1
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang K, Zhao H, Zhao X, Zhang X, Zhang W, Cheng Y, Ge J. Photobiomodulation for diabetes and its complications: a review of general presentation, mechanisms and efficacy. Ann Med 2024; 56:2433684. [PMID: 39607829 PMCID: PMC11610354 DOI: 10.1080/07853890.2024.2433684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 11/30/2024] Open
Abstract
Diabetes mellitus is a metabolic disease that is marked by persistent hyperglycemia due to inadequate insulin secretion or insulin resistance. Its prevalence is increasing yearly. Diabetes mellitus can lead to serious health complications that are the primary cause of mortality and disability among diabetic patients, including diabetic retinopathy, diabetic foot ulcers, diabetic peripheral neuropathy, and diabetic periodontitis, and so on. Traditional treatments for diabetes and its complications still suffer from limited clinical efficacy and high therapeutic side effects. Photobiomodulation (PBM), which utilizes low levels of red or near-infrared laser to irradiate cells and tissues, has been shown to be efficacious for a wide range of organ damage. In this study, we focus on the application of PBM in diabetes and its complications and mechanisms, as well as the advantages, disadvantages with the aim of developing new ideas for the application of PBM.
Collapse
Affiliation(s)
- Keyan Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Hongwei Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoqing Zhao
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyu Zhang
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Araújo GLB, Soares LGP, Santos AS, Cangussú MCT, Dos Santos JN, Pinheiro ALB. Effects of Violet and IR LED Light on mast cell degranulation: in vivo study in a murine model. Lasers Med Sci 2023; 38:159. [PMID: 37442837 DOI: 10.1007/s10103-023-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to evaluate the influence of IR (λ850 ± 10 nm) and violet (λ405 ± 10 nm) LED phototherapy on total mast cells counts and its ability to influence mast cell degranulation. For this, 27 Wistar rats were used and were randomly distributed into three groups: control, IR LED, and violet LED. When indicated, irradiation done and they were sacrificed, had their tongue removed immediately, 20-min, 45-min, and 2-h after irradiation. Samples were processed to wax, cut, and stained with Toluidine Blue. Intact and degranulated mast cells were counted under light microscopy, and statistical analysis was carried out. In the superficial connective tissue and muscular tissues, violet LED light caused a significant increase in both total number and degranulated mast cells when compared to the control group immediately after irradiation. The degranulation indexes were higher in the groups irradiated with Violet light, both in superficial connective tissue and muscular tissues in relation to the timing. Irradiation with IR LED caused immediate increase in the total number and degranulated of mast cells when compared to the control group only in the superficial connective tissue. In all times observed, the highest total amount of mast cells was seen immediately after irradiation, except in the muscular tissue, which presented the highest amount after 20-min. It was concluded that IR and violet LED light were able to increase the number of mast cells and inducing degranulation in oral mucosa. However, considering that violet LED light can be harmful in periodontal disease, it seems that the use of IR LED light could be the best option in Dentistry.
Collapse
Affiliation(s)
- Geyza Lopes Borges Araújo
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
| | - Luiz Guilherme Pinheiro Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
- Center for Orthodontics and Facial Orthopedics Prof. José Édimo Soares Martins, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
| | - Amanda Silva Santos
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
| | - Maria Cristina Teixeira Cangussú
- Epidemiology and Public Health, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
| | - Jean Nunes Dos Santos
- Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil
| | - Antônio Luiz Barbosa Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, 62, Araujo Pinho Ave, Canela, Salvador, BA, CEP 40110-150, Brazil.
