1
|
Sun Y, Jiang H, Zhu X, Xiang Y, Hou S, Li Y, Shawkey MD, Chen G, Xing T. Colorful photothermal photonic crystal cotton fabric based on melanin-like polycaffeic acid nanoparticles. Int J Biol Macromol 2025; 305:141056. [PMID: 39978511 DOI: 10.1016/j.ijbiomac.2025.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Photothermal materials have been extensively researched and utilized owing to their exceptional energy conversion capabilities. However, developing dual-functional materials with both vivid coloration and efficient photothermal performance remains a significant challenge, primarily because most photothermal materials have an undesirable black appearance. Herein, colorful photothermal polycaffeic photonic crystal (PCfA PC) cotton fabric was successfully created by assembling melanin-like polycaffeic acid nanoparticles (PCfA NPs) with adjustable size and high monodispersity. The photothermal performance of the PCfA NPs enabled the developed PCfA PC cotton fabric to reach a temperature increase of 86 °C under laser irradiation at a power density of 0.298 W/cm2, suggesting a high photothermal conversion efficiency of 50.6 %. The PCfA PC fabric also demonstrated adjustable, broad spectrum, and highly saturated structural colors, thanks to the regulation of visible light by the PC nanoparticle array. This innovative colorful photothermal fabric effectively combines the inherent photothermal performance of PCfA NPs with the ability of the PCfA PC to modulate visible light, providing novel materials for photothermal imaging and flexible anti-counterfeiting applications.
Collapse
Affiliation(s)
- Yurong Sun
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Haitao Jiang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaowei Zhu
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongxuan Xiang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuaijie Hou
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yichen Li
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent 9000, Belgium
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Salem Y, Sunoqrot S, Hammad A, Rajha HN, Alzaghari LF, Abusulieh S, Maroun RG, Louka N. Oxidation-Driven Assembly of Phenolic Compounds from Grape Seeds Waste into Nanoparticles as Potential Anti-Inflammatory and Wound Healing Therapies. ACS APPLIED BIO MATERIALS 2025; 8:2275-2286. [PMID: 39948441 DOI: 10.1021/acsabm.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Plant polyphenols have recently emerged as green nanoparticle (NP) precursors by oxidation-triggered assembly using oxidizing agents or in alkaline media. This study explored the potential of polyphenolic extracts derived from grape seed waste to serve as natural nanocarriers. Phenolic fractions were extracted from defatted grape seed waste, freeze-dried into powder, and characterized. Grape seed extracts (GSEs) of Obeidi and Asswad Karech, Lebanese autochthonous white and red grape varieties, respectively, had total phenolic contents (TPC) of 370 and 311 mg of gallic acid equivalents (GAE) per gram of dry matter, respectively, along with a high content of catechins, gallic acid, epicatechins, caffeic acid, syringic acid, and protocatechuic acid. GSE NPs were obtained by the oxidation-triggered self-assembly of Obeidi and Asswad Karech polyphenols in the presence of sodium metaperiodate as the oxidizing agent. The NPs exhibited a spherical morphology, hydrodynamic diameters of 109 and 142 nm, and zeta potential values of -20 and -19 mV for Obeidi and Asswad Karech, respectively. Both types of NPs showed high colloidal and chemical stability, even after storage for three months at 4 °C. They also demonstrated high antioxidant capacity, excellent biocompatibility in human dermal fibroblasts, and promising intracellular radical scavenging activity in stimulated RAW 264.7 macrophages. Furthermore, a gel formulation containing 2% Obeidi GSE NPs promoted wound healing with controlled infections and inflammation and faster tissue regeneration in a rat excision wound model. By day 19 of treatment, deep wounds treated with GSE NPs were fully healed with no visible scarring, while the untreated group showed deep scarring and discoloration. Our findings address the valorization of waste generated by wineries and present a promising natural nanocarrier with high stability, antioxidant properties, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Yara Salem
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Alaa Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Hiba N Rajha
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Lujain F Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon
| |
Collapse
|
3
|
Xue Y, Yang F, He Y, Wang F, Xia D, Liu Y. Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2402236. [PMID: 39780538 DOI: 10.1002/adhm.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO2 NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO2/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO2/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO2/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO2/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.
Collapse
Affiliation(s)
- Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
4
|
Chang WT, Lee JY, Deravi LF. Investigating the Role of Surface Confinement and Reaction Dynamics in the Production of Polyphenol-Based Nanoparticles. ACS OMEGA 2025; 10:3930-3936. [PMID: 39926495 PMCID: PMC11799981 DOI: 10.1021/acsomega.4c09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The use of polyphenol-based particles as functional materials has demonstrated great promise for applications ranging from targeted therapeutics to environmental remediation due to their biocompatibility, potent reactivity, and modular chemistry. Despite these rich benefits, polyphenols remain difficult to formulate with due to their susceptibility to spontaneous aggregation in aqueous environments. In this study, we explore conditions that leverage this aggregation as a feature to seed the production of monodispersed (polydispersity index of <0.1) nanoparticles with controlled diameters <200 nm. To accomplish this goal, we evaluated the assembly dynamics of a heterogeneous population of green tea extracts in water and investigated the interplay between temperature, time, and surface confinement in both fixed vessels and emulsion droplets on particle size and uniformity. In both cases, homogeneous nanoparticles are created, highlighting a feasible pathway to control and scale the production of polyphenolic nanostructures for future materials applications.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Department of Chemistry and
Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ji-Young Lee
- Department of Chemistry and
Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Leila F. Deravi
- Department of Chemistry and
Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Zou H, Bian E, He J, Wu W, Deng C. Versatile carrier-free binary nanodrug based on metformin/epigallocatechin gallate nanoparticles: exploring its properties and potential in cancer treatment. Biomater Sci 2025; 13:731-742. [PMID: 39711126 DOI: 10.1039/d4bm01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Epigallocatechin gallate (EGCG), an important active component extracted from green tea, has attracted much attention due to its multiple biological activities such as antioxidant, antibacterial, anti-inflammatory, and antitumor effects. Meanwhile, metformin (Met), a classic drug for the treatment of type 2 diabetes, exhibits additional benefits such as hypoglycemic, antioxidant, anti-inflammatory, and antitumor effects. However, metformin often causes gastrointestinal reactions when used alone, affecting patients' quality of life. In view of this, we proposed an innovative technique for the fabrication of a carrier-free, dual-loaded nanodrug, Met-EGCG nanoparticles (Met-EGCG NPs), via self-assembly. The method for preparing Met-EGCG NPs is simple, rapid and cost-effective. In addition, the carrier-free Met-EGCG NPs nanodrug inherits the strong antioxidant capacity, good biocompatibility and excellent aggregation-induced fluorescence effect of EGCG, and even offer significant advantages in enhancing drug solubility, stability, and bioavailability, while effectively reducing the occurrence of side effects. Moreover, this Met-EGCG NPs nanodrug exhibits a synergistic therapeutic effect of EGCG and metformin, thereby significantly enhancing overall therapeutic efficacy, and demonstrates excellent potential in anti-cancer applications. This study not only successfully prepared Met-EGCG NPs but also experimentally verified their superior performance, opening a new path for the application of EGCG in drug therapy. This carrier-free, dual-loaded drug delivery nanosystem based on Met-EGCG NPs offers potential for drug combination therapy, promising to play a more critical role in the biomedical field and providing new insights and guidance for the development of future multidrug delivery systems.
