1
|
Rimon A, Belin J, Yerushalmy O, Eavri Y, Shapochnikov A, Coppenhagen-Glazer S, Hazan R, Gavish L. Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide. Antibiotics (Basel) 2025; 14:481. [PMID: 40426547 DOI: 10.3390/antibiotics14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that infect bacteria, offer a promising non-antibiotic bactericidal approach. This study investigates the potential synergism between low-dose PBL and phage therapy against P. aeruginosa in planktonic cultures and preformed biofilms. Methods: We conducted a factorial dose-response in vitro study combining P. aeruginosa-specific phages with PBL (457 nm, 33 kHz) on both PA14 and multidrug-resistant PATZ2 strains. After excluding direct PBL effects on phage titer or activity, we assessed effectiveness on planktonic cultures using growth curve analysis (via growth_curve_outcomes, a newly developed, Python-based tool available on GitHub) , CFU, and PFU. Biofilm efficacy was evaluated using CFU post-sonication, crystal violet staining, and live/dead staining with confocal microscopy. Finally, we assessed reactive oxygen species (ROS) as a potential mechanism using the nitro blue tetrazolium reduction assay. ANOVA or Kruskal-Wallis tests with post hoc Tukey or Conover-Iman tests were used for comparisons (n = 5 biological replicates and technical triplicates). Results: The bacterial growth lag phase was significantly extended for phage alone or PBL alone, with a synergistic effect of up to 144% (p < 0.001 for all), achieving a 9 log CFU/mL reduction at 24 h (p < 0.001). In preformed biofilms, synergistic combinations significantly reduced biofilm biomass and bacterial viability (% Live, median (IQR): Control 80%; Phage 40%; PBL 25%; PBL&Phage 15%, p < 0.001). Mechanistically, PBL triggered transient ROS in planktonic cultures, amplified by phage co-treatment, while a biphasic ROS pattern in biofilms reflected time-dependent synergy. Conclusions: Phage therapy combined with PBL demonstrates a synergistic bactericidal effect against P. aeruginosa in both planktonic cultures and biofilms. Given the strong safety profile of PBL and phages, this approach may lead to a novel, antibiotic-complementary, safe treatment modality for patients suffering from difficult-to-treat antibiotic-resistant infections and biofilm-associated infections.
Collapse
Affiliation(s)
- Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Tzameret, The Military Track of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Jonathan Belin
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Yonatan Eavri
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Anatoly Shapochnikov
- The Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Lilach Gavish
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- The Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- The Saul and Joyce Brandman Hub for Cardiovascular Research, Jerusalem 9112001, Israel
| |
Collapse
|
2
|
Rivera-Santiago A, Diez-Gonzalez F. Combination of Blue Light and Chemical Sanitizers for Inactivation of Listeria monocytogenes Dried Cells on Inert Surfaces. J Food Prot 2025; 88:100490. [PMID: 40118184 DOI: 10.1016/j.jfp.2025.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Environmental contamination of ready-to-eat (RTE) foods with Listeria monocytogenes is a major food safety concern. Treatment of surfaces with antimicrobial blue light (aBL) has recently emerged as a technology that can supplement current sanitation practices. Chemical sanitizers are used extensively by the food industry, but their combination with aBL at 405 nm has not been evaluated. This project was undertaken to determine the combined effect of sanitizers with aBL to inactivate L. monocytogenes dried cells on inert surfaces. Peracetic acid (PAA), benzalkonium chloride (BAC), and sodium hypochlorite (NaClO) at time/concentrations that delivered less than 2 Log CFU viability reductions were combined with limited aBL treatments applied simultaneously or sequential on cells dried on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons. When five-strain mixtures were dried on SS and treated with aBL alone (575 J/cm2), average viability reductions of less than 2 Log CFU/coupon were observed. Single treatments with NaClO (20 ppm, 60 min) and PAA (30 ppm, 30 min) caused less than 1.5 Log CFU/coupon inactivation on SS. During independent experiments that combined the same concentration/time of NaClO and PAA applied simultaneously with the above aBL dose, viability reductions of 5.4 and 4.7 Log CFU/coupon, respectively, were measured. The results of sequential treatments of dried cells with sanitizers and aBL were variable depending on the sanitizer, concentration, surface, and the sequence order. Measured reductions of sequential treatments varied from 1.5 Log CFU/coupon with BAC (40 ppm/30 min) to 5.5 Log CFU/coupon with NaClO (75 ppm/60 min) applied before aBL on PTFE. The comparison between the results obtained at low sanitizer concentrations simultaneously used with aBL to the sum of the single results (3.5 vs. 5.4 Log CFU/coupon or 3.5 vs. 4.7 Log CFU/coupon) resulted in statistically significant differences (p < 0.05). These findings suggested that there was a synergistic effect between sanitizers and aBL.
