1
|
Liu T, Guo H, Li Q, Chen K, Xu J, Ma Y, Lin Z, Zhou X, Chen B. Machine Learning-Enhanced Cerebrospinal Fluid N-Glycome for the Diagnosis and Prognosis of Primary Central Nervous System Lymphoma. J Proteome Res 2025; 24:2369-2385. [PMID: 40259603 DOI: 10.1021/acs.jproteome.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The diagnosis and prognosis of Primary Central Nervous System Lymphoma (PCNSL) present significant challenges. In this study, the potential use of machine learning algorithms in diagnosing and predicting the prognosis for PCNSL based on cerebrospinal fluid (CSF) N-glycomics was investigated. First, CSF samples obtained from a cohort of 60 PCNSL patients and 30 controls were analyzed by hydrophilic interaction-based ultra performance liquid chromatography (HILIC-UPLC)-fluorescence mass spectrometry. Subsequently, nine machine learning models were established to diagnose PCNSL based on the changes of CSF N-glycome, with the Random Forest algorithm proving to be the most effective, achieving an accuracy of 100% in the training set and 89.3% in the test set. Moreover, a COX proportional-hazard model and a nomogram incorporating CSF N-glycome (GP6 and GP27) along with clinical data (age) were crafted. This nomogram's discrimination capacity was considered satisfactory, as evidenced by a C-index of 0.804 (95% CI: 0.68, 0.927). The study reveals that machine learning models based on CSF N-glycome offer a valuable approach for diagnosing and prognosticating PCNSL, demonstrating high accuracy and sensitivity in both classification and survival analysis. These findings may offer new insights into the molecular mechanisms underlying PCNSL and contribute to the advancement of personalized medicine for patients with this disease.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Wenzhou Medical University, Wenzhou 325015, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Wenzhou Medical University, Wenzhou 325015, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China
- Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai 201203, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun Chen
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, Wenzhou Medical University, Wenzhou 325015, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China
- Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai 201203, China
| | - Yan Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiguang Lin
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
2
|
Jiang P, Hakim MA, Saffarian Delkhosh A, Ahmadi P, Li Y, Mechref Y. 4-plex quantitative glycoproteomics using glycan/protein-stable isotope labeling in cell culture. J Proteomics 2025; 310:105333. [PMID: 39426592 PMCID: PMC11834166 DOI: 10.1016/j.jprot.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Alterations in glycoprotein abundance and glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics is pivotal for biomarker discovery, but comprehensive analysis within biological samples remains challenging due to low abundance, complexity, and lack of universal technology. We developed a multiplex glycoproteomic approach using an LC-ESI-MS platform for direct comparison of glycoproteomic quantitation. Glycopeptides were isotopically labeled during cell culture, achieving high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation was validated by mixing the same cell line in a 1:1:1:1 ratio, with mathematical correction applied to deconvolute the ratios. This method proved reliable and was applied to a comparative glycoproteomic study of three breast cancer cell lines (HTB22, MDA-MB-231, MDA-MB-231BR) and one brain cancer cell line (CRL-1620), quantifying glycopeptides from three replicates. The expression of glycopeptides was relatively quantified, and up/down-regulation between cell lines was investigated. This approach provided insights into glycosylation microheterogeneity, crucial for breast cancer brain metastasis research. Benefits include eliminating fluctuations from nano electrospray ionization and reducing analysis time, enabling up to 4-plex profiling in a single injection. Metabolic labeling introduced mass differences at the MS1 level, ensuring increased sensitivity and higher resolution for accurate quantitation. SIGNIFICANCE: Alternations in glycoprotein abundance, changes in glycosylation levels, and variations in glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics has emerged as a popular area of research for biomarker discovery. However, conducting a comprehensive quantitative analysis of the glycoproteome within biological samples remains challenging due to low abundance, inherent complexities, and the absence of universal quantitative technology. Here, we developed a multiplex glycoproteomic approach using an LC-ESI-MS platform to facilitate direct comparison of glycoproteomic quantitation and enhance throughput. This approach offers benefits such as eliminating quantitative fluctuations arising from nano electrospray ionization (ESI) and reducing analysis time, enabling up to 4-plex glycoproteomic profiling in a single injection. Glycopeptides were stable isotopic labeled during cell culture procedure, attaching to monosaccharides, amino acids, or both. We achieved a high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation validation was tested on glycopeptides by mixing the same cell line with 1:1:1:1 ratio. Due to the overlapped isotopes, a mathematical correction was applied to deconvolute the ratio of 4-plex glycopeptides. This method demonstrated quantitative reliability and was successfully applied