Collapse
Affiliation(s)
- Huiyu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - ErKang Bian
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jinyun He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Wuming Wu
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha, 410151, China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
Wang Y, Fu S, Zeng Y, Jiao S, Chai G, Xu Y. Tea polyphenols nanoparticles integrated with microneedles multifunctionally boost 5-aminolevulinic acid photodynamic therapy for skin cancer. J Colloid Interface Sci 2025; 677:446-458. [PMID: 39098278 DOI: 10.1016/j.jcis.2024.07.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
5-aminolevulinic acid photodynamic therapy (ALA-PDT) is an emerging therapeutic strategy for skin cancer due to its noninvasiveness and high spatiotemporal selectivity. However, poor skin penetration, poor intratumoral delivery, the instability of aqueous ALA, and the tumor's inherent hypoxia microenvironment are major hurdles hindering the efficacy of ALA-PDT. Herein, we aim to address these challenges by using microneedles (MNs) to assist in delivering nanoparticles based on natural polymeric tea polyphenols (TP NPs) to self-assemble and load ALA (ALA@TP NPs). The TP NPs specifically increase cellular uptake of ALA by A375 and A431 cells and reduce mitochondrial membrane potential. Subsequently, the photosensitizer protoporphyrin IX derived from ALA accumulates in the tumor cells in a dose-dependent manner with TP NPs, generating reactive oxygen species to promote apoptosis and necrosis of A375 and A431 cells. Interestingly, TP NPs can ameliorate the tumor's inherent hypoxia microenvironment and rapid oxygen consumption during PDT by inhibiting hypoxia inducible factor-1α, thereby boosting reactive oxygen species (ROS) generation and enhancing ALA-PDT efficacy through a positive feedback loop. After ALA@TP NPs are loaded into MNs to fabricate ALA@TP NPs@MNs, the MNs enhance skin penetration and storage stability of ALA. Importantly, they exhibit remarkable antitumor efficacy in A375-induced melanoma and A431-induced squamous cell carcinoma with a reduced dose of ALA and reverse hypoxia in vivo. This study provides a facile and novel strategy that integrates MNs and green NPs of TP for addressing the bottlenecks of ALA-PDT and enhancing the ALA-PDT efficacy against skin cancers for future clinical translation.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Siwen Jiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Ma J, Du Z, Gao S, Zang J. Tea polyphenols-mediated supramolecular architectures: Design and applications. Trends Food Sci Technol 2024; 152:104665. [DOI: 10.1016/j.tifs.2024.104665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Hammad AM, Alzaghari LF, Alfaraj M, Lux V, Sunoqrot S. Green Tea Polyphenol Nanoparticles Reduce Anxiety Caused by Tobacco Smoking Withdrawal in Rats by Suppressing Neuroinflammation. TOXICS 2024; 12:598. [PMID: 39195700 PMCID: PMC11360476 DOI: 10.3390/toxics12080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Repeated exposure to tobacco smoke causes neuroinflammation and neuroplasticity, which correlates with smoking withdrawal-induced anxiety. The purpose of this study was to investigate the anticipated involvement of antioxidant-rich nanoparticles (NPs) prepared by oxidation-triggered polymerization of green tea catechins in impacting these effects in a rat model of tobacco smoke exposure. Exposure to tobacco smoke was carried out for 2 h a day, 5 days a week, for a total of 36 days. Weekly behavioral tests were conducted prior to recommencing the exposure. Following a 20-day exposure period, rats were administered either distilled water or green tea (GT) NPs (20 mg/kg, orally) for an additional 16 days. Our findings revealed that tobacco smoke exposure induced anxiety-like behavior indicative of withdrawal, and this effect was alleviated by GT NPs. Tobacco smoke exposure caused a marked increase in the relative mRNA and protein expression of nuclear factor-kappa B (NF-κB) and reduced the relative mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and hypothalamus (HYP) brain subregions. The intervention of GT NPs effectively inhibited these effects. Our findings demonstrate the potent protective role of GT NPs in reducing withdrawal-induced anxiety-like behavior, neuroinflammation, and neuroplasticity triggered by tobacco smoke exposure.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Vanessa Lux
- Department of Genetic Psychology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
10
|
Wang T, Zhang J, Chen Z, Zhang R, Duan G, Wang Z, Chen X, Gu Z, Li Y. Sonochemical Synthesis of Natural Polyphenolic Nanoparticles for Modulating Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401731. [PMID: 38682736 DOI: 10.1002/smll.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Natural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles. By utilizing low frequency ultrasound (40 kHz), the assembly of various natural polyphenolic building blocks is successfully induced, allowing for precise control over the particle formation process. The resulting natural polyphenolic nanoparticles possessed excellent in vitro antioxidative abilities and in vivo therapeutic effects in typical oxidative stress models including wound healing and acute kidney injury. This study opens new avenues for the fabrication of functional materials from naturally occurring building blocks, offering promising prospects for future advancements in this field.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Wen F, Li P, Zhang Y, Zhong H, Yan H, Su W. Preparation, characterization of green tea carbon quantum dots/curcumin antioxidant and antibacterial nanocomposites. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Redox Remodeling by Nutraceuticals for Prevention and Treatment of Acute and Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12010132. [PMID: 36670995 PMCID: PMC9855137 DOI: 10.3390/antiox12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Antioxidant-rich dietary regimens are considered the best practice to maintain health, control inflammation, and prevent inflammatory diseases. Yet, nutraceuticals as food supplements are self-prescribed and purchasable over the counter by healthy individuals for the purpose of beneficial effects on fitness and aging. Hence, the effectiveness, safety, and correct intake of these compounds need to be better explored. Since redox-modulating activity of these compounds appears to be involved in activation and or suppression of immune cells, the preventive use of nutraceuticals is very attractive even for healthy people. This review focuses on redox- and immunomodulating nutraceuticals in the context of diabetes mellitus (DM). In fact, DM is an illustrative disease of latent and predictable inflammatory pathogenetic processes set out and sustained by oxidative stress. DM has been thoroughly investigated through in vitro and in vivo models. Furthermore, human DM is characterized by uncontrolled levels of glucose, a pivotal factor shaping immune responses. Hence, antioxidant nutraceuticals with multifaced activities, including glucose keeping, are described here. A greater number of such multi-player nutraceuticals might be identified using DM animal models and validated in clinical settings on genetic and environmental high-risk individuals.