Collapse
Affiliation(s)
| | - Francisco Diez-Gonzalez
- Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA.
| |
Collapse
|
3
|
Huang S, Zhang X, Qin H, Liu M. The Impact of Light Parameters and Tetracycline Concentration on Antimicrobial Photodynamic Inactivation Against Drug Resistant Escherichia coli. JOURNAL OF BIOPHOTONICS 2025:e70049. [PMID: 40258583 DOI: 10.1002/jbio.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
ABL is an effective antimicrobial approach and recent studies indicated tetracycline has the ability to produce reactive oxygen species under blue light irradiation. However, the impact of light parameters and tetracycline concentration on the antimicrobial efficacy is not clear. In this study, we investigated the impacts of light dose, drug concentration, and irradiance on drug resistant Escherichia coli survival. The results showed the increase of light dose and drug concentration caused the increase in oxidative damage and bacterial death. Besides, we found the impact of irradiance on the combined antimicrobial effect was affected by the drug concentration. The results of photobleaching and dissolved oxygen showed the different rates of photochemical reaction under different irradiance. Finally, we proposed that suitable light treatment can be designed by varying the tetracycline concentration, light dose, and irradiance for different situations.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xuran Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
4
|
Kiplagat E, Ramezani M, Malla S, Cisneros-Zevallos L, Joshi V, Castillo A. Factors Affecting Growth and Survival of Salmonella in Onion Extracts and Onion Bulbs. Foods 2024; 14:1. [PMID: 39796291 PMCID: PMC11720469 DOI: 10.3390/foods14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
This study investigated the survival and growth of Salmonella in onion extracts and bulbs. The inhibition or retardation of Salmonella growth by extracts of red, white, and yellow onions was tested against the onion germplasm and exposure to different light spectra during curing. Separately, survival of Salmonella Newport was tested on red, white, and yellow onion bulbs on the external and internal onion layers with a syringe and needle. Onions exposed to blue, red, and white LED light during curing produced extracts with variable antimicrobial effects (p < 0.05), with those exposed to blue light showing the strongest inhibitory effect on red and white onions only. In survival studies, Salmonella inoculated on the outer scale was reduced by 1.2, >2.7, and >2.4 logs on red, white, and yellow onions, respectively, within 3 days, whereas it grew by 2.4, 2.6, and 2.8 logs inside red, white, and yellow onion bulbs, respectively, over 18 days. In separate trials, the outer layer again did not support the survival of Salmonella Newport. The aw increased significantly from 0.51 to 0.58 in the outer scales and 0.96 to 0.98 for the fourth inner scales. Despite being rich in antimicrobial polyphenols, tissue integrity and water content may still promote Salmonella growth in onions.
Collapse
Affiliation(s)
- Emmanuel Kiplagat
- Department of Food Science and Technology, Texas A&M AgriLife Research, College Station, TX 77843, USA;
| | - Moazzameh Ramezani
- Texas A&M AgriLife Research & Extension Center at Uvalde, Uvalde, TX 78801, USA; (M.R.); (S.M.)
| | - Subas Malla
- Texas A&M AgriLife Research & Extension Center at Uvalde, Uvalde, TX 78801, USA; (M.R.); (S.M.)
| | - Luis Cisneros-Zevallos
- Department of Horticulture, Texas A&M AgriLife Research, College Station, TX 77843, USA;
| | - Vijay Joshi
- Texas A&M AgriLife Research & Extension Center at Uvalde, Uvalde, TX 78801, USA; (M.R.); (S.M.)