to a comparative glycoproteomic study of three breast cancer cells (HTB22, MDA-MB-231, and MDA-MB-231BR) and one brain cancer cell (CRL-1620), identifying a total of 264 glycopeptides from three replicates. The expression of glycopeptides among these four cells was relatively quantified and up/down-regulation between two cell lines was investigated. The exploration of glycosylation microheterogeneity through glycopeptide quantification may offer valuable insights for further investigation into breast cancer brain metastasis. Conclusion: The primary advantage of our presented work lies in the multiplexing offered by combining two established labeling techniques, SILAC and IDAWG, both of which have been effectively used and widely cited in the scientific community. This combination enhances the applicability and accuracy of our method, as demonstrated by the extensive citations and successful use of these techniques independently. We believe that this multiplexing approach significantly advances the field, despite the method's current limitation to cell systems.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Arvin Saffarian Delkhosh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
3
|
Miki T, Yamamoto S, Liu C, Torikai K, Kinoshita M, Matsumori N, Kawai T. Highly sensitive two-dimensional profiling of N-linked glycans by hydrophilic interaction liquid chromatography and dual stacking capillary gel electrophoresis. Anal Chim Acta 2024; 1320:342990. [PMID: 39142768 DOI: 10.1016/j.aca.2024.342990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND N-Glycosylation is one of the most important post-translational modifications in proteins. As the N-glycan profiles in biological samples are diverse and change according to the pathological condition, various profiling methods have been developed, such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry. However, conventional analytical methods have limitations in sensitivity and/or resolution, hindering the discovery of minor but specific N-glycans that are important both in the basic glycobiology research and in the medical application as biomarkers. Therefore, a highly sensitive and high-resolution N-glycan profiling method is required. RESULTS In this study, we developed a novel two-dimensional (2D) separation system, which couples hydrophilic interaction liquid chromatography (HILIC) with capillary gel electrophoresis (CGE) via large-volume dual preconcentration by isotachophoresis and stacking (LDIS). Owing to the efficient preconcentration efficiency of LDIS, limit of detection reached 12 pM (60 amol, S/N = 3) with good calibration curve linearity (R2 > 0.999) in the 2D analysis of maltoheptaose. Finally, 2D profiling of N-glycans obtained from standard glycoproteins and cell lysates were demonstrated. High-resolution 2D profiles were successfully obtained by data alignment using triple internal standards. N-glycans were well distributed on the HILIC/CGE 2D plane based on the glycan size, number of sialic acids, linkage type, and so on. As a result, specific minor glycans were successfully identified in HepG2 and HeLa cell lysates. SIGNIFICANCE AND NOVELTY In conclusion, the HILIC/CGE 2D analysis method showed sufficient sensitivity and resolution for identifying minor but specific N-glycans from complicated cellular samples, indicating the potential as a next-generation N-glycomics tool. Our novel approach for coupling LC and CE can also dramatically improve the sensitivity in other separation modes, which can be a new standard of 2D bioanalysis applicable not only to glycans, but also to other diverse biomolecules such as metabolites, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Takaya Miki
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Chenchen Liu
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Faculty of Chemistry, National University of Uzbekistan named after Mirzo Ulugbek, 4 University Str., Tashkent, 100174, Uzbekistan
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-4 Furuedai, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
4
|
She YM, Jia Z, Zhang X. Region-selective and site-specific glycation of influenza proteins surrounding the viral envelope membrane. Sci Rep 2024; 14:18975. [PMID: 39152175 PMCID: PMC11329638 DOI: 10.1038/s41598-024-69793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells. Straightforward sequencing was enhanced by MS/MS fragmentation of small peptides. As a result, we determined a widespread distribution of lysine modifications attributed by the region-selectivity and site-specificity of glycation toward influenza matrix 1, hemagglutinin and neuraminidase. Topological analysis provides insights into the site-specific lysine glycation, localizing in the distinct structural regions of proteins surrounding the viral envelope membrane. Our finding highlights the proteome-wide discovery of lysine glycation of influenza membrane proteins and potential effects on the structural assembly, stability, receptor binding and enzyme activity, demonstrating that the impacts of accumulated glycation on the quality of products can be directly monitored by mass spectrometry-based structural proteomics analyses.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Wang D, Zhang Z, Baudys J, Haynes C, Osman SH, Zhou B, Barr JR, Gumbart JC. Enhanced Surface Accessibility of SARS-CoV-2 Omicron Spike Protein Due to an Altered Glycosylation Profile. ACS Infect Dis 2024; 10:2032-2046. [PMID: 38728322 PMCID: PMC11184558 DOI: 10.1021/acsinfecdis.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.