| |
Collapse
|
5
|
Role of opsins and light or heat activated transient receptor potential ion channels in the mechanisms of photobiomodulation and infrared therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Chen J, Sang Y, Li J, Zhao T, Liu B, Xie S, Sun W. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112472. [PMID: 35660312 DOI: 10.1016/j.jphotobiol.2022.112472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Human dental pulp stem cells (hDPSCs) have attracted tremendous attention in tissue regeneration engineering due to their excellent multidirectional differentiation potential. Photobiomodulation (PBM) using low-level light-emitting diodes (LEDs) or lasers has been proved to promote the osteogenesis of mesenchymal stem cells. However, the effect of LEDs on osteogenic differentiation of hDPSCs has little published data. In this work, the effect of blue LEDs with different energy densities of 2, 4, 6, 8, 10 J/cm2 on osteogenic differentiation of hDPSCs was examined by using in vitro ALP staining, ALP activity, mineralization, and real-time PCR. The results showed that compared with the control group, osteogenic differentiation was significantly enhanced in blue LEDs treated groups. As the energy density increased, the level of osteogenesis initially increased and then decreased reaching the highest level at 6 J/cm2. Transient receptor potential vanilloid 1 (TRPV1), a Ca2+ ion channel, was believed to be a potential player in osteogenesis by photobiomodulation. By immunofluorescence assay, calcium influx assay, PCR, and ALP staining, it was shown that blue LEDs irradiation can increase the activity of TRPV1 and intracellular calcium levels similarly to the agonist of TRPV1 capsaicin. Additionally, pretreatment with capsazepine, a selective TRPV1 inhibitor, was able to abrogate the osteogenic effect of blue LEDs. In conclusion, these findings proposed that blue LEDs can promote the osteogenesis of hDPSCs within the appropriate range (4-8 J/cm2) during culture of osteogenic medium, and TRPV1/Ca2+ may be an essential signaling pathway involved in blue LEDs-induced osteogenesis, providing new insights for the use of hDPSCs in tissue regeneration engineering.
Collapse
Affiliation(s)
- Jiaqi Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yimeng Sang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiaying Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Tian Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Bin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sijing Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Weibin Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
7
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:3157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| |
Collapse
|
8
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - ELDOR LAB, Bologna 40129, Italy.
| |
Collapse
|
9
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
10
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
11
|
Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol 2020; 96:1294-1313. [DOI: 10.1111/php.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Vitaly Plavskii
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Aliaksandr Mikulich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | | | - Tatsiana Ananich
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ludmila Plavskaya
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Antonina Tretyakova
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| | - Ihar Leusenka
- The State Scientific Institution «B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus» Minsk Belarus
| |
Collapse
|
12
|
Shen D, Wei J, Chen L, Shen X, Wang L. Besides Photothermal Effects, Low-Level CO 2 Laser Irradiation Can Potentiate Skin Microcirculation Through Photobiomodulation Mechanisms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:151-158. [PMID: 31050951 DOI: 10.1089/photob.2018.4570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Improvement of microcirculation is one of the important mechanisms of low-level laser therapy (LLLT) to treat some diseases such as wound healing. Most previous studies have been carried out with multiple lasers other than the 10,600-nm CO2 laser. Recently, the CO2 laser has been used not only as a tool for excision of soft tissues but also for therapeutic applications. Objective: To study whether low-level CO2 laser irradiation can influence microcirculation and further explore the underlying mechanisms. Methods: Seventy-milliwatt (70-mW) CO2 lasers irradiated the forearms of 12 participants and skin blood perfusion (SkBP) was measured with a laser speckle imager. The thermal effect of irradiation was evaluated by measuring the irradiated skin in vivo and the exposed cell suspensions in vitro. Extracellular adenosine triphosphate (eATP) of the human mast cell line (HMC-1) is assessed by luciferin-luciferase assay to explore the potential mechanisms. Results: Irradiation caused dose-dependent increase in SkBP. At a medium dose of 262 J/cm2, SkBP reached its maximum value at 195.8% ± 18.6% of the baseline (n = 12, p < 0.01). Such laser irradiation had a mild thermal effect, heating local skin temperature (SkT) by 6.1°C ± 0.3°C (n = 10) and warming cell suspensions by 4.5°C ± 0.8°C (n = 6). Irradiation dose-dependently lowered eATP levels of HMC-1 cells in vitro. At a medium dose of 262 J/cm2, eATP levels declined to the minimum at 74.8% ± 5.5% of the baseline (n = 12, p < 0.01). This downregulation effect could be significantly inhibited by 100-μM ARL67156, a nonspecific ecto-ATPase inhibitor. On the contrary, heating itself slightly raised the level of eATP. Conclusions: Low-level CO2 laser irradiation can improve microcirculation. Besides the thermal effect, regulation of extravascular eATP by the photobiomodulation mechanism may be involved. This implies that CO2 lasers might be used in LLLT.