| | - Alejandro Castillo
- Department of Food Science and Technology, Texas A&M AgriLife Research, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Olszewska MA, Dev Kumar G, Hur M, Diez-Gonzalez F. Inactivation of dried cells and biofilms of Listeria monocytogenes by exposure to blue light at different wavelengths and the influence of surface materials. Appl Environ Microbiol 2023; 89:e0114723. [PMID: 37846990 PMCID: PMC10617584 DOI: 10.1128/aem.01147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial blue light (aBL) in the 400-470 nm wavelength range has been reported to kill multiple bacteria. This study assessed its potential for mitigating an important foodborne pathogen, Listeria monocytogenes (Lm), focusing on surface decontamination. Three wavelengths were tested, with gallic acid as a photosensitizing agent (Ps), against dried cells obtained from bacterial suspensions, and biofilms on stainless-steel (SS) coupons. Following aBL exposure, standard microbiological analysis of inoculated coupons was conducted to measure viability. Statistical analysis of variance was performed. Confocal laser scanning microscopy was used to observe the biofilm structures. Within 16 h of exposure at 405 nm, viable Lm dried cells and biofilms were reduced by approx. 3 log CFU/cm2 with doses of 2,672 J/cm2. Application of Ps resulted in an additional 1 log CFU/cm2 at 668 J/cm2, but its effect was not consistent. The highest dose (960 J/cm2) at 420 nm reduced viable counts on the biofilms by 1.9 log CFU/cm2. At 460 nm, after 800 J/cm2, biofilm counts were reduced by 1.6 log CFU/cm2. The effect of material composition on Lm viability was also investigated. Irradiation at 405 nm (668 J/cm2) of cells dried on polystyrene resulted in one of the largest viability reductions (4.0 log CFU/cm2), followed by high-density polyethylene (3.5 log CFU/cm2). Increasing the dose to 4,008 J/cm2 from 405 nm (24 h), improved its efficacy only on SS and polyvinyl chloride. Biofilm micrographs displayed a decrease in biofilm biomass due to the removal of biofilm portions from the surface and a shift from live to dead cells suggesting damage to biofilm cell membranes. These results suggest that aBL is a potential intervention to treat Lm contamination on typical material surfaces used in food production.IMPORTANCECurrent cleaning and sanitation programs are often not capable of controlling pathogen biofilms on equipment surfaces, which transmit the bacteria to ready-to-eat foods. The presence of native plant microbiota and organic matter can protect pathogenic bacteria by reducing the efficacy of sanitizers as well as promoting biofilm formation. Post-operation washing and sanitizing of produce contact surfaces might not be adequate in eliminating the presence of pathogens and commensal bacteria. The use of a dynamic and harmless light technology during downtime and close of operation could serve as a useful tool in preventing biofilm formation and persistence. Antimicrobial blue light (aBL) technology has been explored for hospital disinfection with very promising results, but its application to control foodborne pathogens remains relatively limited. The use of aBL could be a complementary strategy to inactivate surfaces in restaurant or supermarket deli settings.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Minji Hur
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| | | |
Collapse
|
6
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
7
|
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112540. [PMID: 35973287 DOI: 10.1016/j.jphotobiol.2022.112540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 μg/mL) and LC90 (18.3 μg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khalid T Nawaf
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Anbar Health Department, Anbar province, Ministry of Health, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Faculty of Medicine, Department of Ophthalmology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
8
|
Enwemeka CS, Bumah VV, Castel JC, Suess SL. Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112378. [PMID: 35085988 PMCID: PMC8713422 DOI: 10.1016/j.jphotobiol.2021.112378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; James Hope University, Lagos, Nigeria; Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA
| | | | - Samantha L Suess
- Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
9
|
Denzinger M, Schenk KBM, Krauß S, Held M, Daigeler A, Wolfertstetter PR, Knorr C, Illg C, Eisler W. Immune-modulating properties of blue light do not influence reepithelization in vitro. Lasers Med Sci 2022; 37:2431-2437. [PMID: 35048232 DOI: 10.1007/s10103-022-03502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Phototherapy is gaining more attention in the treatment of various diseases. Especially, blue light seems to be a promising approach for wound healing promotion due to its antimicrobial and immune-modulating properties. Despite this, there is only little research focusing on the immune-modulating properties of blue light and its possible effects on wound healing. Therefore, we investigated the effects of blue light irradiation on peripheral blood mononuclear cells (PBMC) and the influence on reepithelization in vitro. PBMCs were irradiated with DermoDyne® (DermoDyne HealthCare, Berlin, Germany) and effects on cell viability, cytokine expression, and scratch wound closure were evaluated afterwards. Irradiated cells showed a higher Interleukin-γ concentration while irradiation reduced resazurin concentration in a time-dependent manner. No differences in reepithelization were detectable when keratinocytes were treated with the supernatant of these blue light irradiated PBMCs. Blue light-mediated ex vivo stimulation of PBMCs does not cause faster reepithelization in an in vitro setting. Further research is needed to investigate the wound healing effects of phototherapy with blue light.
Collapse
Affiliation(s)
- Markus Denzinger
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany.