Collapse
Affiliation(s)
- Dongxia Wang
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Zijian Zhang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Jakub Baudys
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Christopher Haynes
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Sarah H. Osman
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Bin Zhou
- National
Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - John R. Barr
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| |
Collapse
|
6
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
7
|
Hevér H, Xue A, Nagy K, Komka K, Vékey K, Drahos L, Révész Á. Can We Boost N-Glycopeptide Identification Confidence? Smart Collision Energy Choice Taking into Account Structure and Search Engine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:333-343. [PMID: 38286027 PMCID: PMC10853973 DOI: 10.1021/jasms.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
High confidence and reproducibility are still challenges in bottom-up mass spectrometric N-glycopeptide identification. The collision energy used in the MS/MS measurements and the database search engine used to identify the species are perhaps the two most decisive factors. We investigated how the structural features of N-glycopeptides and the choice of the search engine influence the optimal collision energy, delivering the highest identification confidence. We carried out LC-MS/MS measurements using a series of collision energies on a large set of N-glycopeptides with both the glycan and peptide part varied and studied the behavior of Byonic, pGlyco, and GlycoQuest scores. We found that search engines show a range of behavior between peptide-centric and glycan-centric, which manifests itself already in the dependence of optimal collision energy on m/z. Using classical statistical and machine learning methods, we revealed that peptide hydrophobicity, glycan and peptide masses, and the number of mobile protons also have significant and search-engine-dependent influence, as opposed to a series of other parameters we probed. We envisioned an MS/MS workflow making a smart collision energy choice based on online available features such as the hydrophobicity (described by retention time) and glycan mass (potentially available from a scout MS/MS). Our assessment suggests that this workflow can lead to a significant gain (up to 100%) in the identification confidence, particularly for low-scoring hits close to the filtering limit, which has the potential to enhance reproducibility of N-glycopeptide analyses. Data are available via MassIVE (MSV000093110).
Collapse
Affiliation(s)
- Helga Hevér
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Andrea Xue
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Kinga Nagy
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
- Faculty
of Science, Institute of Chemistry, Hevesy György PhD School
of Chemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/A, Budapest H-1117, Hungary
| | - Kinga Komka
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Károly Vékey
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - László Drahos
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Ágnes Révész
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| |
Collapse
|
8
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Alsaleh AN, Aziz IM, Alkubaisi NA, Almajhdi FN. Genetic analysis of human parainfluenza type 2 virus in Riyadh, Saudi Arabia. Virus Genes 2024; 60:1-8. [PMID: 37906378 DOI: 10.1007/s11262-023-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
The extensive mass gathering of pilgrims from all over the world, as well as the constant flow of foreign workers via country entry crossings, raises the likelihood of respiratory virus outbreaks spreading and evolving in Saudi Arabia. Here, we report the sequence and phylogenetic analysis of the human parainfluenza type-2 (HPIV-2) in nasopharyngeal aspirates (NPAs) collected from Riyadh, Saudi Arabia, from 2020/21 to 2021/22 seasons. RNA was extracted from the clinical samples and subjected to RT-PCR analysis for the detection of IAV and IBV. The full-length HN gene of HPIV-2 was amplified and sequenced. Multiple sequence alignments (both nucleotides and deduced amino acids) were aligned using Clustal W, MegAlign program of Lasergene software, and MEGA 7.0. HPIV-2 was found in (4; 2% of 200) NPAs. Sequence and phylogenetic analysis results showed that indicated a genotype shifting from G3 to G4a with 83% sequence homology 62-M786 from Japan, which was prominent throughout the winter seasons of 2008/09. Multiple amino acid sequence alignment revealed 25 sites of possible difference between G3 genotypes and G4a. A total of twenty- two of these locations were shared by the other G4a genotypes, whereas three positions, 67 V, 175 S, and 377Q, were exclusively shared by G3. Only eight conserved N-glycosylation sites were found at amino acids 6(NLS), 286(NTT), 335(NIT), 388(NNS), 498(NES), 504(NPT), 517(NTT), and 539(NGT) in four Riyadh isolates. Our findings also revealed that the G4a genotype of HPIV-2 predominated in our samples population during the winter seasons of 2020/21 and 2021/22. Further research with a larger sample size covering numerous regions of Saudi Arabia throughout different epidemic seasons is needed to achieve an improved knowledge of HPIV-2 circulation.