Collapse
|
16
|
Zhang G, Zhu M, Liao Y, Gong D, Hu X. Action mechanisms of two key xanthine oxidase inhibitors in tea polyphenols and their combined effect with allopurinol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7195-7208. [PMID: 35727856 DOI: 10.1002/jsfa.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tea polyphenols have been reported to have the effect of lowering uric acid. However, there are few studies on the inhibitory effects and molecular mechanisms of specific catechins on the urate-metabolizing enzyme xanthine oxidase (XO). In this research, multiple spectroscopic methods and computer simulations were used to determine the inhibitory ability and mechanisms of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG) on XO. RESULTS Herein, EGCG and GCG reversibly inhibited XO activity in a mixed manner, with IC50 values of 40.50 ± 0.32 and 33.60 ± 0.53 μmol L-1 , and also decreased the superoxide anion radical (O2 - ) of the catalytic system by reducing the XO molecule and inhibiting the formation of uric acid. The combination of EGCG or GCG with allopurinol showed synergistic inhibition on XO. The binding of EGCG or GCG to XO with moderate affinity formed a stable complex by hydrogen bonds and van der Waals forces. The presence of EGCG and GCG made the structure of XO more stable and compact. The two inhibitors bound to the vicinity of flavin adenine dinucleotide (FAD) in XO, hindering the entry of substrate; thus the activity of XO was suppressed. CONCLUSION Both EGCG and GCG are excellent natural XO inhibitors, and inhibited the activity of XO by occupying the channel of the substrate to enter the active center and interfering with the dual substrate reaction catalyzed by XO. These findings provide a scientific basis for the application of catechins in dietary supplements and medicines with lowering uric acid effects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Sunoqrot S, Al-Bakri AG, Ibrahim LH, Aldaken N. Amphotericin B-Loaded Plant-Inspired Polyphenol Nanoparticles Enhance Its Antifungal Activity and Biocompatibility. ACS APPLIED BIO MATERIALS 2022; 5:5156-5164. [PMID: 36241585 DOI: 10.1021/acsabm.2c00537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amphotericin B (AmB) is one of the first-line treatments for systemic fungal infections, yet it suffers from dose-limiting systemic toxicity and high cost of less toxic lipid-based formulations. Here, we report on a facile approach to synthesize an AmB-loaded nanomedicine by leveraging plant-inspired oxidative self-polymerization of the ubiquitous polyphenol quercetin (QCT). Polymerized QCT nanoparticles (pQCT NPs) were formed, loaded with AmB, and functionalized with poly(ethylene glycol) (PEG) to impart steric stability in a simple procedure that relied on mixing followed by dialysis. The AmB-loaded NPs (AmB@pQCT-PEG NPs) were characterized by a drug loading efficiency of more than 90%, a particle size of around 160 nm, a polydispersity index of 0.07, and a partially negative surface charge. AmB release from the NPs was sustained over several days and followed the Korsmeyer-Peppas model with a release exponent (n) value >0.85, denoting drug release by polymer relaxation and swelling. A hemolysis assay revealed the NPs to be highly biocompatible, with negligible hemolytic activity and 30-60% hemolysis after 1 and 24 h of incubation with erythrocytes, respectively, across a wide concentration range (6.25-100.00 μg/mL). Conversely, equivalent concentrations of free AmB caused 90-100% hemolysis within the same timeframe. Importantly, AmB@pQCT-PEG NPs outperformed free AmB in microbial susceptibility assays on Candida albicans, achieving a minimum inhibitory concentration of 62.5 ng/mL after 48 h of incubation, which was 2-fold lower than the free drug. Our results demonstrate that pQCT NPs may serve as a viable AmB delivery platform for the treatment of fungal infections and potentially other AmB-susceptible pathogens.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman11733, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman11942, Jordan
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman11733, Jordan
| | - Neda'a Aldaken
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman11942, Jordan
| |
Collapse
|
18
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
20
|
Wang T, Zhang J, Zhang H, Bai W, Dong J, Yang Z, Yang P, Gu Z, Li Y, Chen X, Xu Y. Antioxidative myricetin-enriched nanoparticles towards acute liver injury. J Mater Chem B 2022; 10:7875-7883. [PMID: 36093595 DOI: 10.1039/d2tb01505f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury (ALI) could severely destroy the liver function and cause inevitable damage to human health. Studies have demonstrated that excessive reactive oxygen species (ROS) and accompanying inflammatory factors play vital roles in the ALI disease. Herein, we fabricated a kind of nature-inspired myricetin-enriched nanomaterial via Michael addition and Schiff base reaction, which possessed uniform morphology, tunable component ratios, great stabilities, promising free radical scavenging abilities, biocompatibility and protective effects towards cells under oxidative stress. Additionally, the therapeutic effects were demonstrated using an ALI model by down-regulating ROS and inflammatory levels and restoring the liver function. This study could provide a strategy to construct robust and antioxidative nanomaterials using naturally occurring molecules against intractable diseases.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinhong Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Kim H, Lee UJ, Song H, Lee J, Song WS, Noh H, Kang MH, Kim BS, Park J, Hwang NS, Kim BG. Synthesis of soluble melanin nanoparticles under acidic conditions using Burkholderia cepacia tyrosinase and their characterization. RSC Adv 2022; 12:17434-17442. [PMID: 35765459 PMCID: PMC9189705 DOI: 10.1039/d2ra01276f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanin nanoparticles (MNPs) used for biomedical applications are often synthesized via the chemical auto-oxidation of catecholic monomers such as dopamine and 3,4-dihydroxyphenylalanine (DOPA) under alkaline conditions. However, the synthetic method for the chemical synthesis of MNP (cMNP) is relatively straightforward and more robust to control their homogenous particle size and morphology than the corresponding enzymatic synthetic methods. In this study, we demonstrated that the simple enzymatic synthesis of MNPs (eMNPs) with homogenous and soluble (<20 nm diameter) properties is possible using dopamine and Burkholderia cepacia tyrosinase (BcTy) under acidic conditions (i.e., pH 3.0). BcTy was highly reactive under pH 5.0, where the natural and chemical oxidation of catechol is complex, and thus melanin was synthesized via the hydroxylation of phenolic substrates. The detailed chemical analysis and characterization of the physical properties of the eMNPs confirmed the higher preservation of the catechol and primary amine moieties in the monomer substrate such as dopamine under acidic conditions. The eMNPs showed enhanced antioxidant activity and conferred stickiness to the formed hydrogel compared to the chemical auto-oxidation method owing to the large number of hydroxyl groups remaining such as catechol and quinone moieties. Because of these advantages and characteristics, the synthesis of MNPs using BcTy under acidic conditions can open a new path for their biomedical applications. Melanin nanoparticles (MNPs) used for biomedical applications are often synthesized via the chemical auto-oxidation of catecholic monomers such as dopamine and 3,4-dihydroxyphenylalanine (DOPA) under alkaline conditions.![]()