| | - Katharina B M Schenk
- Department of Medicine, St. John of God Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krauß
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Manuel Held
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Adrien Daigeler
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Patricia Reis Wolfertstetter
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany
| | - Christian Knorr
- Department of Pediatric Surgery and Orthopedics, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, Steinmetzstraße 1-3, 93049, Regensburg, Germany
| | - Claudius Illg
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Wiebke Eisler
- Clinic for Plastic, Reconstructive, Hand and Burn Surgery, BG Trauma Center, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Terrosi C, Anichini G, Docquier JD, Gori Savellini G, Gandolfo C, Pavone FS, Cusi MG. Efficient Inactivation of SARS-CoV-2 and Other RNA or DNA Viruses with Blue LED Light. Pathogens 2021; 10:pathogens10121590. [PMID: 34959545 PMCID: PMC8708627 DOI: 10.3390/pathogens10121590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Blue LED light has proven to have a powerful bacteria-killing ability; however, little is known about its mechanism of virucidal activity. Therefore, we analyzed the effect of blue light on different respiratory viruses, such as adenovirus, respiratory syncytial virus and SARS-CoV-2. The exposure of samples to a blue LED light with a wavelength of 420 nm (i.e., in the visible range) at 20 mW/cm2 of irradiance for 15 min appeared optimal and resulted in the complete inactivation of the viral load. These results were similar for all the three viruses, demonstrating that both enveloped and naked viruses could be efficiently inactivated with blue LED light, regardless of the presence of envelope and of the viral genome nature (DNA or RNA). Moreover, we provided some explanations to the mechanisms by which the blue LED light could exert its antiviral activity. The development of such safe and low-cost light-based devices appears to be of fundamental utility for limiting viral spread and for sanitizing small environments, objects and surfaces, especially in the pandemic era.
Collapse
Affiliation(s)
- Chiara Terrosi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Jean Denis Docquier
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Gianni Gori Savellini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, 50121 Florence, Italy;
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.T.); (G.A.); (J.D.D.); (G.G.S.); (C.G.)
- Correspondence: ; Tel.: +39-0577-233871; Fax: +39-0577-233870
| |
Collapse
|
11
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
El-Gendy AO, Samir A, Ahmed E, Enwemeka CS, Mohamed T. The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on gram-positive and gram-negative bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112300. [PMID: 34455353 DOI: 10.1016/j.jphotobiol.2021.112300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles are well-known for their antimicrobial effect. However, they are potentially toxic in high doses. We explored the possibility of enhancing the bactericidal effect of low concentrations of silver nanoparticles with blue light femtosecond laser irradiation, since such concentrations are less toxic. The growth dynamics of Pseudomonas aeruginosa, Listeria monocytogenes and methicillin-resistant Staphylococcus aureus grown in pre-synthesized silver nanoparticles were measured with or without pre-irradiation with 50 mW and 400 nm femtosecond laser irradiation. With each bacterium, combined treatment with laser and silver nanoparticles significantly reduced bacterial growth, indicating that this form of treatment could be beneficial in the ongoing efforts to reduce the deleterious effects of antibiotic resistant Gram-positive and Gram-negative bacteria. The combined treatment was more antimicrobial than treatment with silver nanoparticles alone or photo-irradiation alone. P. aeruginosa and L. monocytogenes were more susceptible to the bactericidal effects of silver nanoparticles, and the combination of laser treatment and silver nanoparticles than MRSA.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
13
|
Enwemeka CS, Bumah VV, Mokili JL. Pulsed blue light inactivates two strains of human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112282. [PMID: 34404018 PMCID: PMC8349404 DOI: 10.1016/j.jphotobiol.2021.112282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that blue light has the potential to inactivate viruses. Therefore, we investigated the effect of 405 nm, 410 nm, 425 nm and 450 nm pulsed blue light (PBL) on human alpha coronavirus HCoV-229 E and human beta coronavirus HCoV-OC43, using Qubit fluorometry and RT-LAMP to quantitate the amount of nucleic acid in irradiated and control samples. Like SARS-CoV-2, HCoV-229E and HCoV-OC43 are single stranded RNA viruses transmitted by air and direct contact; they have similar genomic sizes as SARS-CoV-2, and are used as surrogates for SARS-CoV-2. Irradiation was carried out either at 32.4 J cm-2 using 3 mW cm-2 irradiance or at 130 J cm-2 using 12 mW cm-2 irradiance. Results: (1) At each wavelength tested, PBL was antiviral against both coronaviruses. (2) 405 nm light gave the best result, yielding 52.3% (2.37 log10) inactivation against HCoV-OC43 (p < .0001), and a significant 1.46 log 10 (44%) inactivation of HCoV-229E (p < .01). HCoV-OC43, which like SARS-CoV-2 is a beta coronavirus, was more susceptible to PBL irradiation than alpha coronavirus HCoV-229E. The latter finding suggests that PBL is potentially antiviral against multiple coronavirus strains, and that, while its potency may vary from one virus to another, it seems more antiviral against beta coronaviruses, such as HCoV-OC43. (3) Further, the antiviral effect of PBL was better at a higher irradiance than a lower irradiance, and this indicates that with further refinement, a protocol capable of yielding 100% inactivation of viruses is attainable.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - John L Mokili