Collapse
Affiliation(s)
- Asma N Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
10
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
11
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
12
|
Chau TH, Chernykh A, Kawahara R, Thaysen-Andersen M. Critical considerations in N-glycoproteomics. Curr Opin Chem Biol 2023; 73:102272. [PMID: 36758418 DOI: 10.1016/j.cbpa.2023.102272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
N-Glycoproteomics, the system-wide study of glycans asparagine-linked to protein carriers, holds a unique and still largely untapped potential to provide deep insights into the complexity and dynamics of the heterogeneous N-glycoproteome. Despite the advent of innovative analytical and informatics tools aiding the analysis, N-glycoproteomics remains challenging and consequently largely restricted to specialised laboratories. Aiming to stimulate discussions of method harmonisation, data standardisation and reporting guidelines to make N-glycoproteomics more reproducible and accessible to the community, we here discuss critical considerations related to the design and execution of N-glycoproteomics experiments and highlight good practices in N-glycopeptide data collection, analysis, interpretation and sharing. Giving the rapid maturation and, expectedly, a wide-spread implementation of N-glycoproteomics capabilities across the community in future years, this piece aims to point out common pitfalls, to encourage good data sharing and documentation practices, and to highlight practical solutions and strategies to enhance the insight into the N-glycoproteome.
Collapse
Affiliation(s)
- The Huong Chau
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anastasia Chernykh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
13
|
Miller RM, Perkins GL, Bush D, Tartiere A, DeGraan‐Weber N. Glycopeptide characterization of Sf9-derived SARS-CoV-2 spike protein recombinant vaccine candidates expedited by the use of glycopeptide libraries. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9452. [PMID: 36478308 PMCID: PMC9877958 DOI: 10.1002/rcm.9452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE We report the N-glycosylation pattern of Sf9 insect cell-derived recombinant spike proteins being developed as candidate vaccine antigens for SARS-CoV-2 (COVID-19) (Sanofi). The method has been optimised to produce peptides with single, isolated glycosylation sites using multiple protease digests. The development and use of glycopeptide libraries from previous developmental phases allowed for faster analysis than processing datasets from individual batches from first principles. METHODS Purified spike proteins were reduced, alkylated, and digested with proteolytic enzymes. Three different protease digests were utilised to generate peptides with isolated glycosylation sites. The glycopeptides were then analysed using a Waters Q-TOF while using a data-dependent acquisition mass spectrometry experiment. Glycopeptide mapping data processing and glycan classification were performed using Genedata Expressionist via a specialised workflow that used libraries of previously detected glycopeptides to greatly reduce processing time. RESULTS Two different spike proteins from six manufacturers were analysed. There was a strong similarity at each site across batches and manufacturers. The majority of the glycans present were of the truncated class, although at sites N61, N234, and N717/714 high mannose structures were dominant and at N1173/1170 aglycosylation was dominant for both variant proteins. A comparison was performed on a commercially available spike protein and our results were found to be similar to those of earlier reports. CONCLUSIONS Our data clearly show that the overall glycosylation pattern of both spike protein variants was highly similar from batch to batch, and between materials produced at different manufacturing facilities. The use of our glycopeptide libraries greatly expedited the generation of site-specific glycan occupancy data for a large glycoprotein. We compared our method with previously obtained data from a commercially available insect cell-derived spike protein and the results were comparable to published findings.