Collapse
Affiliation(s)
- Hyun Kim
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Hanbit Song
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Jeongchan Lee
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Won-Suk Song
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Heewon Noh
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, Catholic University of Korea Bucheon 14662 Republic of Korea.,Department of Biotechnology, The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Beom-Seok Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University Seoul 08826 Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea .,Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Republic of Korea.,Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University Seoul 08826 Republic of Korea.,Bio-MAX/N-Bio, Seoul National University Seoul 08826 Republic of Korea.,Institute for Sustainable Development (ISD), Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
22
|
Roy JJ, Rarotra S, Krikstolaityte V, Zhuoran KW, Cindy YDI, Tan XY, Carboni M, Meyer D, Yan Q, Srinivasan M. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103346. [PMID: 34632652 DOI: 10.1002/adma.202103346] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
E-waste generated from end-of-life spent lithium-ion batteries (LIBs) is increasing at a rapid rate owing to the increasing consumption of these batteries in portable electronics, electric vehicles, and renewable energy storage worldwide. On the one hand, landfilling and incinerating LIBs e-waste poses environmental and safety concerns owing to their constituent materials. On the other hand, scarcity of metal resources used in manufacturing LIBs and potential value creation through the recovery of these metal resources from spent LIBs has triggered increased interest in recycling spent LIBs from e-waste. State of the art recycling of spent LIBs involving pyrometallurgy and hydrometallurgy processes generates considerable unwanted environmental concerns. Hence, alternative innovative approaches toward the green recycling process of spent LIBs are essential to tackle large volumes of spent LIBs in an environmentally friendly way. Such evolving techniques for spent LIBs recycling based on green approaches, including bioleaching, waste for waste approach, and electrodeposition, are discussed here. Furthermore, the ways to regenerate strategic metals post leaching, efficiently reprocess extracted high-value materials, and reuse them in applications including electrode materials for new LIBs. The concept of "circular economy" is highlighted through closed-loop recycling of spent LIBs achieved through green-sustainable approaches.
Collapse
Affiliation(s)
- Joseph Jegan Roy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Saptak Rarotra
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Vida Krikstolaityte
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Kenny Wu Zhuoran
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yang Dja-Ia Cindy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Xian Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Michael Carboni
- Université de Montpellier, CEA, CNRS, ENSCM; UMR 5257 (ICSM) BP 17171, Bagnols-sur-Cèze Cedex, 30207, France
| | - Daniel Meyer
- Université de Montpellier, CEA, CNRS, ENSCM; UMR 5257 (ICSM) BP 17171, Bagnols-sur-Cèze Cedex, 30207, France
| | - Qingyu Yan
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Madhavi Srinivasan
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022; 51:4175-4198. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.
Collapse
Affiliation(s)
- Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Lei Yang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Rong Tian
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Hu X, Li Z, Yang Z, Zhu F, Zhao W, Duan G, Li Y. Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Lett 2022; 11:251-256. [PMID: 35574777 DOI: 10.1021/acsmacrolett.1c00729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While low-dimensional (1D and 2D) polycatechol materials have been widely described for a range of biomedical and surface engineering applications, very few examples have been explored that focus on the construction of functional polycatechol nanoparticles. Herein, we report the facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction. IO3--induced catechol redox chemistry could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic polycatechol material properties. The ease, facileness, and controllability of such a one-step fabrication process could highly promote the development of polycatechol nanomaterials for various applications.
Collapse
Affiliation(s)
- Xinhao Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Ashkar MA, Chandhru M, Sundar M, Kutti Rani S, Vasimalai N. The rapid synthesis of intrinsic green-fluorescent poly(pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj03915j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of the amoxicillin drug using pyrogallol-derived carbon dots.
Collapse
Affiliation(s)
- M. A. Ashkar
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Chandhru
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Sundar
- Research, Science Academy of India, Madambakkam, Chennai-603 202, India
| | - S. Kutti Rani
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - N. Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| |
Collapse
|
26
|
Chen T, Cai C, Zhang Y, Zhao Z, Zhang S, Wu C, Gong X, Hong J, Hu T. Interfacial
engineering of polydimethylsiloxane based dielectric elastomers with excellent electromechanical properties via incorporating polyphenol encapsulated multiwalled carbon nanotube. J Appl Polym Sci 2021. [DOI: 10.1002/app.52084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Cheng Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Yan‐ting Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Zeng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Shu‐yan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Chong‐gang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xing‐hou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Jiang Hong
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd. Nanjing China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light‐weight Materials and Processing, and School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| |
Collapse
|
27
|
Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021; 610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Bayan Orainee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
28
|
Liu Z, Yu W, Sheng W, Li R, Guo H, Feng X, Li Q, Wang R, Li W, Jia X. Controllable Synthesis of Polyphenol Spheres via Amine-Catalyzed Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 23:140-149. [PMID: 34910461 DOI: 10.1021/acs.biomac.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A facile and general strategy for preparing uniform and multifunctional polyphenol-based colloidal particles through amine-catalyzed polymerization-induced self-assembly is described. The size and interfacial adhesion of polyphenol spheres can be easily controlled over a wide range via adjusting the concentration of the cosolvent and monomer. Moreover, the polyphenol spheres showed excellent thermal and chemical stability and highly active properties and could efficiently deplete the reactive oxygen species (ROS), which are helpful for in vivo ROS regulation for inflammatory therapeutic. The accessible and versatile method provides a feasible way for the rational engineering of multifunctional polyphenol spheres, which have great potential in many fields.
