1
|
Nohman AI, Schwarm FP, Stein M, Schänzer A, Koch C, Uhl E, Kolodziej M. Significantly higher expression of high-mobility group AT hook protein 2 (HMGA2) in the border zone of glioblastoma. J Neurosurg Sci 2024; 68:668-675. [PMID: 36987772 DOI: 10.23736/s0390-5616.22.05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND High-mobility group AT-hook protein 2 (HMGA2) is a gene regulatory protein that is correlated with metastatic potential and poor prognosis. It has been shown that HMGA2 is overexpressed in various tumors such as lung cancer or pancreatic cancer. The invasive character and highly aggressive structure of glioblastoma let us to investigate HMGA2 expression in the border zone of the tumor more closely. We compared HMGA2 expression between glioblastoma and normal brain tissue. In addition, we analyzed and compared HMGA2 expression in the border and center zones of tumors. Correlation tests between HMGA expression and clinical parameters such as MGMT-status and survival were performed. METHODS Samples from 23 patients with WHO grade 4 glioblastomas were analyzed for HMGA2 expression using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) and correlated with clinical parameters. The areas from the tumor center and border were analyzed separately. Two normal brain tissue specimens were used as the controls. RESULTS Our results confirm that HMGA2 is higher expressed in glioblastoma compared to healthy brain tissue (qPCR, P=0.013; IHC, P=0.04). Moreover, immunohistochemistry revealed significantly higher HMGA2 expression in the border zone of the tumor than in the tumor center zone (P=0.012). Survival analysis revealed a tendency for shorter survival when HMGA2 was highly expressed in the border zone. CONCLUSIONS The results reveal an overexpression of HMGA2 in the border zone of glioblastomas; thus, the expression cluster of HMGA2 seems to be heterogenous and thorough borough surgical resection of the vital and aggressive border cells might be important to inhibit the invasive character of the tumor.
Collapse
Affiliation(s)
- Amin I Nohman
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany -
- Unit of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht Karl University Hospital of Heidelberg, Heidelberg, Germany -
| | - Frank P Schwarm
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Marco Stein
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Department of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Eberhard Uhl
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
2
|
Zhao S, Zhang Y, Bao S, Jiang L, Li Q, Kong Y, Cao J. A novel HMGA2/MPC-1/mTOR signaling pathway promotes cell growth via facilitating Cr (VI)-induced glycolysis. Chem Biol Interact 2024; 399:111141. [PMID: 38992767 DOI: 10.1016/j.cbi.2024.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mitochondrial Pyruvate Carrier 1 (MPC1) is localized on mitochondrial outer membrane to mediate the transport of pyruvate from cytosol to mitochondria. It is also well known to act as a tumor suppressor. Hexavalent chromium (Cr (VI)) contamination poses a global challenge due to its high toxicity and carcinogenesis. This research was intended to probe the potential mechanism of MPC1 in the effect of Cr (VI)-induced carcinogenesis. First, Cr (VI)-treatments decreased the expression of MPC1 in vitro and in vivo. Overexpression of MPC1 inhibited Cr (VI)-induced glycolysis and migration in A549 cells. Then, high mobility group A2 (HMGA2) protein strongly suppressed the transcription of MPC1 by binding to its promoter, and HMGA2/MPC1 axis played an important role in oxidative phosphorylation (OXPHOS), glycolysis and cell migration. Furthermore, endoplasmic reticulum (ER) stress made a great effect on the interaction between HMGA2 and MPC1. Finally, the mammalian target of the rapamycin (mTOR) was determined to mediate MPC1-regulated OXPHOS, aerobic glycolysis and cell migration. Collectively, our data revealed a novel HMGA2/MPC-1/mTOR signaling pathway to promote cell growth via facilitating the metabolism reprogramming from OXPHOS to aerobic glycolysis, which might be a potential therapy for cancers.