Collapse
|
14
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
15
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
17
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Wang C, Liu L, Wang T, Liu X, Peng W, Srivastav RK, Zhu XQ, Gupta N, Gasser RB, Hu M. H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Front Immunol 2022; 13:1034820. [PMID: 36405717 PMCID: PMC9667387 DOI: 10.3389/fimmu.2022.1034820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Nematodes are one of the largest groups of animals on the planet. Many of them are major pathogens of humans, animals and plants, and cause destructive diseases and socioeconomic losses worldwide. Despite their adverse impacts on human health and agriculture, nematodes can be challenging to control, because anthelmintic treatments do not prevent re-infection, and excessive treatment has led to widespread drug resistance in nematode populations. Indeed, many nematode species of livestock animals have become resistant to almost all classes of anthelmintics used. Most efforts to develop commercial anti-nematode vaccines (native or recombinant) for use in animals and humans have not succeeded, although one effective (dead) vaccine (Barbervax) has been developed to protect animals against one of the most pathogenic parasites of livestock animals – Haemonchus contortus (the barber’s pole worm). This vaccine contains native molecules, called H11 and H-Gal-GP, derived from the intestine of this blood-feeding worm. In its native form, H11 alone consistently induces high levels (75-95%) of immunoprotection in animals against disease (haemonchosis), but recombinant forms thereof do not. Here, to test the hypothesis that post-translational modification (glycosylation) of H11 plays a crucial role in achieving such high immunoprotection, we explored the N-glycoproteome and N-glycome of H11 using the high-resolution mass spectrometry and assessed the roles of N-glycosylation in protective immunity against H. contortus. Our results showed conclusively that N-glycan moieties on H11 are the dominant immunogens, which induce high IgG serum antibody levels in immunised animals, and that anti-H11 IgG antibodies can confer specific, passive immunity in naïve animals. This work provides the first detailed account of the relevance and role of protein glycosylation in protective immunity against a parasitic nematode, with important implications for the design of vaccines against metazoan parasites.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianjiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Peng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ratnesh Kumar Srivastav
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Robin B. Gasser, ; Min Hu,
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Robin B. Gasser, ; Min Hu,
| |
Collapse
|
19
|
Hevér H, Nagy K, Xue A, Sugár S, Komka K, Vékey K, Drahos L, Révész Á. Diversity Matters: Optimal Collision Energies for Tandem Mass Spectrometric Analysis of a Large Set of N-Glycopeptides. J Proteome Res 2022; 21:2743-2753. [PMID: 36201757 DOI: 10.1021/acs.jproteome.2c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identification and characterization of N-glycopeptides from complex samples are usually based on tandem mass spectrometric measurements. Experimental settings, especially the collision energy selection method, fundamentally influence the obtained fragmentation pattern and hence the confidence of the database search results ("score"). Using standards of naturally occurring glycoproteins, we mapped the Byonic and pGlyco search engine scores of almost 200 individual N-glycopeptides as a function of collision energy settings on a quadrupole time of flight instrument. The resulting unprecedented amount of peptide-level information on such a large and diverse set of N-glycopeptides revealed that the peptide sequence heavily influences the energy for the highest score on top of an expected general linear trend with m/z. Search engine dependence may also be noteworthy. Based on the trends, we designed an experimental method and tested it on HeLa, blood plasma, and monoclonal antibody samples. As compared to the literature, these notably lower collision energies in our workflow led to 10-50% more identified N-glycopeptides, with higher scores. We recommend a simple approach based on a small set of reference N-glycopeptides easily accessible from glycoprotein standards to ease the precise determination of optimal methods on other instruments. Data sets can be accessed via the MassIVE repository (MSV000089657 and MSV000090218).