- Viral Information Institute, Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
14
|
The viability of human cells irradiated with 470-nm light at various radiant energies in vitro. Lasers Med Sci 2021; 36:1661-1670. [PMID: 33486613 DOI: 10.1007/s10103-021-03250-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Blue light is known to be antimicrobial, but its effect on normal cutaneous and subcutaneous cells remains unclear. Therefore, we studied the effect of 470-nm light on the viability of adult and neonatal human dermal fibroblasts, Jurkat T-cells, and THP-1 monocytes in vitro. Each culture was irradiated with 0, 3, 55, or 110 J/cm2 of 470-nm light and subjected to trypan blue assay to ascertain viability. Further, MTT, neutral red, and fluorescence assays of fibroblasts were performed, and cell morphology visualized using bright field and fluorescence microscopy. At each dose and in each of the four cell lines, there was no significant difference in cell concentration between irradiated and non-irradiated cultures, even though irradiation with 55 J/cm2 or 110 J/cm2 slightly decreased cell count. Light microscopy showed progressive morphological changes in the fibroblasts as energy fluence increased from 55 to 110 J/cm2. Irradiation at 3 J/cm2 produced a slight but non-significant increase in the viability of Jurkat T-cells and THP-1 monocytes. In contrast, at 110 J/cm2 radiant exposure, irradiation slightly decreased the viability of all four cells. While 3 J/cm2 appears stimulatory, our finding that 110 J/cm2 produces a slight decrease in viability and engenders morphological changes in fibroblasts, suggesting that such high doses should be avoided in blue light treatments.
Collapse
|
15
|
Rocha MP, Ruela AL, Rosa LP, Santos GP, Rosa FC. Antimicrobial photodynamic therapy in dentistry using an oil-in-water microemulsion with curcumin as a mouthwash. Photodiagnosis Photodyn Ther 2020; 32:101962. [DOI: 10.1016/j.pdpdt.2020.101962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023]
|
16
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
17
|
Enwemeka CS, Bumah VV, Masson-Meyers DS. Light as a potential treatment for pandemic coronavirus infections: A perspective. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 207:111891. [PMID: 32388486 PMCID: PMC7194064 DOI: 10.1016/j.jphotobiol.2020.111891] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “Spanish influenza” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.
Collapse
Affiliation(s)
- Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Violet Vakunseh Bumah
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | |
Collapse
|
18
|
Bumah VV, Masson-Meyers DS, Tong W, Castel C, Enwemeka CS. Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes - A correlative fluorescence spectroscopy study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111701. [DOI: 10.1016/j.jphotobiol.2019.111701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
|
19
|
Visible light as an inhibitor of Campylobacter jejuni. Int J Antimicrob Agents 2020; 55:105818. [DOI: 10.1016/j.ijantimicag.2019.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
|
20
|
Masson-Meyers DS, Bumah VV, Castel C, Castel D, Enwemeka CS. Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111719. [PMID: 31770705 DOI: 10.1016/j.jphotobiol.2019.111719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Infection with Propionibacterium acnes is ubiquitous, and drug resistant strains have been on the rise as the use of pharmaceutical antimicrobials continues to engender the emergence of further resistant strains. In previous studies, we showed that treatment with blue light serves as an alternative to pharmaceutical intervention. As a part of our ongoing effort to improve the antimicrobial efficacy of blue light, we studied the effect of pulsed 450 nm light on P. acnes in vitro and compared two pulsed rates with continuous wave irradiation. We irradiated cultures of P. acnes at various irradiances and radiant energies either singly or repeatedly at various time intervals, using printed micro-LEDs, with the goal of finding the lowest combination of irradiance and radiant energy that would yield 100% bacterial suppression. Our results show that treatment with 33% pulsed light gave the best result compared to 20% pulsed wave or continuous wave. Timing irradiation to coincide with the replication cycle of P. acnes produced a significantly better antimicrobial effect. Furthermore, repeated irradiation at 3-h or 4-h interval enabled significant bacterial suppression even at lower irradiances; thus, making single irradiation at high irradiances unnecessary. Moreover, combining repeated irradiation with appropriate duration of treatment and 33% irradiation pulse rate gave optimal 100% [7 log10] bacterial suppression.