Collapse
Affiliation(s)
- Siyang Zhao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Institute of Plant Resources, Dalian Minzu University, No.18 Liaohe West Road, Dalian, 116600, China
| | - Yahui Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 2024; 15:322. [PMID: 39085703 PMCID: PMC11291832 DOI: 10.1007/s12672-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
4
|
Liadi YM, Campbell T, Hwang BJ, Elliott B, Odero-Marah V. High Mobility Group AT-hook 2: A Biomarker Associated with Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2631. [PMID: 39123360 PMCID: PMC11311100 DOI: 10.3390/cancers16152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT). This study examines HMGA2's role in enzalutamide resistance. LNCaP and 22Rv1 cells overexpressing wild-type HMGA2, but not truncated HMGA2, showed EMT. Both variants led to a decreased sensitivity to enzalutamide but not alisertib compared to Neo control cells. The overexpression of HMGA2 did not alter AR expression. Enzalutamide-resistant C4-2B cells (C4-2B MDVR) had higher HMGA2 and AR/AR variant expression than enzalutamide-sensitive C4-2B cells but remained sensitive to alisertib. The HMGA2 knockdown in C4-2B MDVR cells increased sensitivity to both enzalutamide and alisertib without changing AR expression. A clinical analysis via cBioPortal revealed HMGA2 alterations in 3% and AR alterations in 59% of patients. The HMGA2 changes were linked to treatments like enzalutamide, abiraterone, or alisertib, with amplifications more prevalent in bone, lymph node, and liver metastases. Conclusively, HMGA2 is a potential biomarker for enzalutamide resistance in mPCa, independent of Snail and AR signaling, and alisertib may be an effective treatment for mPCa that expresses HMGA2.
Collapse
Affiliation(s)
- Yusuf Mansur Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
- Department of Biology, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| |
Collapse
|
5
|
Kong D, Zha L, Yao Y, Zhang Z, Gao J, Zhang R, Chen L, Wang Z. Effects of HMGA2 on the biological characteristics and stemness acquisition of gastric cancer cells. Arab J Gastroenterol 2024; 25:135-142. [PMID: 38378354 DOI: 10.1016/j.ajg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND STUDY AIMS The high mobility group A2 (HMGA2), a nonhistone nuclear binding protein, modulates transcription by altering the chromatin architecture of the target gene DNA in its specific AT-hooks region. HMGA2 overexpression has been observed in embryonic tissue and many malignant neoplasms. This study sought to verify whether HMGA2 plays a role in the biological functions of gastric cancer cells, such as cell proliferation, invasiveness, migration, and stem cell acquisition, and to provide some ideas for further research on the metastatic mechanism of gastric cancer. PATIENTS AND METHODS HMGA2's effects on the proliferation, invasiveness, and migration capabilities of gastric cancer cells were individually detected by BrdU, Transwell, and wound healing assays. Western blotting and immunofluorescence were used to evaluate whether HMGA2 could promote the acquisition of gastric cancer cells. Biostatistical analyses were performed using SPSS 17.0 for Windows. RESULTS HMGA2 expression levels in gastric cancer cell lines were significantly higher than those in human immortalized gastric epithelial cell lines (p < 0.01). Gastric cancer cell proliferation was inhibited when HMGA2 was overexpressed (p < 0.05). The invasiveness and migration capabilities of gastric cancer cells with HMGA2 overexpression were enhanced more than those of the corresponding control groups (p < 0.05). HMGA2 overexpression promotes the stemness acquisition of stem cells from gastric cancer cells. CONCLUSIONS This study verified that the HMGA2 structural transcription factor promotes invasiveness, migration, and acquisition of gastric cancer cells. Furthermore, our findings provide significant insight for further research on the metastatic mechanism of gastric cancer.
Collapse
Affiliation(s)
- Dequan Kong
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China.
| | - Lang Zha
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yaben Yao
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhenyu Zhang
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Jun Gao
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Rui Zhang
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Lei Chen
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Okano LM, Fonseca LMMD, Erthal ID, Malta TM. Epigenomic integrative analysis pinpoint master regulator transcription factors associated with tumorigenesis in squamous cell carcinoma of oral tongue. Genet Mol Biol 2023; 46:e20220358. [PMID: 37338302 DOI: 10.1590/1678-4685-gmb-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Head and Neck Cancer (HNC) is a heterogeneous group of cancers, which includes cancers arising in the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. Epidemiological studies have revealed that several factors such as tobacco and alcohol use, exposure to environmental pollutants, viral infection, and genetic factors are risk factors for developing HNC. The squamous cell carcinoma of oral tongue (SCCOT), which is significantly more aggressive than the other forms of oral squamous cell carcinoma, presents a propensity for rapid local invasion and spread, and a high recurrence rate. Dysregulation in the epigenetic machinery of cancer cells might help uncover the mechanisms of SCOOT tumorigenesis. Here, we used DNA methylation changes to identify cancer-specific enhancers that were enriched for specific transcription factor binding sites (TFBS), and potential master regulator transcription factors (MRTF) associated with SCCOT. We identified the activation of MRTFs associated with increased invasiveness, metastasis, epithelial-to-mesenchymal transition, poor prognosis, and stemness. On the other hand, we found the downregulation of MRTFs associated with tumor suppression. The identified MRTFs should be further investigated to clarify their role in oral cancer tumorigenesis and for their potential use as biological markers.
