses on updating the scientific knowledge regarding this diet and its relevance to agrobiodiversity. In addition, it also considers a sustainable approach for new marketing opportunities and consumer trends of the MD.
Collapse
|
15
|
A. Petropoulos S, Fernandes Â, Dias MI, Pereira C, Calhelha RC, Chrysargyris A, Tzortzakis N, Ivanov M, D. Sokovic M, Barros L, Ferreira ICFR. Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules 2020; 25:molecules25092204. [PMID: 32397258 PMCID: PMC7248820 DOI: 10.3390/molecules25092204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 01/17/2023] Open
Abstract
The aim of this report was to study the effect of salinity (control: 2dS/m, S1: 4 dS/m and S2: 6 dS/m) and harvest time (first harvest on 9 May 2018 and second harvest on 19 April 2018) on the growth and the chemical composition of Centaurea raphanina subsp. mixta plants. The plants of the first harvest were used for the plant growth measurements (fresh weight and moisture content of leaves, rosette diameter, number and thickness of leaves), whereas those of the second harvest were not used for these measurements due to the flowering initiation, which made the leaves unmarketable due to their hard texture. The results of our study showed that C. raphanina subsp. mixta plants can be cultivated under mild salinity (S1 treatment) conditions without severe effects on plant growth and yield, since a more severe loss (27.5%) was observed for the S2 treatment. In addition, harvest time proved to be a cost-effective cultivation practice that allows to regulate the quality of the final product, either in edible form (first harvest) or for nutraceutical and pharmaceutical purposes as well as antimicrobial agents in food products. Therefore, the combination of these two agronomic factors showed interesting results in terms of the quality of the final product. In particular, high salinity (S2 treatment) improved the nutritional value by increasing the fat, proteins and carbohydrates contents in the first harvest, as well as the tocopherols and sugars contents (S1 and S2 treatments, respectively) in the second harvest. In addition, salinity and harvest time affected the oxalic acid content which was the lowest for the S2 treatment at the second harvest. Similarly, the richest fatty acid (α-linolenic acid) increased with increasing salinity at the first harvest. Salinity and harvest time also affected the antimicrobial properties, especially against Staphylococcus aureus, Bacillus cereus and Trichoderma viride, where the extracts from the S1 and S2 treatments showed high effectiveness. In contrast, the highest amounts of flavanones (pinocembrin derivatives) were detected in the control treatment (second harvest), which was also reflected to the highest antioxidant activity (TBARS) for the same treatment. In conclusion, C. raphanina subsp. mixta plants seem to be tolerant to medium salinity stress (S1 treatment) since plant growth was not severely impaired, while salinity and harvesting time affected the nutritional value (fat, proteins, and carbohydrates) and the chemical composition (tocopherols, sugars, oxalic acid, fatty acids), as well as the bioactive properties (cytotoxicity and antimicrobial properties) of the final product.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 N. Ionia, Magnissia, Greece
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-242-109-3196 (S.A.P.); +351-27-333-0904 (I.C.F.R.F.)
| | - Ângela Fernandes
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
| | - Maria Ines Dias
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
| | - Carla Pereira
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
| | - Ricardo C. Calhelha
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.T.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; (A.C.); (N.T.)
| | - Marija Ivanov
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.D.S.)
| | - Marina D. Sokovic
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.D.S.)
| | - Lillian Barros
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, Centro de Investigação de Montanha (CIMO), 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.C.); (L.B.)
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-242-109-3196 (S.A.P.); +351-27-333-0904 (I.C.F.R.F.)
| |
Collapse
|
16
|
Petropoulos SA, Fernandes Â, Dias MI, Pereira C, Calhelha R, Di Gioia F, Tzortzakis N, Ivanov M, Sokovic M, Barros L, Ferreira ICFR. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants (Basel) 2020; 9:antiox9040314. [PMID: 32326524 PMCID: PMC7222212 DOI: 10.3390/antiox9040314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Centaurea raphanina subsp. mixta (DC.) Runemark is a wild edible species endemic to Greece. This study evaluated the chemical composition and bioactive properties of wild and cultivated C. raphanina subsp. mixta plants. Wild plants had higher nutritional value than cultivated ones, whereas cultivated plants contained more tocopherols. Glucose and sucrose were higher in cultivated plants and trehalose in wild ones. Oxalic and total organic acids were detected in higher amounts in cultivated samples. The main fatty acids were α-linolenic, linoleic and palmitic acid, while wild plants were richer in polyunsaturated fatty acids. Two pinocembrin derivatives were the main phenolic compounds being detected in higher amounts in wild plants. Regarding the antioxidant activity, wild and cultivated plants were more effective in the oxidative haemolysis (OxHLIA) and thiobarbituric acid reactive substances (TBARS) assays, respectively. Moreover, both extracts showed moderate cytotoxicity in non-tumor cell lines (PLP2), while cultivated plants were more effective against cervical carcinoma (HeLa), breast carcinoma (MCF-7) and non-small lung cancer (NCI-H460) cell lines. Finally, wild plants showed higher antimicrobial activity than cultivated plants against specific pathogens. In conclusion, the cultivation of C.raphanina subsp. mixta showed promising results in terms of tocopherols content and antiproliferative effects, however further research is needed to decrease oxalic acid content.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 N. Ionia, Greece
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-2421-093-196 (S.A.P.); +351-273-330-904 (I.C.F.R.F.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Maria Ines Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA;
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Marija Ivanov
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.I.); (M.S.)
| | - Marina Sokovic
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (M.I.); (M.S.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (M.I.D.); (C.P.); (R.C.); (L.B.)