Collapse
Affiliation(s)
| | - Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182. USA.
| | - Chris Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Dawn Castel
- CareWear Corp, 1225 Financial Blvd, Reno, NV 89502, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182. USA.
| |
Collapse
|
21
|
Bumah VV, Masson-Meyers DS, Enwemeka CS. Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111702. [PMID: 31760372 DOI: 10.1016/j.jphotobiol.2019.111702] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
In our recent study, we showed that pulsed blue light (PBL) suppresses the growth of Propionibacterium acnes more than continuous wave (CW) blue light in vitro, but it is not known that other bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), respond similarly to PBL. The high potency of PBL relative to CW blue light makes it a suitable antimicrobial for suppressing bacterial growth in biofilms as well. Therefore, we determined if MRSA-a deadly bacterium of global concern-is susceptible to 450 nm PBL irradiation in vitro, and ascertained whether the bactericidal effect of PBL on planktonic P. acnes culture can be replicated in biofilms of P. acnes and MRSA. In three series of experiments, we irradiated P. acnes and MRSA respectively, either in planktonic cultures, forming biofilms or formed biofilms. Compared to controls, the results showed 100% bacterial suppression in planktonic cultures of MRSA irradiated with 3 mW/cm2 irradiance and 7.6 J/cm2 radiant exposure three times at 30-minute intervals, and also in P. acnes cultures irradiated with 2 mW/cm2 irradiance 5 J/cm2 radiant exposure thrice daily during each of 3 days. Irradiation of biofilms with the same irradiances and radiant exposures that gave 100% bacterial suppression in planktonic cultures resulted in disruption and disassembly of the architecture of MRSA and P. acnes biofilms, more so in forming biofilms than formed biofilms. The antimicrobial effect on each bacterium was minimal in forming biofilms, and even less in formed biofilms. Increasing radiant exposure slightly from 7.6 J/cm2 to 10.8 J/cm2 without changing any other parameter, yielded more disruption of the biofilm and fewer live MRSA and P. acnes, suggesting that 100% bacterial suppression is possible with further refinement of the protocol. In both planktonic cultures and biofilms, PBL suppressed MRSA more than P. acnes.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
22
|
Van Oijen GW, Croughs PD, Hagenaars T, Verhofstad MHJ, Van Lieshout EMM. Antimicrobial Effect Of Visible Blue Light Used In A Minimally Invasive Intramedullary Fracture Stabilization System. J Bone Jt Infect 2019; 4:216-222. [PMID: 31700769 PMCID: PMC6831804 DOI: 10.7150/jbji.35629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction: Since 2009, the IlluminOss® System is being used as an intramedullary fracture treatment. The system is characterized by the use of blue light to polymerize liquid monomer after its infusion in a polyethylene terephthalate balloon. Very few infections of the material have been observed, which might be explained by the possible antimicrobial side-effect of the blue light used in this intramedullary fracture stabilization system. This study aimed to assess this antimicrobial (side-)effect on S. aureus. Methods: A suspension of 1.5 x 103 CFU/ml of 8325-4 S. aureus was placed into five, custom made, black delrin cylinders. The implant was placed into the cylinders and the light source was activated for 200, 400, 600, 800, or 1,000 seconds. 100 µL of the light exposed suspension was grafted on blood agar and placed in a 35 degrees Celsius incubator for 24 hours. Colonies on each agar plate were counted and compared to the control plates (no blue light exposure). Results: The control plates showed a mean of 85 ± 15 colonies per plate. A statistically significant decrease was observed after 600 seconds of exposure time; mean colony count of 63 ± 4 (p <0.05). The absolute reduction was 24 ± 14 after 600 seconds exposure time. At 800 and 1,000 seconds, no statistically significant reduction was found compared with the control plates (means 72 ± 10 and 83 ± 14 colonies, respectively). Conclusions: In this study only a temporary reduction of S. aureus was observed. If future research regarding the antimicrobial characteristics of blue light used in the IlluminOss® System is desired, it should focus on the need for oxygen and its availability and the dose and manner of applying the light.
Collapse
Affiliation(s)
- Guido W Van Oijen
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter D Croughs
- Department of Microbiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tjebbe Hagenaars
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael H J Verhofstad
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Esther M M Van Lieshout
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 2018; 94:445-458. [DOI: 10.1111/php.12883] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rachael M. Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Tracy A. White
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - John E. Coia
- Department of Clinical Microbiology; Glasgow Royal Infirmary; Glasgow UK
| | - John G. Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Scott J. MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST); Department of Electronic & Electrical Engineering; University of Strathclyde; Glasgow UK
- Department of Biomedical Engineering; University of Strathclyde; Glasgow UK
| |
Collapse
|
24
|
Araújo TSD, Rodrigues PLF, Santos MS, de Oliveira JM, Rosa LP, Bagnato VS, Blanco KC, da Silva FC. Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 21:219-223. [PMID: 29274394 DOI: 10.1016/j.pdpdt.2017.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Photodynamic Therapy (PDT) is a promising alternative for the treatment of infectious bone lesions in the oral cavity. The objective of this study was to evaluate the antimicrobial effectiveness of PDT using blue LED associated with curcumin in methicillin-resistant Staphylococcus aureus biofilms (MRSA) in bovine bone cavities by fluorescence spectroscopy. Standardized suspensions of MRSA culture were inoculated into bone lesions to form biofilm. Forty bone species were distributed in three distinct groups: L-C- (control); L + C- (LED for 5 min); L-C+ (curcumin incubation for 5 min) and L + C+ (PDT). Aliquots of 100 μL were collected from the bone cavities after the treatments and were cultived in BHI for 24 h at 36 °C ± 1 and bacterial colonies counting were performed. Statistical analysis were performed using the paired t-test and analysis of variance (ANOVA) for the variables studied. RESULTS The control and PDT groups presented statistically significant differences (p < 0.001). It was possible to reduce 3.666 log10 CFU/mL of MRSA and a reduction in the fluorescence emitted after the treatments was observed. The MRSA reduction in biofilms by PDT was the most efficient treatmnent. There was a significant reduction of biofilms in the L + C- and non-PDT groups by fluorescence spectroscopy images.