Collapse
Affiliation(s)
- Zhiqing Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Helin Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Xiantao Feng
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Li
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Xin Jia
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| |
Collapse
|
29
|
Sun MC, Xu XL, Du Y, Lou XF, Wang W, You YC, Liu D, Jin FY, Qi J, Zhu MX, Zhu LW, Wang J, Du YZ. Biomimetic Melanosomes Promote Orientation-Selective Delivery and Melanocyte Pigmentation in the H 2O 2-Induced Vitiligo Mouse Model. ACS NANO 2021; 15:17361-17374. [PMID: 34662120 DOI: 10.1021/acsnano.1c05321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extremely limited drug retention and depigmentation represent the greatest barriers against vitiligo treatment advancement. Here, inspired by biological melanosomes, the primary melanin transporter, we developed biomimetic melanosomes to combat reactive oxygen species (ROS)-mediated melanocyte damage and depigmentation. Briefly, methylprednisolone (MPS) and melanin-mimicking polydopamine (PDA) were encapsulated inside lysine-proline-valine (KPV)-modified deformable liposomes (KPV-Lipos). Owing to their phospholipid bilayer flexibility and the specific affinity for melanocortin 1 receptor (MC1R), KPV-Lipos exhibited 1.43-fold greater skin deposition than traditional liposomes. The binding of KPV and its receptor also contributed to activating the cAMP-tyrosinase (TYR) signaling pathway, improving the endogenous melanin content. In addition, PDA mimicked melanosomes as it effectively increased the exogenous melanin content and scavenged ROS. Meanwhile, MPS inhibited inflammatory cytokine secretion, limiting the depigmented area. Ultimately, the biomimetic melanosomes affected the skin color of mice with H2O2-induced vitiligo. These melanosomes show potential as a universal platform for the self-supply of melanin by self-driven melanin synthesis with exogenous supplementation. Furthermore, this study offers ideas for the production of artificial packed melanosome substitutes for melanocyte-related diseases.
Collapse
Affiliation(s)
- Ming-Chen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue-Fang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Wei Wang
- Department of Pharmaceutics, Hangzhou Third Hospital, Hangzhou 310009, China
| | - Yu-Chan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min-Xia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu-Wen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Wang T, Fan Q, Hong J, Chen Z, Zhou X, Zhang J, Dai Y, Jiang H, Gu Z, Cheng Y, Li Y. Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102485. [PMID: 34605169 DOI: 10.1002/smll.202102485] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The therapeutic potential of nanomaterials toward oxidative damage relevant diseases has attracted great attentions by offering promising advantages compared with conventional antioxidants. Although different kinds of nanoantioxidants have been well developed, the facile fabrication of robust and efficient nanoscavengers is still met with challenges like the use of toxic and high-cost subunits, the involvement of multistep synthetic process, and redundant purification work. Herein, a direct fabrication strategy toward polyphenol nanoparticles with tunable size, excellent biocompatibility, and reactive oxygen species (ROS) scavenging capacities from grape seed via an enzymatic polymerization method is reported. The resulting nanoparticles can efficiently prevent cell damage from ROS and exert promising in vivo antioxidant therapeutic effects on several oxidative stress-related diseases, including accelerating wound healing, inhibiting ulcerative colitis, and regulating the oxidative stress in dry eye disease. This study can stimulate the development of more kinds of low-cost, safe, and efficient biomass-based antioxidative nanomaterials via similar fabrication methodologies.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qianqian Fan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Zhan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xujiao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Hao Jiang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
31
|
Yang P, Zhang J, Xiang S, Jin Z, Zhu F, Wang T, Duan G, Liu X, Gu Z, Li Y. Green Nanoparticle Scavengers against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39126-39134. [PMID: 34383476 DOI: 10.1021/acsami.1c12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The usage of exogenous antioxidant materials to relieve oxidative stress offers an important strategy for the therapy of oxidative stress-induced injuries. However, the fabrication processes toward the antioxidant materials usually require the involvement of extra metal ions and organic agents, as well as sophisticated purification steps, which might cause tremendous environmental stress and induce unpredictable side effects in vivo. To address these issues, herein, we proposed a novel strategy to fabricate green nanoparticles for efficiently modulating oxidative stress, which was facilely prepared from tea polyphenol extracts (originated from green tea) via a green enzymatic polymerization-based chemistry method. The resulting nanoparticles possessed a uniform spherical morphology and good stability in water and biomedium and demonstrated excellent radical scavenging properties. These nanoparticle scavengers could effectively prevent intracellular oxidative damage, accelerate wound recovery, and protect the kidneys from reactive oxygen species damaging in the acute kidney injury model. We hope this work will inspire the further development of more types of green nanoparticles for antioxidant therapies via similar synthetic strategies using green biomass materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Siying Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhekai Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, Wang W. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 2021; 9:6326-6346. [PMID: 34304256 DOI: 10.1039/d1tb00728a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.
Collapse
Affiliation(s)
- Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang Z, Guo W, Yang P, Hu J, Duan G, Liu X, Gu Z, Li Y. Metal-phenolic network green flame retardants. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123627] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Zhu F, Zi L, Yang P, Wei Y, Zhong R, Wang Y, You C, Li Y, Tian M, Gu Z. Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9729-9738. [PMID: 33599495 DOI: 10.1021/acsami.1c00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) will be accompanied by the overload of iron and reactive oxygen species (ROS) following hematoma clearance. Although deferoxamine (DFO) has been widely utilized as a clinical first-line siderophore to remove the iron overload, the ROS-inducing damage still greatly limits the therapeutic effect of DFO. To address this issue, we designed and fabricated a series of dual-functional macromolecular nanoscavengers featuring high-density DFO units and catechol moieties. Note that the former units could effectively remove the iron overload, while the latter ones could efficiently deplete the ROS. The resulting nanoscavengers efficiently down-regulate the iron and ROS levels as well as significantly reduce the cell death in both iron-overloaded RAW 264.7 cells and the ICH mice model. This work suggests a novel clue for the ICH-ameliorated iron-depleting interventional therapeutic regimen.