Collapse
Affiliation(s)
- Dan Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjing Chen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| | - Lina Wang
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kouhkheil R, Fridoni M, Abdollhifar MA, Amini A, Bayat S, Ghoreishi SK, Chien S, Kazemi M, Bayat M. Impact of Photobiomodulation and Condition Medium on Mast Cell Counts, Degranulation, and Wound Strength in Infected Skin Wound Healing of Diabetic Rats. Photobiomodul Photomed Laser Surg 2019; 37:706-714. [PMID: 31589095 DOI: 10.1089/photob.2019.4691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Numerous people suffer from diabetes mellitus (DM) and resultant diabetic foot ulcers (DFU), which lack effective treatment. Photobiomodulation (PBM) has accelerated wound healing in diabetic animals and patients in some studies. However, there is scant information on the number and activation state of skin mast cells (MCs) in PBM-treated diabetic wounds. Objective: We intend to assess the influence of the number of MCs and degranulation in the remodeling step of an infected wound model on wound strength and its microbial flora in a type 1 DM (T1DM) rat model by administration of PBM, condition medium (CM) derived from human bone marrow mesenchymal stem cells (hBMMSCs), and the combination of PBM+CM. Methods: We prepared CM by culturing hBMMSCs. T1DM was induced in 72 rats and, after 1 month, we created one excisional wound in each rat. All wounds were infected with methicillin-resistant Staphylococcus aureus (MRSA). We divided the rats into four groups: (n = 18): (i) control; (ii) PBM; (iii) CM, and (iv) PBM+CM. On days 4, 7, and 15, we conducted microbiological, tensiometrical, and stereological analyses. The type of MCs (T1MCs, T2MCs, or T3MCs) and total number of MCs (TOMCs) were counted by light microscopy. Results: On day 15, the PBM+CM, PBM, and CM groups had significantly increased wound strength compared with the control group. There was a significant decrease in colony-forming units (CFU) at all time points in the PBM+CM and PBM groups. The PBM+CM and PBM groups had more stable MCs (T1MCs), less significant degranulated MCs (T2MCs), less significant disintegrated MCs (T3MCs), and less significant TOMCs compared with the control group at all time points. Conclusions: PBM+CM and PBM treatments significantly increased the healing process in an ischemic and MRSA-infected wound model of T1DM rats. PBM+CM and PBM significantly decreased both TOMCs and their degranulation, and significantly decreased CFU.
Collapse
Affiliation(s)
- Reza Kouhkheil
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Amin Abdollhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sahar Bayat
- Illinois Institute of Technology, Chicago, Illinois
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| |
Collapse
|
14
|
Liebert A, Bicknell B, Johnstone DM, Gordon LC, Kiat H, Hamblin MR. "Photobiomics": Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodul Photomed Laser Surg 2019; 37:681-693. [PMID: 31596658 PMCID: PMC6859693 DOI: 10.1089/photob.2019.4628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered.
Collapse
Affiliation(s)
- Ann Liebert
- Australasian Research Institute, Wahroonga, Australia
- Department of Medicine, University of Sydney, Camperdown, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia
| | | | - Luke C. Gordon
- Discipline of Physiology, University of Sydney, Camperdown, Australia
| | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, Marsfield, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.
| |
Collapse
|
16
|
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:147-159. [PMID: 31002851 DOI: 10.1016/j.pbiomolbio.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) encompasses a light application aimed to increase healing process, tissue regeneration, and reducing inflammation and pain. PBM is specifically aimed to modify the expression of cellular molecules; however, PBM impacts on cellular and molecular pathways especially in bone regenerative medicine have been investigated in scattered different studies. The purpose of the current study is to systematically review evidence on molecular impact of PBM on bone regeneration. A comprehensive electronic search in Medline, Scopus, EMBASE, EBSCO, Cochrane library, web of science, and google scholar was conducted from January 1975 to October 2018 limited to English language publications on administrations of photobiomodulation for bone regeneration which evaluated biological factors. In addition, hand search of selected journals was done to retrieve all articles. This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials. The data tabulated according to the type of markers (osteogenic markers, angiogenic markers, growth factors, and inflammation mediators). PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2. Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia; Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Praveen R Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY, 14214, USA.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
17
|
Amaroli A, Ferrando S, Benedicenti S. Photobiomodulation Affects Key Cellular Pathways of all Life-Forms: Considerations on Old and New Laser Light Targets and the Calcium Issue. Photochem Photobiol 2018; 95:455-459. [PMID: 30281800 DOI: 10.1111/php.13032] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022]
Abstract