- Correspondence: (S.A.P.); (I.C.F.R.F.); Tel.: +30-2421-093-196 (S.A.P.); +351-273-330-904 (I.C.F.R.F.)
| |
Collapse
|
17
|
El-Nakhel C, Petropoulos SA, Pannico A, Kyriacou MC, Giordano M, Colla G, Troise AD, Vitaglione P, De Pascale S, Rouphael Y. The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chem 2020; 309:125713. [PMID: 31708345 DOI: 10.1016/j.foodchem.2019.125713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022]
Abstract
The effect of cultivar and nutrient solution macrocation proportions (SK, SCa, SMg) on the bioactive content of hydroponically cultivated lettuce was evaluated on two lettuce cultivars (red and green-pigmented Salanova®) grown in a fully controlled Fitotron® chamber. Fresh weight and color attributes were superior in green Salanova and in SK-treated plants, while elevated macrocation proportions (SK, SCa, and SMg) affected the corresponding minerals, P and Na content. SCa and SMg treatments raised ascorbate concentration and reduced nitrate levels in treated plants. Chicoric and chlorogenic acids were higher in red over green Salanova. Chlorogenic acid was higher in SCa and SMg plants and chicoric acid levels were SMg > SCa > SK. The SMg-treated red Salanova contained higher concentrations of target carotenoids. In conclusion, nutrient solution management constitutes an effective cultural practice to increase bioactive properties and functional quality of hydroponically grown lettuce.
Collapse
Affiliation(s)
- Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| |
Collapse
|
18
|
MENEZES EGT, OLIVEIRA ÉR, CARVALHO GR, GUIMARÃES IC, QUEIROZ F. Assessment of chemical, nutritional and bioactive properties of Annona crassiflora and Annona muricata wastes. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.22918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Petropoulos SA, Fernandes Â, Calhelha RC, Di Gioia F, Kolovou P, Barros L, Ferreira ICFR. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6741-6750. [PMID: 31350862 DOI: 10.1002/jsfa.9956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Nitrogenous fertilizers may affect the yield and quality of leafy vegetables via the application rate and nitrogen form. In the present study, the effect of the nitrate:ammonium nitrogen ratio in the nutrient solution on the chemical composition and bioactive properties of Cichorium spinosum leaves was evaluated. For this purpose, C. spinosum plants were fertigated with nutrient solution containing different ratios of nitrate: ammonium nitrogen: (i) 100:0 NO3 -N:NH4 -N; (ii) 75:25 NO3 -N:NH4 -N; (iii) 50:50 NO3 -N:NH4 -N; (iv) 25:75 NO3 -N:NH4 -N; and (v) 0:100 NO3 -N:NH4 -N of total nitrogen; as well as (vi) 100% ureic nitrogen. RESULTS The only detected tocopherol isoforms were α- and δ-tocopherol, which were positively affected by nitrate nitrogen (100:0 NO3 -N:NH4 -N). Similar results were observed for individual and total organic acids. The main detected sugars were fructose, glucose and sucrose, with a varied effect of nutrient solution composition on their content, whereas total sugar concentration was positively affected by a balanced or a slightly increased proportion of NH4 -N (50:50 and 25:75 NO3 -N:NH4 -N). The fatty acids profile was beneficially affected by the highest NH4 -N ratio (0:100 NO3 -N:NH4 -N), whereas higher amounts of NO3 - than NH4 + nitrogen (75:25 NO3 -N:NH4 -N) resulted in a higher content of total phenolic compounds. Finally, no cytotoxic effects were observed against non-tumor (PLP2, HeLa) and tumor (HepG2, MCF-7, NCI-H460) cell lines for any of the studied nutrient solutions. CONCLUSION The modulation of NO3 -N:NH4 -N ratio in the nutrient solution supplied to C. spinosum may enhance the content of desirable health-promoting compounds and reduce the content of antinutrients, thus increasing the overall quality of the final product without compromising yield. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, Nea Ionia, Magnissia, Greece
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Panagiota Kolovou
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, Nea Ionia, Magnissia, Greece
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
20
|
Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer's Disease Neuronal Cell Culture Models. J Alzheimers Dis 2019; 64:787-800. [PMID: 29914017 DOI: 10.3233/jad-170862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Natural products are a significantly underutilized source of potential treatments against human disease. Alzheimer's disease (AD) is a prime example of conditions that could be amenable to such treatments as suggested by recent findings. OBJECTIVE Aiming to identify novel potentially therapeutic approaches against AD, we assessed the effects of Cichorium spinosum and Sideritis scardica extracts, both distinct components of the Mediterranean diet. METHODS/RESULTS After the detailed characterization of the extracts' composition using LC-HRMS methods, they were evaluated on two AD neuronal cell culture models, namely the AβPP overexpressing SH-SY5Y-AβPP and the hyperphosphorylated tau expressing PC12-htau. Initially their effect on cell viability of SH-SY5Y and PC12 cells was examined, and subsequently their downstream effects on AβPP and tau processing pathways were investigated in the SH-SY5Y-AβPP and PC12-htau cells. We found that the S. scardica and C. spinosum extracts have similar effects on tau, as they both significantly decrease total tau, the activation of the GSK3β, ERK1 and/or ERK2 kinases of tau, as well as tau hyperphosphorylation. Furthermore, both extracts appear to promote AβPP processing through the alpha, non-amyloidogenic pathway, albeit through partly different mechanisms. CONCLUSIONS These findings suggest that C. spinosum and S. scardica could have a notable potential in the prevention and/or treatment of AD, and merit further investigations at the in vivo level.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Giagini
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Bioanalytical, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
21
|
Petropoulos S, Karkanis A, Martins N, Ferreira I. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|