Collapse
Affiliation(s)
- Fang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Liu Zi
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yang Wei
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, Sichuan 610052, P. R. China
| | - Yan Wang
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Chao You
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
35
|
Sunoqrot S, Al-Shalabi E, Al-Bakri AG, Zalloum H, Abu-Irmaileh B, Ibrahim LH, Zeno H. Coffee Bean Polyphenols Can Form Biocompatible Template-free Antioxidant Nanoparticles with Various Sizes and Distinct Colors. ACS OMEGA 2021; 6:2767-2776. [PMID: 33553895 PMCID: PMC7860067 DOI: 10.1021/acsomega.0c05061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/08/2021] [Indexed: 05/04/2023]
Abstract
Plant polyphenols have attracted attention in recent years due to their ability to undergo oxidative coupling reactions enabled by the presence of multiple phenolic hydroxyl groups, forming chemically versatile coatings and biocompatible nanoparticles (NPs) for various applications. The aim of this study was to investigate whether coffee bean aqueous extracts, which are known to be rich in polyphenols, could serve as a natural source of NP building blocks. Extracts were prepared by heating ground Arabica beans of varying roasting degrees in water with or without the addition of sodium metaperiodate or copper sulfate as an oxidizing agent, followed by filtration. NP formation was verified by dynamic light scattering and transmission electron microscopy, which revealed the presence of nano-sized particles with varying sizes and polydispersities as a function of the coffee type and oxidizing agent used. NP colors ranged from light to medium to dark brown, and particle sizes were between 44 and 250 nm with relatively low polydispersity indices. In vitro antioxidant assays showed that oxidizing agent-treated coffee NPs had lower antioxidant potency compared to air-oxidized NPs, but the free-radical scavenging activity was still retained. Coffee NPs exhibited no antimicrobial activity against common bacterial and fungal strains. Cell viability assays demonstrated that the NPs were biocompatible in human dermal fibroblasts, while exhibiting antiproliferative activity against MCF7 breast cancer cells, particularly copper sulfate-oxidized NPs. This study presents a facile and economical method to produce template-free antioxidant NPs that may be explored for various applications such as drug delivery and cosmetics.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
- . Phone: +962-6-4291511
Ext. 197. Fax: +962-6-4291432
| | - Eveen Al-Shalabi
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Amal G. Al-Bakri
- Department
of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hiba Zalloum
- Hamdi
Mango Scientific Research Center, The University
of Jordan, Amman 11942, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi
Mango Scientific Research Center, The University
of Jordan, Amman 11942, Jordan
| | - Lina Hasan Ibrahim
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Huda Zeno
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| |
Collapse
|
36
|
Yang P, Zhou X, Zhang J, Zhong J, Zhu F, Liu X, Gu Z, Li Y. Natural polyphenol fluorescent polymer dots. GREEN CHEMISTRY 2021. [DOI: 10.1039/d0gc02824j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we reported the general and modular preparation of natural polyphenols-based fluorescent PDs through the one-pot co-polymerization reaction under a mild condition without external energy input and sophisticated organic synthesis.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xin Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jianhua Zhang
- School of Materials Science and Engineering
- Xihua University
- Chengdu 610039
- China
| | - Jian Zhong
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology
- Zhengzhou University
- Zhengzhou 450002
- China
| | - Zhipeng Gu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
37
|
Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. MATERIALS HORIZONS 2021; 8:145-167. [PMID: 34821294 DOI: 10.1039/d0mh01317j] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyphenols are a class of ubiquitous compounds distributed in nature, with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The unique polyphenolic structures based on catechol or pyrogallol moieties allow for strong non-covalent interactions (e.g., multiple hydrogen bonding, electrostatic, and cation-π interactions) as well as covalent interactions (e.g., Michael addition/Schiff-base reaction, radical coupling reaction, and dynamic coordination interactions with boronate or metal ions). This review article provides an overview of the polyphenol-based scaffolds including the hydrogels, films, and nanofibers that have emerged from chemical and functional signatures during the past years. A full description of the structure-function relationships in terms of their utilization in wound healing, bone regeneration, and electroactive tissue engineering is also carefully discussed, which may pave the path towards the rational design and facile preparation of next-generation polyphenol scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
He X, Liu G, Tian Y, Mao T, Wu H, Wei Y, Tao L. Antioxidant Polymers via the Kabachnik-Fields Reaction to Control Cellular Oxidative Stress. Macromol Biosci 2020; 20:e1900419. [PMID: 32989905 DOI: 10.1002/mabi.201900419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Small molecular antioxidants are almost ineffective in regulating harmful oxidative stress in vivo because of their poor bioavailability. Polymer antioxidants are a promising alternative to address this issue, but their laborious synthetic routes limit their development. In this study, aliphatic and aromatic aldehydes are used to synthesize a family of polymers containing different α-aminophosphonate pendant groups via a facile one-pot method that combines the Kabachnik-Fields (KF) reaction and free radical polymerization. The structure-property relationship study of these polymers reveals the KF moieties in polymer structures confer radical scavenging ability on polymers. The radical scavenging ability and cytotoxicity of these polymers are evaluated in a stepwise manner to identify a biocompatible polymer antioxidant that can effectively protect the cells from H2 O2 -induced oxidative damage. This is the first attempt to develop antioxidative polymers by the KF reaction. It highlights the feasibility of synthesizing new functional polymers using multicomponent reactions, which has important implications for organic and polymer chemistry.