After 50 years of studies on photobiomodulation (PBM), there is still so much to investigate to understand the laser light-nonplant cells interactions. The current scientific knowledge allows to say that the phenomena induced by PBM are based on cellular pathways that are the key points of cell life. The mitochondria chromophores, also present on the bacterial membrane, the calcium channels, ion that regulates the life-and-death cellular processes, as well as the TRP family, whose genes have been found in protozoa and suggest that its basic mechanism evolved long before the appearance of animals, seem to be elective targets in photobiomodulatory events by wavelengths from 600 up to 980 nm. The ambiguous resulting cellular communication way, mediated by ATP, ROS and/or calcium, leads to cell manipulation, which modifies its metabolism and whose response connects all life-forms from bacteria to vertebrates. Because of the Giano-Bifronte features of ROS and calcium, as well as the fine balance of energetic mitochondrial processes, whose alteration is responsible for several diseases, the PBM can show unpredictable results and it requires scrupulous approach to avoid cellular damages. However, when carefully applied, PBM is able to improve nonhealthy cell's responses and represents a reliable support in human and veterinary medicine.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Center, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, Laboratory of New Model Organism (NeMo LAB), University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Center, University of Genoa, Genoa, Italy
| |
Collapse
|
18
|
Mikami R, Mizutani K, Aoki A, Tamura Y, Aoki K, Izumi Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 2017; 50:340-352. [PMID: 29214666 DOI: 10.1002/lsm.22775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. STUDY DESIGN/ MATERIALS AND METHODS The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. RESULTS LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell proliferation and ALP activity by LLLI was significantly inhibited by CPZ. CONCLUSION LLLI with a 405 nm UHF-USP blue laser enhances extracellular calcification of osteoblasts by upregulating proliferation and differentiation via TRPV1. Lasers Surg. Med. 50:340-352, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
19
|
Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep 2017; 7:7781. [PMID: 28798481 PMCID: PMC5552860 DOI: 10.1038/s41598-017-07525-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
We previously showed that blue (415 nm) and green (540 nm) wavelengths were more effective in stimulating osteoblast differentiation of human adipose-derived stem cells (hASC), compared to red (660 nm) and near-infrared (NIR, 810 nm). Intracellular calcium was higher after blue/green, and could be inhibited by the ion channel blocker, capsazepine. In the present study we asked what was the effect of these four wavelengths on proliferation of the hASC? When cultured in proliferation medium there was a clear difference between blue/green which inhibited proliferation and red/NIR which stimulated proliferation, all at 3 J/cm2. Blue/green reduced cellular ATP, while red/NIR increased ATP in a biphasic manner. Blue/green produced a bigger increase in intracellular calcium and reactive oxygen species (ROS). Blue/green reduced mitochondrial membrane potential (MMP) and lowered intracellular pH, while red/NIR had the opposite effect. Transient receptor potential vanilloid 1 (TRPV1) ion channel was expressed in hADSC, and the TRPV1 ligand capsaicin (5uM) stimulated proliferation, which could be abrogated by capsazepine. The inhibition of proliferation caused by blue/green could also be abrogated by capsazepine, and by the antioxidant, N-acetylcysteine. The data suggest that blue/green light inhibits proliferation by activating TRPV1, and increasing calcium and ROS.
Collapse
|
20
|
Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj 2016; 1861:441-449. [PMID: 27751953 DOI: 10.1016/j.bbagen.2016.10.008] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Photobiomodulation (PBM) using red or near-infrared (NIR) light has been used to stimulate the proliferation and differentiation of adipose-derived stem cells. The use of NIR wavelengths such as 810nm is reasonably well accepted to stimulate mitochondrial activity and ATP production via absorption of photons by cytochrome c oxidase. However, the mechanism of action of 980nm is less well understood. Here we study the effects of both wavelengths (810nm and 980nm) on adipose-derived stem cells in vitro. Both wavelengths showed a biphasic dose response, but 810nm had a peak dose response at 3J/cm2 for stimulation of proliferation at 24h, while the peak dose for 980nm was 10-100 times lower at 0.03 or 0.3J/cm2. Moreover, 980nm (but not 810nm) increased cytosolic calcium while decreasing mitochondrial calcium. The effects of 980nm could be blocked by calcium channel blockers (capsazepine for TRPV1 and SKF96365 for TRPC channels), which had no effect on 810nm. To test the hypothesis that the chromophore for 980nm was intracellular water, which could possibly form a microscopic temperature gradient upon laser irradiation, we added cold medium (4°C) during the light exposure, or pre-incubated the cells at 42°C, both of which abrogated the effect of 980nm but not 810nm. We conclude that 980nm affects temperature-gated calcium ion channels, while 810nm largely affects mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Peijun Lyu
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
21
|
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:7000417. [PMID: 28070154 PMCID: PMC5215870 DOI: 10.1109/jstqe.2016.2561201] [Citation(s) in RCA: 834] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.