Collapse
Affiliation(s)
| | | | - Mariana Sousa Santos
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil.
| | | | - Luciano Pereira Rosa
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | | | - Kate Cristina Blanco
- Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| | - Francine Cristina da Silva
- Federal Universityof Bahia, Multidisciplinary Health Institute, Vitória da Conquista, Bahia, Brazil; Universityof São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil.
| |
Collapse
|
25
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Almeida PP, Pereira ÍS, Rodrigues KB, Leal LS, Marques AS, Rosa LP, da Silva FC, da Silva RAA. Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers Med Sci 2017. [PMID: 28646389 DOI: 10.1007/s10103-017-2247-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections caused by Staphylococcus aureus lead to skin infections, as well as soft tissues and bone infections. Given the communal resistance to antibiotics developed by strains of this bacterium, photodynamic therapy emerges as a promising alternative treatment to control and cure infections. Females of the Balb/C mice were infected with 108 CFU of methicillin-resistant S. aureus (MRSA) and divided into four distinct groups: P-L- (negative control group), P+L- (group exposed only to curcumin), P-L+ (group exposed only to LED incidence of 450 nm, 75 mW/cm2, and 54 J/cm2 for 10 min), and P+L+ (group exposed to curcumin followed by 10 min of LED irradiation) (n = 24). The mice were euthanized 48 and 72 h after infection, and biologic materials were collected for analysis of the bacterial load, peripheral blood leukocyte counts, and draining lymph nodes cell counts. The normalization of data was checked and the ANOVA test was applied. The bacterial load in the draining lymph node of P+L+ group was lower when compared to the control groups 72 h post infection (p < 0.0001), indicating that the LED incidence associated with curcumin controls of the staphylococci intradermal infection. The number of the total lymph node cells shows to be lower than control groups in the two availed times (p < 0.01). The histological analysis and the counting of white blood cells did not show differences among cells in the blood and in the tissue of infection. This is the first report showing that photodynamic therapy may be effective against MRSA infection in a murine model of intradermal infection.
Collapse
Affiliation(s)
| | | | | | - Lorena Santos Leal
- Multidisciplinary Health Institute, UFBA, Vitória da Conquista, BA, Brazil
| | | | | | | | - Robson Amaro Augusto da Silva
- Multidisciplinary Health Institute, UFBA, Vitória da Conquista, BA, Brazil.,Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58 Candeias, Vitoria da Conquista, BA, CEP 45029-094, Brazil
| |
Collapse
|
27
|
Schnedeker AH, Cole LK, Lorch G, Diaz SF, Bonagura J, Daniels JB. In vitro
bactericidal activity of blue light (465 nm) phototherapy on meticillin-susceptible and meticillin-resistant Staphylococcus pseudintermedius. Vet Dermatol 2017; 28:463-e106. [DOI: 10.1111/vde.12451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Amy H. Schnedeker
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| | - Lynette K. Cole
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| | - Sandra F. Diaz
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| | - John Bonagura
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| | - Joshua B. Daniels
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; The Ohio State University Veterinary Medical Center; 601 Vernon L. Tharp St. Columbus OH 43210 USA
| |
Collapse
|
28
|
Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman MR, Enwemeka CS, Raicu V. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:118-124. [DOI: 10.1016/j.jphotobiol.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
29
|
Hessling M, Spellerberg B, Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. FEMS Microbiol Lett 2016; 364:fnw270. [PMID: 27915252 DOI: 10.1093/femsle/fnw270] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.
Collapse
Affiliation(s)
- M Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - B Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - K Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
30
|
NicAogáin K, O’Byrne CP. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Front Microbiol 2016; 7:1865. [PMID: 27933042 PMCID: PMC5120093 DOI: 10.3389/fmicb.2016.01865] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host's humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.