Collapse
Affiliation(s)
- Larissa Miyuki Okano
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Isabela Dias Erthal
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Tathiane Maistro Malta
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Feng Y, Xia S, Hui J, Xu Y. Circular RNA circBNC2 facilitates glycolysis and stemness of hepatocellular carcinoma through the miR-217/high mobility group AT-hook 2 (HMGA2) axis. Heliyon 2023; 9:e17120. [PMID: 37360090 PMCID: PMC10285170 DOI: 10.1016/j.heliyon.2023.e17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Hepatocellular cancer (HCC) accounts for approximately 90% of primary liver carcinoma and is a significant health threat worldwide. Circular RNA basonuclin 2 (circBNC2) is implicated with the progression of several cancers. However, its roles in carcinogenesis and glycolysis are still unclear in HCC. In this study, the levels of circBNC2 and high mobility group AT-hook 2 (HMGA2) were highly expressed, while these of miR-217 were poorly expressed in HCC tissues and cells. Upregulation of circBNC2 was related to poor prognosis and tumor node metastasis (TNM) stage. Knockdown of circBNC2 inhibited the HCC progression. Moreover, knockdown of circBNC2 suppressed the levels of Ras, ERK1/2, PCNA, HK2, and OCT4. Notably, circBNC2 functioned as a molecular sponge of microRNA 217 (miR-217) to upregulate the HMGA2 expression. The inhibitory effects of the circBNC2 silence on the growth and stemness of HCC cells, and levels of PCNA, HK2 and OCT4 were aggravated by the miR-217 overexpression, but neutralized by the HMGA2 overexpression. Besides, silencing of circBNC2 blocked the tumor growth through upregulating the expression of miR-217 and downregulating the levels of HMGA2, PCNA2, HK2 and OCT4 in vivo. Thus, the current data confirmed that circBNC2 sponged miR-217 to upregulate the HMGA2 level, thereby contributing to the HCC glycolysis and progression. These findings might present novel insight into the pathogenesis and treatment of HCC.
Collapse
Affiliation(s)
- Yan Feng
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Shufeng Xia
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Junlan Hui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Yan Xu
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
9
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. MATERIALS AND METHODS Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. RESULTS The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. CONCLUSION In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
10
|
Campbell T, Hawsawi O, Henderson V, Dike P, Hwang BJ, Liadi Y, White EZ, Zou J, Wang G, Zhang Q, Bowen N, Scott D, Hinton CV, Odero-Marah V. Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells. Heliyon 2023; 9:e14810. [PMID: 37113783 PMCID: PMC10126861 DOI: 10.1016/j.heliyon.2023.e14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.