Collapse
Affiliation(s)
- Lucas Freitas de Freitas
- Programa de Pós-Graduação
Interunidades Bioengenharia, University of São Paulo, São Carlos -
SP, Brazil
- Wellman Center for Photomedicine, Harvard Medical School,
Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Harvard Medical School,
Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston,
MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology,
Cambridge, MA 02139, USA
- Correspondence: Michael R Hamblin,
; Tel 1-617-726-6182
| |
Collapse
|
22
|
de Lima FJC, de Oliveira Neto OB, Barbosa FT, do Nascimento Galvão AM, Ramos FWS, de Lima CCF, de Sousa Rodrigues CF. Is there a protocol in experimental skin wounds in rats using low-level diode laser therapy (LLDLT) combining or not red and infrared wavelengths? Systematic review. Lasers Med Sci 2016; 31:779-87. [PMID: 26861987 DOI: 10.1007/s10103-016-1893-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
A systematic review addressing experiments with healing of skin wounds in rats using LLDLT with different active means seeking to identify a pattern in adjustments such as laser wavelength, power and fluency and analysing wound healing parameters, such as wound area, presence of fibroblasts, angiogenesis, leukocyte infiltration, epithelial coverage and antibacterial effect. It was perceived that a protocol does not exist in view of the wide variation in the use of power (9 to 500 mW) and fluency (1 to 60 J/cm2); however, between the different wavelengths, the highlight was the combined use of red and infrared wavelengths showing better results than when used alone.
Collapse
Affiliation(s)
- Fernando José Camello de Lima
- Campus A.C. Simões-ICBS-UFAL, Anatomia Humana da Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil.
| | - Olavo Barbosa de Oliveira Neto
- Campus A.C. Simões-ICBS-UFAL, Anatomia Humana da Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil
| | - Fabiano Timbó Barbosa
- Campus A.C. Simões-ICBS-UFAL, Faculdade de Medicina da Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil
| | - Ailton Mota do Nascimento Galvão
- Campus A.C. Simões-ICBS-UFAL, Ciências da Saúde na Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil
| | - Fernando Wagner Silva Ramos
- Campus A.C. Simões-ICBS-UFAL, Anatomia Humana da Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil
| | | | - Célio Fernando de Sousa Rodrigues
- Anatomia Humana da Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n Tabuleiro dos Martins, CEP 57072-900, Maceió, AL, Brazil
| |
Collapse
|
23
|
Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies. Stem Cells Int 2015; 2015:974864. [PMID: 26273309 PMCID: PMC4529981 DOI: 10.1155/2015/974864] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/14/2015] [Indexed: 12/24/2022] Open
Abstract
Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described.
Collapse
|
24
|
Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy. Mediators Inflamm 2015; 2015:630361. [PMID: 25691809 PMCID: PMC4322657 DOI: 10.1155/2015/630361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022] Open
Abstract
Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca2+]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.
Collapse
|
25
|
Wang L, Zhang D, Schwarz W. TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy. Cells 2014; 3:662-73. [PMID: 24971848 PMCID: PMC4197630 DOI: 10.3390/cells3030662] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
Low-level laser irradiation in the visible as well as infrared range is applied to skin for treatment of various diseases. Here we summarize and discuss effects of laser irradiation on mast cells that leads to degranulation of the cells. This process may contribute to initial steps in the final medical effects. We suggest that activation of TRPV channels in the mast cells forms a basis for the underlying mechanisms and that released ATP and histamine may be putative mediators for therapeutic effects.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai University of Traditional Chinese Medicine and Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China.
| | - Di Zhang
- Department of Mechanics and Engineering Science, Fudan University Shanghai, Shanghai 201203, China.
| | - Wolfgang Schwarz
- Institute for Biophysics, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany.