Collapse
Affiliation(s)
- Helga Hevér
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary.,Chemical Works of Gedeon Richter Plc, Gyömríi út 19-21, Budapest 1103, Hungary
| | - Kinga Nagy
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary.,Hevesy György PhD School of Chemistry, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Andrea Xue
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary
| | - Kinga Komka
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary
| | - László Drahos
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary
| | - Ágnes Révész
- MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
20
|
Pujić I, Perreault H. Recent advancements in glycoproteomic studies: Glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins. MASS SPECTROMETRY REVIEWS 2022; 41:488-507. [PMID: 33393161 DOI: 10.1002/mas.21679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Collapse
Affiliation(s)
- Ivona Pujić
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:5776-5784. [PMID: 35388686 PMCID: PMC9272412 DOI: 10.1021/acs.analchem.1c04874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Characterization of protein glycosylation by tandem mass spectrometry remains challenging owing to the vast diversity of oligosaccharides bound to proteins, the variation in monosaccharide linkage patterns, and the lability of the linkage between the glycan and protein. Here, we have adapted an HCD-triggered-ultraviolet photodissociation (UVPD) approach for the simultaneous localization of glycosites and full characterization of both glycan compositions and intersaccharide linkages, the latter provided by extensive cross-ring cleavages enabled by UVPD. The method is applied to study glycan compositions based on analysis of glycopeptides from proteolytic digestion of recombinant human coronaviruse spike proteins from SARS-CoV-2 and HKU1. UVPD reveals unique intersaccharide linkage information and is leveraged to localize N-linked glycoforms with confidence.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuaishuai Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
23
|
Wang D, Zhou B, Keppel TR, Solano M, Baudys J, Goldstein J, Finn MG, Fan X, Chapman AP, Bundy JL, Woolfitt AR, Osman SH, Pirkle JL, Wentworth DE, Barr JR. N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry. Sci Rep 2021; 11:23561. [PMID: 34876606 PMCID: PMC8651636 DOI: 10.1038/s41598-021-02904-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
N-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Bin Zhou
- Influenza Division; CDC COVID-19 Emergency Response - Laboratory and Testing Task Force, National Center for Immunization and Respiratory Diseases, Centers For Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Theodore R Keppel
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Maria Solano
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jason Goldstein
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xiaoyu Fan
- Influenza Division; CDC COVID-19 Emergency Response - Laboratory and Testing Task Force, National Center for Immunization and Respiratory Diseases, Centers For Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Asheley P Chapman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan L Bundy
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Adrian R Woolfitt
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Sarah H Osman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James L Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division; CDC COVID-19 Emergency Response - Laboratory and Testing Task Force, National Center for Immunization and Respiratory Diseases, Centers For Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| |
Collapse
|
24
|
Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021; 413:7277-7294. [PMID: 34342671 PMCID: PMC8329908 DOI: 10.1007/s00216-021-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
25
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
26
|
Geurink L, van Tricht E, van der Burg D, Scheppink G, Pajic B, Dudink J, Sänger-van de Griend C. Sixteen capillary electrophoresis applications for viral vaccine analysis. Electrophoresis 2021; 43:1068-1090. [PMID: 34739151 DOI: 10.1002/elps.202100269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
A broad range of CE applications from our organization is reviewed to give a flavor of the use of CE within the field of vaccine analyses. Applicability of CE for viral vaccine characterization, and release and stability testing of seasonal influenza virosomal vaccines, universal subunit influenza vaccines, Sabin inactivated polio vaccines (sIPV), and adenovirus vector vaccines were demonstrated. Diverse CZE, CE-SDS, CGE, and cIEF methods were developed, validated, and applied for virus, protein, posttranslational modifications, DNA, and excipient concentration determinations, as well as for the integrity and composition verifications, and identity testing (e.g., CZE for intact virus particles, CE-SDS application for hemagglutinin quantification and influenza strain identification, chloride or bromide determination in process samples). Results were supported by other methods such as RP-HPLC, dynamic light scattering (DLS), and zeta potential measurements. Overall, 16 CE methods are presented that were developed and applied, comprising six adenovirus methods, five viral protein methods, and methods for antibodies determination of glycans, host cell-DNA, excipient chloride, and process impurity bromide. These methods were applied to support in-process control, release, stability, process- and product characterization and development, and critical reagent testing. Thirteen methods were validated. Intact virus particles were analyzed at concentrations as low as 0.8 pmol/L. Overall, CE took viral vaccine testing beyond what was previously possible, improved process and product understanding, and, in total, safety, efficacy, and quality.