Collapse
Affiliation(s)
- Xianzhe He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guoqiang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ye Tian
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tengfei Mao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haibo Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
39
|
Li Z, Li H, Zhang J, Liu X, Gu Z, Li Y. Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2486-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomedicine 2020; 15:6295-6310. [PMID: 32943863 PMCID: PMC7455773 DOI: 10.2147/ijn.s257269] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral administration has been the most common therapeutic regimen in various diseases because of its high safety, convenience, lower costs, and high compliance of patients. However, susceptible in hostile gastrointestinal (GI) environment, many drugs show poor permeability across GI tract mucus and intestinal epithelium with poor oral absorption and limited therapeutic efficacy. In recent years, nanoparticulate drug delivery systems (NDDS) have become a hot research spot because of their unique advantages including protecting drug from premature degrading and interacting with the physiological environment, increasing intracellular penetration, and enhancing drug absorption. However, a slight change in physicochemistry of nanoparticles can significantly impact their interaction with biological pathways and alter the oral bioavailability of drugs. Hence, this review focuses on the factors affecting oral bioavailability from two aspects. On the one hand, the factors are the biochemical and physiological barriers in oral drugs delivery. On the other hand, the factors are the nanoparticle properties including size, surface properties, and shape of nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Xianhu Feng
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yi Hou
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
41
|
Patil P, Bhopalkar G, Zangade S. Alumina-K 3PO 4 Solid Supported Microwave Synthesis of 1, 3-diaryl-2- propene-1-one Derivatives as a Prominent Antioxidant Scavenger. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335607666200129113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The various industrial processes have a diverse effect on the environment
through pollution. In view of these observations, some environmentally benign synthetically protocols
have developed under green chemistry. For rapid and sustainable synthesis, the microwave
irradiation (MI) has gained popularity as a powerful tool compared to conventional synthesis. The
present study describes the synthesis of novel substituted 1, 3-diaryl-2-propene-1-one derivative
using alumina supported K3PO4-MWI combination.
Objective:
Chalcones are important compounds which are widely spread in nature like in fruits,
vegetables, tea, spices, etc. The 2’-hydroxy derivative of chalcones plays an important role in the
synthesis of bioactive compounds. The present communication deals with a convenient and rapid
synthesis of 1, 3-diaryl-2-propene-1-one under the support of alumina-tripotassium phosphate and microwave
irradiation. Our efforts are focused on the introduction of typical and easier route for the
synthesis of title compounds using a microwave. All synthesized chalcones have been screened and
evaluated for the antioxidant activity by DPPH and nitric oxide radical scavenging. Some of these compounds
are found to be more potent scavengers and may lead to the development of a new class of antioxidants.
Methods:
The α, β-unsaturated carbonyl functionality contains two electrophilic centers allowing
them to undergo addition and cyclization reactions with different nucleophiles. In the literature
survey, we found that Chalcones were synthesized using tripotassium phosphate catalyst under refluxing
by a conventional method. A novel method for the synthesis of 1, 3-diaryl-2-propene-1-one
via Claisen Schmidt has been introduced by reacting substituted 2’- hydroxyl acetonaphthones with
substituted aromatic aldehydes under the support of basic alumina –tripotassium phosphate via microwave
radiations. Formation of corresponding Chalcones was confirmed by spectral studies followed
by their screening for antioxidant activity. The scavenging activity is expressed in terms of
% inhibition and IC50 value (μg/ml).
Results:
The structures of newly synthesized Chalcones were confirmed and in good agreement
with obtained spectral analysis such as IR, NMR, Mass and elemental analysis. Commercially
available basic alumina and tripotassium phosphate in combination of microwave were utilized
and found to be effective, convenient route for the synthesis of 1, 3-diaryl-2-propene-1-one derivatives
with desirable yields in short reaction time (5-12 min). The results of antioxidant activity
revealed that the IC50 value for compounds 3a, 3d, 3e, 3f, 3g, 3h, 3j, 3l and 3n are lower than
that of standard ascorbic acid to scavenge DPPH radical. This indicates that these compounds are
more significant scavengers in comparison with standard drug. On the other hand, compounds 3a,
3b, 3c, 3d, 3g, 3l and 3n are more potent scavengers for NO free radical.
Conclusion:
We have introduced an efficient, ecofriendly, simple and fast microwave assisted
method using basic alumina-tripotassium phosphate for the synthesis of 1, 3-diaryl-2-propene-1-
one derivatives. Microwave irradiation provides an effective way for the preparation of Chalcones
in terms of several advantages as a simple procedure, short reaction time, milder reaction condition,
cleaner reaction and excellent yield. The scavenging activity of chalcones against DPPH and NO free
radicals showed excellent properties of antioxidants.
Collapse
Affiliation(s)
- Pravinkumar Patil
- Research Laboratory, Department of Chemistry, N.E.S. Science College, Nanded-431605 (M S), India
| | - Gangadhar Bhopalkar
- Department of Chemistry, Rajiv Gandhi Mahavidyalaya, Mudkhed, Dist. Nanded-431806 (M S), India
| | - Sainath Zangade
- Department of Chemistry, Madhavrao Patil ACS College, Palam, Dist. Parbhani-431720 (M S), India
| |
Collapse
|
42
|
Yi Z, Chen G, Chen X, Ma X, Cui X, Sun Z, Su W, Li X. Preparation of Strong Antioxidative, Therapeutic Nanoparticles Based on Amino Acid-Induced Ultrafast Assembly of Tea Polyphenols. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33550-33563. [PMID: 32627530 DOI: 10.1021/acsami.0c10282] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoformulations offer the opportunity to overcome the shortcomings of drug molecules, such as low solubility, side effects, insufficient stability, etc., but in most of the current nanomedicines, nanocarriers as excipients do not directly participate in the therapy procedure. Accordingly, it is promising to develop the nanotherapeutics composed entirely of pharmaceutically active molecules. Tea polyphenols, especially epigallocatechin gallate (EGCG), are a kind of natural antioxidants with various biological and health beneficial effects and are extensively investigated as nutrients and anticancer drugs. Here, the size-tunable and highly active polyphenol nanoparticles were conveniently synthesized in water and could be massively produced with a simple facility. Compared to the previous strategies, either molecular assembly via oxidative coupling or combination with other biomacromolecules, the present preparation was conducted by the amino acid-triggered Mannish condensation reactions, thus permitting the flexible molecular design of various polyphenol nanoparticles by selecting different amino acids. This straightforward and ultrafast method actually opens up a novel means to make use of naturally reproducible polyphenols. Moreover, inheriting the salient properties of EGCG, these nanoparticles show strong antioxidation capacity, 10-fold higher than the extensively investigated polydopamine nanoparticles, and they are biosafe but have therapeutic effects, according to the in vitro and in vivo assessments of anticancer activity, which is promising for various biomedical purposes.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xinxing Cui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