Collapse
Affiliation(s)
- Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Precious Dike
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Yusuf Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - ElShaddai Z. White
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - GuangDi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Derrick Scott
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Corresponding author. Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
11
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Li S, Zhao J, Wen S, Li M, Yu F, Wang W, Shao H, Jiang D. CircRNA High Mobility Group At-hook 2 regulates cell proliferation, metastasis and glycolytic metabolism of nonsmall cell lung cancer by targeting miR-331-3p to upregulate High Mobility Group At-hook 2. Anticancer Drugs 2023; 34:81-91. [PMID: 36066399 DOI: 10.1097/cad.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing circular RNAs (circRNAs) have been identified as pivotal players in nonsmall cell lung cancer (NSCLC). The study will explore the function and mechanism of circRNA High Mobility Group AT-hook 2 (circHMGA2) in NSCLC. The circHMGA2, microRNA-331-3p (miR-331-3p) and HMGA2 expression analyses were performed via quantitative real-time PCR. Cell proliferation was assessed via Cell Counting Kit-8 and colony formation assays. Transwell migration/invasion assays were used for measuring cell metastasis. Glucose consumption and lactate production were determined for glycolytic evaluation. Western blot was used to detect the protein expression of HMGA2 and glycolytic markers. Target analysis was performed by dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Xenograft tumor assay in mice was conducted for the investigation of circHMGA2 in vivo . CircHMGA2 was overexpressed in NSCLC, and high circHMGA2 level might be related to NSCLC metastasis and poor prognosis. In-vitro assays suggested that NSCLC cell growth, metastasis and glycolysis were retarded by downregulation of circHMGA2. Upregulation of HMGA2 was shown to return the anticancer response of circHMGA2 knockdown in NSCLC cells. Through interacting with miR-331-3p, circHMGA2 could regulate the expression of HMGA2. In addition, circHMGA2/miR-331-3p and miR-331-3p/HMGA2 axes were affirmed in NSCLC regulation. In-vivo analysis indicated that circHMGA2 inhibition also reduced tumorigenesis and glycolysis of NSCLC via the miR-331-3p/HMGA2 axis. This study disclosed the oncogenic role of circHMGA2 and the regulatory circHMGA2/miR-331-3p/HMGA2 axis in NSCLC.
Collapse
Affiliation(s)
- Shenke Li
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| | - Jun Zhao
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Song Wen
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Min Li
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Faming Yu
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| | - Wenhui Wang
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Huamin Shao
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Dongliang Jiang
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| |
Collapse
|
13
|
Adamczyk M, Rawłuszko-Wieczorek AA, Wirstlein P, Nowicki M, Jagodziński PP, Wender-Ozegowska E, Kedzia M. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother 2022; 150:112989. [PMID: 35489280 DOI: 10.1016/j.biopha.2022.112989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
Endometriosis is the cause of infertility. The eutopic endometrium of women with endometriosis showed an aberrant expression pattern of multitude genes. The role of TET1 protein in the pathogenesis of endometriosis and related infertility is not sufficiently known. Further, knowledge on TET1 transcriptional control still remains incomplete. The aim of the study was assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. The study included 44 infertile patients with endometriosis (IWE) and 77 infertile (IW) and fertile (FW) patients without endometriosis. The research material was eutopic endometrium. The TET1 mRNA level was analyzed by qPCR. Western blot was used to evaluate the level of TET1 protein. The level of DNA methylation and H3K27me3 level of TET1 gene's promoter region were assessed using HRM and ChIP qPCR, respectively. The level of TET1 expression (TET1 mRNA; TET1 protein level) was lower in IWE during the implantation window (p < 0.001; p = 0.0329). The level of TET1 DNA methylation was higher in the secretory endometrium in mild and advanced IWE (p < 0.004; p < 0.008). H3K27me3 level did not differ between the study groups. The diminished expression of TET1 gene during the secretory phase, may account for the aberrant process of embryonic implantation in infertile endometriosis patients. DNA hypermethylation of TET1 gene is a potential relevant regulator of its expression. H3K27me3 occupancy does not affect the expression of TET1 gene in our study group.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland.
| | | | - Przemysław Wirstlein
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Michał Nowicki
- Department of Histology and Embriology, Poznan University of Medical Sciences, 60-781, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Malgorzata Kedzia
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| |
Collapse
|
14
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