Collapse
Affiliation(s)
- Lars Geurink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ewoud van Tricht
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | | | - Gerard Scheppink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Bojana Pajic
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Justin Dudink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Cari Sänger-van de Griend
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden.,Kantisto B.V., Baarn, The Netherlands
| |
Collapse
|
27
|
Javeed R, Hussain D, Jabeen F, Sajid MS, Fatima B, Ashiq MN, Najam-Ul-Haq M. Apo-H (beta-2-glycoprotein) intact N-glycan analysis by MALDI-TOF-MS using sialic acid derivatization. Anal Bioanal Chem 2021; 413:7441-7449. [PMID: 34686894 DOI: 10.1007/s00216-021-03701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Apo-H is a plasma glycoprotein. Nearly 19% of the molecular weight of this protein is composed of glycans. Up- and down-regulation and structural changes in protein glycans provide diagnostic value for disease detection. Here, an efficient, sensitive, and optimized method is developed for Apo-H N-glycans analysis by MALDI-TOF-MS in positive mode. This bioanalytical method includes sample preparation, sample purification, and detection. An Apo-H enrichment method is developed using standard proteins by anti-Apo-H beads followed by enrichment from plasma samples. SDS-PAGE confirms the Apo-H protein enrichment, which is further verified by LC-MS/MS analysis. The lower ionization efficiency of sialylated glycan hampers their analysis by MALDI-MS. For this, stabilization of sialic acids is done by selective derivatization of carboxyl groups to differentiate between α(2,3)- and α(2,6)-linked sialic acids. Glycans are further purified by HILIC-SPE and analyzed by MALDI-MS. Several branched bi- and tri-antennary glycans with fucosylation and sialylation are identified. The reproducibility of the developed method is tested by analyzing multiple replicates of human plasma, where the same glycans are consistently identified. This method could be applied for the Apo-H glycan profiling of large clinical cohorts for diagnostic purposes.
Collapse
Affiliation(s)
- Rabia Javeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
28
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry 2021; 60:2153-2169. [PMID: 34213308 PMCID: PMC8262170 DOI: 10.1021/acs.biochem.1c00279] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Indexed: 02/08/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
Affiliation(s)
- Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Firdaus Samsudin
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
| | - Lorena Zuzic
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Chemistry, Faculty of Science and Engineering, Manchester Institute
of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K.
| | - Aishwary Tukaram Shivgan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Wan-ting He
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sean Callaghan
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ge Song
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter Yong
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Philip J. M. Brouwer
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
| | - Yutong Song
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Yongfei Cai
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
| | - Helen M. E. Duyvesteyn
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Tomas Malinauskas
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland
| | | | - Martin Frank
- Biognos AB, Generatorsgatan
1, 41705 Göteborg, Sweden
| | - Bing Chen
- Division
of Molecular Medicine, Boston Children’s
Hospital, 3 Blackfan
Street, Boston, Massachusetts 02115, United States
- Department
of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - David I. Stuart
- Division
of Structural Biology, University of Oxford,
The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, U.K.
- Diamond Light Source Ltd., Harwell Science
& Innovation Campus, Didcot OX11 0DE, U.K.
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, Amsterdam Infection & Immunity Institute, 1007 MB Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
College of Cornell University, New York, New York 10065, United States
| | - Raiees Andrabi
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis R. Burton
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
- Consortium
for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California 92037, United States
- Ragon Institute of Massachusetts General
Hospital, Massachusetts
Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, United States
| | - Sai Li
- Tsinghua-Peking
Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing
Advanced Innovation Center for Structural Biology and Frontier Research
Center for Biological Structure, Beijing 100084, China
| | - Peter J. Bond
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore 138671
- Department
of Biological Sciences, National University
of Singapore, Singapore 117543
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
29
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
30
|
Derr JB, Rybicka-Jasińska K, Espinoza EM, Morales M, Billones MK, Clark JA, Vullev VI. On the Search of a Silver Bullet for the Preparation of Bioinspired Molecular Electrets with Propensity to Transfer Holes at High Potentials. Biomolecules 2021; 11:429. [PMID: 33804209 PMCID: PMC8001849 DOI: 10.3390/biom11030429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/24/2023] Open
Abstract
Biological structure-function relationships offer incomparable paradigms for charge-transfer (CT) science and its implementation in solar-energy engineering, organic electronics, and photonics. Electrets are systems with co-directionally oriented electric dopes with immense importance for CT science, and bioinspired molecular electrets are polyamides of anthranilic-acid derivatives with designs originating from natural biomolecular motifs. This publication focuses on the synthesis of molecular electrets with ether substituents. As important as ether electret residues are for transferring holes under relatively high potentials, the synthesis of their precursors presents formidable challenges. Each residue in the molecular electrets is introduced as its 2-nitrobenzoic acid (NBA) derivative. Hence, robust and scalable synthesis of ether derivatives of NBA is essential for making such hole-transfer molecular electrets. Purdie-Irvine alkylation, using silver oxide, produces with 90% yield the esters of the NBA building block for iso-butyl ether electrets. It warrants additional ester hydrolysis for obtaining the desired NBA precursor. Conversely, Williamson etherification selectively produces the same free-acid ether derivative in one-pot reaction, but a 40% yield. The high yields of Purdie-Irvine alkylation and the selectivity of the Williamson etherification provide important guidelines for synthesizing building blocks for bioinspired molecular electrets and a wide range of other complex ether conjugates.