43
|
Wang X, Yang L, Yang P, Guo W, Zhang QP, Liu X, Li Y. Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9797-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL. Green Tea Polyphenol Microparticles Based on the Oxidative Coupling of EGCG Inhibit Amyloid Aggregation/Cytotoxicity and Serve as a Platform for Drug Delivery. ACS Biomater Sci Eng 2020; 6:4414-4423. [PMID: 33455167 DOI: 10.1021/acsbiomaterials.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of all human amyloid diseases. The compound epigallocatechin-3-gallate (EGCG), the main polyphenol present in green tea, has been described to have beneficial effects in several pathologies, including amyloidogenic diseases. This polyphenol blocks amyloidogenesis and disaggregates a broad range of amyloidogenic peptides comprising amyloid fibrils in vitro. The mechanism by which EGCG acts in the context of amyloid aggregation is not clear. Most of the biological effects of EGCG are attributable to its antioxidant activity. However, EGCG-oxidized products appear to be sufficient for the majority of EGCG amyloid remodeling observed against some polypeptides. If controlled, EGCG oxidation can afford homogenous microparticles (MPs) and can serve as drug delivery agents. Herein, we produced EGCG MPs by oxidative coupling and analyzed their activity during the aggregation of the protein α-synuclein (α-syn), the main protein related to Parkinson's disease. The MPs modestly remodeled mature amyloid fibrils and efficiently inhibited the amyloidogenic aggregation of α-syn. The MPs showed low cytotoxicity against both dopaminergic cells and microglial cells. The MPs reduced the cytotoxic effects of α-syn oligomers. Interestingly, the MPs were loaded with another antiamyloidogenic compound, increasing their activity against amyloid aggregation. We propose the use of EGCG MPs as a bifunctional strategy, blocking amyloid aggregation directly and carrying a molecule that can act synergistically to alleviate the symptoms caused by the amyloidogenic pathway.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Messias
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Antonio Pereira-Neves
- Fiocruz Pernambuco, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco 50740-465, Brazil
| | - Estefania P Azevedo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Júlia Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
45
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
46
|
Salman M, Tabassum H, Parvez S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 2020; 57:2870-2885. [PMID: 32399817 DOI: 10.1007/s12035-020-01924-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
Abstract
The present research was conducted to elucidate a possible molecular mechanism related to neuromodulatory effects of tannic acid (TA) supplementation against traumatic brain injury (TBI) in a rodent model. Oxidative damage and neuroinflammation play a critical role in TBI and lead to behavioral alterations and neuronal dysfunction and death. These changes suggest a potential avenue in neurotherapeutic intervention. The aim of the present study was to investigate the neuroprotective effects of TA and potential mechanism of these effects in a controlled cortical impact injury model of TBI in Wistar rats that were treated with TA (50 mg/kg body weight. i.p.) before 30 min and 6 and 18 h after TBI. TBI-induced rats were examined after 24 h for behavioral dysfunction, Nissl stain, lipid peroxidation rate, glutathione level, activities of antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), the expression level of 4-hydroxynonenal, pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1 beta, as well as brain edema and immunoreactivity of glial fibrillary acidic protein. Results indicated that TA supplementation significantly modulated above mentioned alterations. Moreover, TA treatment effectively upregulated the protein expression of peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) and nuclear factor-E2-related factor-2 (Nrf2) as well as mitochondrial transcription factor A and heme oxygenase-1 (HO-1) following TBI. Overall, our results suggest that TA effectively ameliorates the behavioral alterations, oxidative damage, mitochondrial impairment, and inflammation against TBI that may be attributed to activation of PGC-1α/Nrf-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
47
|
Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther 2020; 27:383-391. [PMID: 32366887 PMCID: PMC7445782 DOI: 10.1038/s41434-020-0151-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Single-strand oligonucleotides provide promising potential as new therapeutics towards various diseases. However, the efficient delivery of oligonucleotide therapeutics is still challenging due to their susceptibility to nuclease degradation and the lack of effective carriers for condensation. In this study, we reported the use of natural polyphenol to facilitate the condensation of single-strand oligonucleotides by cationic polymers. Green tea catechin complexed with single-strand oligonucleotides to form anionic nanoparticles, which were further coated by low molecular weight cationic polymers to increase their cell internalization. The resulting core-shell structured nanoparticles, so-called green nanoparticles (GNPs), showed improved cargo stability, and achieved high efficiency in the delivery of several types of single-strand oligonucleotides including antisense oligonucleotides, anti-miRNA, and DNAzyme. This study provides a facile strategy for the efficient delivery of single-strand oligonucleotides.
Collapse
|
48
|
Yang J, Wang Y, Yin R, Pang J, Cong Y, Yang S. Water molecule attachment mode on the dried polysaccharide influences its free radical scavenging ability. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Xu Z, Han S, Gu Z, Wu J. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv Healthc Mater 2020; 9:e1901502. [PMID: 31977162 DOI: 10.1002/adhm.201901502] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Indexed: 01/20/2023]
Abstract
The accelerating and thorough treatment of chronic wounds still represents a major unmet medical need owing to the complex symptoms resulting from metabolic disorder of the wound microenvironment. Although numerous strategies and bioactive hydrogels are developed, an effective and widely used method of chronic wound treatment remains a bottleneck. With the aim to accelerate chronic wound healing, many hydrogel dressings with antioxidant functions have emerged and are proven to accelerate wound healing, especially for chronic wound repair. The new strategy in chronic wound treatment brought by antioxidant hydrogels is of great significance to human health. Here, the application of antioxidant hydrogels in the repair of chronic wounds is discussed systematically, aiming to provide an important theoretical reference for the further breakthrough of chronic wound healing.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong ProvinceSchool of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong ProvinceSchool of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
- Research Institute of Sun Yat‐sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong ProvinceSchool of Biomedical EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
- Research Institute of Sun Yat‐sen University in Shenzhen Shenzhen 518057 P. R. China
| |
Collapse
|
50
|
Li Z, Zhang J, Fu Y, Yang L, Zhu F, Liu X, Gu Z, Li Y. Antioxidant shape amphiphiles for accelerated wound healing. J Mater Chem B 2020; 8:7018-7023. [DOI: 10.1039/d0tb00578a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We reported a series of POSS-based antioxidant shape amphiphiles for preventing cell oxidative damage and promoting wound healing.
Collapse
Affiliation(s)
- Zhan Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jianhua Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yu Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lu Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology
- Zhengzhou University
- Zhengzhou 450002
- China
| | - Zhipeng Gu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|