15
|
Bahreini F, Jabbari P, Gossing W, Aziziyan F, Frohme M, Rezaei N. The role of noncoding RNAs in pituitary adenoma. Epigenomics 2021; 13:1421-1437. [PMID: 34558980 DOI: 10.2217/epi-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Genomics & Bioinformatics, University of California, Riverside, CA, USA
| | - Wilhelm Gossing
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marcus Frohme
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Tan S, Chen J. Small interfering-high mobility group A2 attenuates epithelial-mesenchymal transition in thymic cancer cells via the Wnt/β-catenin pathway. Oncol Lett 2021; 22:586. [PMID: 34122637 PMCID: PMC8190778 DOI: 10.3892/ol.2021.12847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
Thymus carcinoma is one of the thymic epithelial neoplasms with high metastasis, which does not have any good treatment at present. High mobility group A2 (HMGA2) is highly expressed in a variety of malignant tumors, such as lung cancer, colon cancer and ovarian cancer and is closely related to tumor invasion and metastasis. The present study aimed to investigate the effect and mechanism of HMGA2 on epithelial-mesenchymal transition (EMT) in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by testing the protein expression level of HMGA2 though western blotting and subjected to HMGA2 interference [small interfering (si)-HMGA2]. Cell proliferation was evaluated using the Cell Counting Kit-8 assay. Cell migration and invasion were detected using the Transwell assay. Cell apoptosis was examined using flow cytometry and β-catenin expression was observed by immunofluorescence. The levels of E-cadherin, vimentin, Wnt3a, Wnt5a and β-catenin proteins were determined by western blotting. Among the four cell lines tested, IU-TAB-1 cells demonstrated the highest expression of HMGA2 (P<0.05) and were hence selected for subsequent experiments. Compared with the control group (untransfected cells), si-HMGA2 resulted in significantly decreased proliferation, migration and invasion of IU-TAB-1 cells, whereas apoptosis was increased (P<0.05). The protein expression of vimentin, Wnt3a, Wnt5a and β-catenin was significantly decreased by si-HMGA2 compared with the control group (P<0.05), whereas E-cadherin expression was increased (P<0.05). After treatment with si-HMGA2 in combination with Wnt/β-catenin agonists (SKL2001) or inhibitors (XAV-939), EMT was respectively enhanced or inhibited in IU-TAB-1 cells. Overall, si-HMGA2 may attenuate EMT in thymic cancer cells and the mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
17
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
18
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
19
|
Xu J, Fang X, Long L, Wang S, Qian S, Lyu J. HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway. Cancer Biol Ther 2020; 22:5-11. [PMID: 33307962 DOI: 10.1080/15384047.2020.1832429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women, and triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancer. High mobility group AT-hook 2 (HMGA2) is overexpressed in some tumors and closely associated with patients' prognosis. However, the mechanisms involved in the regulation of HMGA2 in TNBC still remain unclear. METHODS In this study, HMGA2 level in TNBC cell lines was analyzed by western blot. After knockdown of HMGA2 expression by RNA interference in TNBC cell lines MDA-MB-231 and SUM149, wound healing and transwell assays were conducted to examine the effects of HMGA2 on migration and invasion. Tumor metastasis was assessed in amouse xenograft model invivo. Furthermore, expression levels of epithelial-mesenchymal transition (EMT) biomarkers and involvement of the Hippo-YAP pathway were detected by western blot. RESULTS Compared to normal breast epithelial cells, the expression levels of HMGA2 were significantly increased in TNBC cell lines (all P< .05). Downregulation of HMGA2 dramatically inhibited the migration and invasion of MDA-MB-231 and SUM149 cells (all P< .01) invitro, and suppressed the tumor metastasis of nude mice xenograft model invivo. Western blot analysis revealed alterations in EMT biomarkers: the expression of mesenchymal markers N-cadherin, Vimentin and Snail were decreased, while the expression of epithelial marker E-cadherin was increased. Downregulated expression of HMGA2 attenuated Hippo-YAP related protein expression and the stability of YAP. CONCLUSIONS HMGA2 is highly expressed in TNBC cells. Downregulation of HMGA2 inhibits the migration and invasion of TNBC and invivo tumor metastasis mediated through inhibition of EMT and Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jianxin Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xuejiao Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Luye Long
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Sixuan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Shihan Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Su L, Bryan N, Battista S, Freitas J, Garabedian A, D'Alessio F, Romano M, Falanga F, Fusco A, Kos L, Chambers J, Fernandez-Lima F, Chapagain PP, Vasile S, Smith L, Leng F. Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Sci Rep 2020; 10:18850. [PMID: 33139812 PMCID: PMC7606612 DOI: 10.1038/s41598-020-75890-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.