Collapse
Affiliation(s)
- James Bennett Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | | | - Eli Misael Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
| | - Maryann Morales
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
| | | | - John Anthony Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (K.R.-J.); (J.A.C.)
| | - Valentine Ivanov Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (K.R.-J.); (J.A.C.)
- Department of Chemistry, University of California, Riverside, CA 92521, USA; (E.M.E.); (M.M.)
- Department of Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-specific steric control of SARS-CoV-2 spike glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.433764. [PMID: 33758835 PMCID: PMC7986994 DOI: 10.1101/2021.03.08.433764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
|
32
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
33
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
34
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a major threat to global health. Although varied SARS-CoV-2-related coronaviruses have been isolated from bats and SARS-CoV-2 may infect bat, the structural basis for SARS-CoV-2 to utilize the human receptor counterpart bat angiotensin-converting enzyme 2 (bACE2) for virus infection remains less understood. Here, we report that the SARS-CoV-2 spike protein receptor binding domain (RBD) could bind to bACE2 from Rhinolophus macrotis (bACE2-Rm) with substantially lower affinity compared with that to the human ACE2 (hACE2), and its infectivity to host cells expressing bACE2-Rm was confirmed with pseudotyped SARS-CoV-2 virus and SARS-CoV-2 wild virus. The structure of the SARS-CoV-2 RBD with the bACE2-Rm complex was determined, revealing a binding mode similar to that of hACE2. The analysis of binding details between SARS-CoV-2 RBD and bACE2-Rm revealed that the interacting network involving Y41 and E42 of bACE2-Rm showed substantial differences with that to hACE2. Bats have extensive species diversity and the residues for RBD binding in bACE2 receptor varied substantially among different bat species. Notably, the Y41H mutant, which exists in many bats, attenuates the binding capacity of bACE2-Rm, indicating the central roles of Y41 in the interaction network. These findings would benefit our understanding of the potential infection of SARS-CoV-2 in varied species of bats.
Collapse
|
35
|
Wang D, Baudys J, Bundy JL, Solano M, Keppel T, Barr JR. Comprehensive Analysis of the Glycan Complement of SARS-CoV-2 Spike Proteins Using Signature Ions-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry. Anal Chem 2020; 92:14730-14739. [PMID: 33064451 PMCID: PMC7586457 DOI: 10.1021/acs.analchem.0c03301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of coronavirus disease 2019 (COVID-19). The spike protein expressed on the surface of this virus is highly glycosylated and plays an essential role during the process of infection. We conducted a comprehensive mass spectrometric analysis of the N-glycosylation profiles of the SARS-CoV-2 spike proteins using signature ions-triggered electron-transfer/higher-energy collision dissociation (EThcD) mass spectrometry. The patterns of N-glycosylation within the recombinant ectodomain and S1 subunit of the SARS-CoV-2 spike protein were characterized using this approach. Significant variations were observed in the distribution of glycan types as well as the specific individual glycans on the modification sites of the ectodomain and subunit proteins. The relative abundance of sialylated glycans in the S1 subunit compared to the full-length protein could indicate differences in the global structure and function of these two species. In addition, we compared N-glycan profiles of the recombinant spike proteins produced from different expression systems, including human embryonic kidney (HEK 293) cells and Spodoptera frugiperda (SF9) insect cells. These results provide useful information for the study of the interactions of SARS-CoV-2 viral proteins and for the development of effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Jonathan L. Bundy
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Maria Solano
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - Theodore Keppel
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| | - John R. Barr
- Division of Laboratory
Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Northeast, Atlanta, Georgia 30341, United States
| |
Collapse
|
36
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|