| |
Collapse
|
26
|
Cai WS, Shen F, Li JL, Feng Z, Wang YC, Xiao HQ, Xu B. Activated protease receptor-2 induces GATA6 expression to promote survival in irradiated colon cancer cells. Arch Biochem Biophys 2014; 555-556:28-32. [PMID: 24887481 DOI: 10.1016/j.abb.2014.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS The resistance to irradiation is common and a great drawback in the treatment of cancer with radiotherapy; the underlying mechanism is unclear. GATA binding protein 6 (GATA6) is associated with the pathogenesis of cancer. This study aims to investigate the role of GATA6 on compromising irradiation effect on HT55 and HT29 cells, 2 colorectal cancer cell lines. METHODS Human colon cancer cell lines, HT55 and HT29 cells, were treated with irradiation in the culture. Apoptosis of HT55 and HT29 cells was determined by flow cytometry. The expression of PAR2 and GATA6 in HT55 and HT29 cells was analyzed by real time RT-PCR and Western blotting. The gene silence and gene over expression were employed to observe the effect of GATA6 on p53 expression in HT55 and HT29 cells. RESULTS The results showed that HT55 and HT29 cells expressed protease-activated receptor-2 (PAR2). Irradiation induced 38.6% HT55 cell and 33.8% HT29 cell apoptosis, which reduced to 4.2% and 5.6%, respectively after activation of PAR2. Exposure to irradiation increased the expression of GATA6; the latter played a critical role in suppression of p53 expression in HT55 and HT29 cells. Inhibition of GATA6 significantly increased the effect of irradiation on HT55 and HT29 cells. CONCLUSIONS Activation of PAR2 compromises the effect of irradiation on inducing colorectal cancer cell apoptosis, which can be prevented by inhibition of GATA6 expression.
Collapse
Affiliation(s)
- Wen-song Cai
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Shen
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiang-lin Li
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Feng
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ying-cheng Wang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huan-qing Xiao
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bo Xu
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Prindeze NJ, Moffatt LT, Shupp JW. Mechanisms of action for light therapy: a review of molecular interactions. Exp Biol Med (Maywood) 2013; 237:1241-8. [PMID: 23239434 DOI: 10.1258/ebm.2012.012180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five decades after the first documented use of a laser for wound healing, research in light therapy has yet to elucidate the underlying biochemical pathways causing its effects. The aim of this review is to summarize the current research into the biochemical mechanisms of light therapy in order to better direct future studies. The implication of cytochrome c oxidase as the photoacceptor modulating light therapy is reviewed, as are the predominant hypotheses of the biochemical pathways involved in the stimulation of wound healing, cellular proliferation, production of transcription factors and other reported stimulatory effects.
Collapse
Affiliation(s)
- Nicholas J Prindeze
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, MedStar Health, Research Institute, Washington, DC 20010, USA
| | | | | |
Collapse
|
28
|
Fathabadie FF, Bayat M, Amini A, Bayat M, Rezaie F. Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J COSMET LASER THER 2013; 15:294-304. [DOI: 10.3109/14764172.2013.764435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Potentiated anti-inflammatory effect of combined 780 nm and 660 nm low level laser therapy on the experimental laryngitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:86-93. [PMID: 23524249 DOI: 10.1016/j.jphotobiol.2013.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/31/2022]
Abstract
Reflux laryngitis is a common clinic complication of nasogastric intubation (NSGI). Since there is no report concerning the effects of low level laser therapy (LLLT) on reflux laryngitis, this study aimed to analyze the protective effect of single and combined therapies with low level laser at the doses of 2.1J and 2.1+1.2 J with a total irradiation time of 30s and 30+30 s, respectively, on a model of neurogenic reflux laryngitis. NSGI was performed in Wistar rats, assigned into groups: NGI (no treatment), NLT17.5 (single therapy), and NLT17.5/10.0 (combined therapy, applied sequentially). Additional non-intubated and non-irradiated rats were use as controls (CTR). Myeloperoxidase (MPO) activity was assessed by colorimetric method after the intubation period (on days 1, 3, 5, and 7), whereas paraffin-embedded laryngeal specimens were used to carry out histopathological analysis of the inflammatory response, granulation tissue, and collagen deposition 7 days after NSGI. Significant reduction in MPO activity (p<0.05) and in the severity of the inflammatory response (p<0.05), and improvement in the granulation tissue (p<0.05) was observed in NLT17.5/10.0 group. Mast cells count was significantly decreased in NGI and NLT17.5 groups (p<0.001), whereas no difference was observed between NLT17.5/10.0 and CTR groups (p>0.05). NLT17.5/10.0 group also showed better collagenization pattern, in comparison to NGI and NLT17.5 groups. This study suggests that the combined therapy successfully modulated the inflammatory response and collagenization in experimental model of NSGI-induced neurogenic laryngitis.
Collapse
|
30
|
Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing. Lasers Med Sci 2012; 28:799-806. [DOI: 10.1007/s10103-012-1161-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
|
31
|
Photomedicine and LLLT literature watch. Photomed Laser Surg 2010; 28:711-2. [PMID: 20961236 DOI: 10.1089/pho.2010.9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|