Collapse
Affiliation(s)
- Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Nadezda Bryan
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Sabrina Battista
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via Pansini 5, 80131, Naples, Italy
| | - Juliano Freitas
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alyssa Garabedian
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Federica D'Alessio
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Miriam Romano
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Fabiana Falanga
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Alfredo Fusco
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jeremy Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem P Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Layton Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
21
|
Pham YTH, Utuama O, Thomas CE, Park JA, Vecchia CL, Risch HA, Tran CTD, Le TV, Boffetta P, Raskin L, Luu HN. High mobility group A protein-2 as a tumor cancer diagnostic and prognostic marker: a systematic review and meta-analysis. Eur J Cancer Prev 2020; 29:565-581. [PMID: 32898013 PMCID: PMC11537243 DOI: 10.1097/cej.0000000000000602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High mobility group A protein-2 (HMGA2) is an architectural transcription factor that binds to the A/T-rich DNA minor groove and is responsible for regulating transcriptional activity of multiple genes indirectly through chromatin change and assembling enhanceosome. HMGA2 is overexpressed in multiple tumor types, suggesting its involvement in cancer initiation and progression, thus, making it an ideal candidate for cancer diagnostic and prognostic. We performed a systematic review to examine the role of HMGA2 as a universal tumor cancer diagnostic and prognostic marker. We used Reporting Recommendations for Tumor Marker Prognostic Studies to systematically search OvidMedline, PubMed, and the Cochrane Library for English language studies, published between 1995 and June 2019. Meta-analysis provided pooled risk estimates and their 95% confidence intervals (CIs) for an association between overall survival and recurrence of cancers for studies with available estimates. We identified 42 eligible studies with a total of 5123 tumor samples in 15 types of cancer. The pooled percentage of HMGA2 gene expression in tumor samples was 65.14%. Meta-analysis showed that cancer patients with HMGA2 positive have significantly reduced survival, compared to patients without HMGA2 gene [pooled-hazard ratio (HR) = 1.85, 95% CI 1.48-2.22]. There was a positive association between cancer patients with HMGA2 overexpression and cancer recurrence though this association did not reach significance (pooled-HR = 1.44, 95% CI 0.80-2.07). Overexpression of HMGA2 was found in 15 types of cancer. There was an association between HMGA2 overexpression with reduced survival of cancer patients. HMGA2 is thus considered a promising universal tumor marker for prognostics.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- Department of Rehabilitation, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ovie Utuama
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida
| | - Claire E. Thomas
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jong A. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Chi Thi-Du Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System
| | - Thanh V. Le
- Department of Hepatobiliary and Pancreatic Surgery, 108 Hospital, Hanoi, Vietnam
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai School of Medicine, New York, New York and
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Gandhi S, Hutchins EJ, Maruszko K, Park JH, Thomson M, Bronner ME. Bimodal function of chromatin remodeler Hmga1 in neural crest induction and Wnt-dependent emigration. eLife 2020; 9:57779. [PMID: 32965216 PMCID: PMC7591248 DOI: 10.7554/elife.57779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling. The neural plate is a structure that serves as the basis for the brain and central nervous system during the development of animals with a backbone. In particular, the tissues at the border of the neural plate become the neural crest, a group of highly mobile cells that can specialize to form nerves and parts of the face. The exact molecular mechanisms that allow the crest to emerge are still unknown. The protein Hmga1 alters how genes are packaged and organized inside cells, which in turn influences how genes are switched on and off. Here, Gandhi et al. studied how Hmga1 helps to shape the neural crest in developing chicken embryos. To do so, they harnessed a genetic tool called CRISPR-Cas9, and deleted the gene that encodes Hmga1 at specific developmental stages. This manipulation highlighted two periods where Hmga1 is active. First, Hmga1 helped to define neural crest cells at the neural plate border by activating a gene called pax7. Then, at a later stage, Hmga1 allowed these cells to move to other parts of the body by triggering the Wnt communication system. Failure for the neural crest to develop properly causes birth defects and cancers such as melanoma and childhood neuroblastoma, highlighting the need to better understand how this structure is formed. In addition, a better grasp of the roles of Hmga1 in healthy development could help to appreciate how it participates in a range of adult cancers.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Krystyna Maruszko
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jong H Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Matthew Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
23
|
Zhong J, He C, Xu F, Xu X, Liu L, Xu M, Guo Z, Wang Y, Liao J, Li Y. Lupeol inhibits osteosarcoma progression by up-regulation of HMGA2 via regulating miR-212-3p. J Orthop Surg Res 2020; 15:374. [PMID: 32883329 PMCID: PMC7469105 DOI: 10.1186/s13018-020-01879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma (OS) is a common severe illness globally. Lupeol has been reported to participate in the pathophysiologic properties of various cancers, including OS. This study aimed to explore the effects of lupeol on proliferation, invasion, and apoptosis on OS cells and the underlying mechanism. Methods The cell viability of OS cells was determined by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The expression levels of miR-212-3p and high-mobility group AT-hook 2 (HMGA2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in OS cells. The cell apoptosis and invasion were detected by flow cytometry and transwell invasion assays, respectively. The functional target of miR-212-3p was predicted by online software and confirmed by luciferase reporter assay. The protein level of HMGA2 was measured by western blot analysis. Results Lupeol suppressed cell viability and invasion, and promoted apoptosis by upregulating the expression of miR-212-3p in OS cells. Knockdown of miR-212-3p restored the anti-tumor effect of lupeol. Interestingly, miR-212-3p directly targeted HMGA2 and suppressed its expression. Moreover, HMGA2 reversed the inhibited impact on viability and invasion, and the promoted effect on apoptosis induced by upregulation of miR-212-3p. Also, lupeol administration exerts its anti-tumor effect by overexpression of miR-212-3p to suppress the expression of HMGA2 in OS cells. Conclusion Lupeol inhibited OS progression by modulating the miR-212-3p/HMGA2 axis in vitro.