Collapse
Affiliation(s)
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, College of Science, National University of IrelandGalway, Ireland
| |
Collapse
|
31
|
Blue light does not impair wound healing in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:53-60. [DOI: 10.1016/j.jphotobiol.2016.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
|
32
|
Guffey JS, Payne WC, Motts SD, Towery P, Hobson T, Harrell G, Meurer L, Lancaster K. Inactivation of Salmonella on tainted foods: using blue light to disinfect cucumbers and processed meat products. Food Sci Nutr 2016; 4:878-887. [PMID: 27826438 PMCID: PMC5090652 DOI: 10.1002/fsn3.354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 01/06/2023] Open
Abstract
Foodborne illness resulting from infectious organisms occurring in vegetables and processed meat is a serious health concern in the United States. Improved and cost-effective techniques for disinfection are needed. Visible light in the blue range (405 nm) was administered to processed meat that had been inoculated with Escherichia coli. One application of light energy at doses of 10, 30, 60, and 100 J/cm2 was applied, in vitro. In the case of vegetables contaminated with Salmonella (cucumbers), 464 nm light was used at 6, 12, and 18 J/cm2. In both cases, after 20 hours of incubation, colony-forming units were counted and compared to controls to determine whether the light energy inhibited growth of E. coli or Salmonella. E. coli - 405 nm light at doses of 30, 60, and 100 J/cm2 were all effective inhibitors of the organism. Kill rates of 75.61 - 96.34% were achieved. Salmonella - 464 nm light at doses of 6, 12, and 18 J/cm2 produced significant inactivation of the organism. Kill rates of 80.23-100% were obtained. Blue light, delivered in the wavelength/dose combinations used in this study is an effective inhibitor of both E. coli and Salmonella on actual foodstuffs. Blue light should be considered as a potentially effective tool in the effort to protect humans from foodborne illnesses.
Collapse
Affiliation(s)
- J Stephen Guffey
- Department of Physical Therapy Arkansas State University P.O. Box 910 State University Arkansas
| | - William C Payne
- Department of Clinical Laboratory Science Arkansas State University P.O. Box 910 State University Arkansas
| | - Susan D Motts
- Department of Physical Therapy Arkansas State University P.O. Box 910 State University Arkansas
| | - Pam Towery
- Department of Nutritional Sciences Arkansas State University P.O. Box 910 State University Arkansas
| | - Todd Hobson
- Department of Physical Therapy Arkansas State University P.O. Box 910 State University Arkansas
| | - Grafton Harrell
- Department of Physical Therapy Arkansas State University P.O. Box 910 State University Arkansas
| | - Logan Meurer
- Department of Clinical Laboratory Science Arkansas State University P.O. Box 910 State University Arkansas
| | - Kristoffer Lancaster
- Department of Clinical Laboratory Science Arkansas State University P.O. Box 910 State University Arkansas
| |
Collapse
|
33
|
Masson-Meyers DS, Bumah VV, Enwemeka CS. A comparison of four methods for determining viability in human dermal fibroblasts irradiated with blue light. J Pharmacol Toxicol Methods 2016; 79:15-22. [PMID: 26780674 DOI: 10.1016/j.vascn.2016.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Several tests are available for assessing the viability of cells; however, there is a dearth of studies comparing the results obtained with each test. We compared the capability of four viability assays (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), neutral red, trypan blue and live/dead fluorescence), to detect potential toxicity in fibroblasts irradiated with 470nm blue light. METHODS Cells were irradiated at 3, 55, 110 and 220J/cm(2), incubated for 24h and viability assessed using each test. RESULTS MTT assay showed significant decreases in viability when cells were irradiated with 110 and 220J/cm(2) energy fluence (dose) (89% and 57% viable cells, respectively; p<0.0001, compared to control); likewise the trypan blue assay showed 42% and 46% viable cells (p<0.0001). Neutral red assay revealed significant decrease in viability when cells were irradiated with 220J/cm(2) (84% viable cells; p=0.0008, compared to control). The live/dead fluorescence assay was less sensitive, evincing 91% and 95% viable cells after irradiation with 110 and 220J/cm(2) respectively. DISCUSSION (1) The four assays differed in their levels of sensitivity to cell viability. (2) The adverse effect of increasing doses seems to manifest as alteration of mitochondrial metabolism, followed by lysosomal dysfunction, membrane disruption and finally loss of cell membrane integrity. (3) Overall, irradiation with 3J/cm(2) or 55J/cm(2) did not adversely affect cell viability. Thus, doses below 110J/cm(2) appear safe.
Collapse
Affiliation(s)
- Daniela S Masson-Meyers
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| | - Violet V Bumah
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| | - Chukuka S Enwemeka
- College of Health Sciences, University of Wisconsin-Milwaukee, 2400 East Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|