Collapse
Affiliation(s)
- Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangtian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xianyun Xu
- Basic Medical School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lulin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mingjun Xu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiahua Liao
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yonghong Li
- Department of Oncology, The First Hospital of Tianmen City of Hubei Province, No. 1, East Renmin Avenue, Tianmen, 431700, Hubei, China.
| |
Collapse
|
24
|
Nagaishi M, Nakae R, Matsumoto Y, Fujii Y, Sugiura Y, Takigawa T, Suzuki K. High HMGA2 expression without gene rearrangement in meningiomas. Neuropathology 2020; 40:540-545. [PMID: 32812281 DOI: 10.1111/neup.12670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022]
Abstract
High mobility group AT-hook 2 (HMGA2) is a non-histone transcriptional regulator protein. Aberrant expression of the HMGA2 gene (HMGA2) and structural rearrangement at the chromosomal region 12q14 with HMGA2 involvement have been reported in several mesenchymal tumors. We analyzed truncated and full-length HMGA2 expression in 55 cases of meningioma, the most common brain tumor of mesenchymal origin. Fluorescence in situ hybridization and 3'-rapid amplification of cDNA ends were used to investigate the possibility of gene rearrangements. Moreover, the relationship between HMGA2 expression and clinicopathological features was assessed. Compared with normal brain tissues, 95% of the meningioma tissues exhibited increased HMGA2 expression. In 14 cases, the expression of truncated HMGA2 was more than two-fold higher than that of paired full-length HMGA2. Chromosomal translocation involving the chromosomal region 12q14 was undetectable. No significant correlation was found between the Ki-67 labeling index and HMGA2 expression and between the HMGA2 expression and the clinicopathological features. The majority of the meningioma cases displayed increased HMGA2 expression, which was not attributed to the chromosomal rearrangement at the corresponding region. Similar to that in the other mesenchymal tumors, increased HMGA2 expression was not associated with tumor cell proliferation in meningiomas.
Collapse
Affiliation(s)
- Masaya Nagaishi
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Ryuta Nakae
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Yoshiyuki Matsumoto
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Yoshiko Fujii
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Yoshiki Sugiura
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Tomoji Takigawa
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| | - Kensuke Suzuki
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya-shi, Saitama, Japan
| |
Collapse
|
25
|
Zeng Z, Zhao G, Rao C, Hua G, Yang M, Miao X, Ying J, Nie L. Knockdown of lncRNA ZFAS1-suppressed non-small cell lung cancer progression via targeting the miR-150-5p/HMGA2 signaling. J Cell Biochem 2020; 121:3814-3824. [PMID: 31692094 DOI: 10.1002/jcb.29542] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.
Collapse
Affiliation(s)
- Zhaolong Zeng
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Gang Hua
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Minglei Yang
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaobo Miao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jingjing Ying
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Liangqin Nie
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
26
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
27
|
Ouchi K, Miyachi M, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Iehara T, Hosoi H. Oncogenic role of HMGA2 in fusion-negative rhabdomyosarcoma cells. Cancer Cell Int 2020; 20:192. [PMID: 32489328 PMCID: PMC7247181 DOI: 10.1186/s12935-020-01282-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. There are two subtypes, fusion gene-positive RMS (FP-RMS) and fusion gene-negative RMS (FN-RMS), depending on the presence of a fusion gene, either PAX3-FOXO1 or PAX7-FOXO1. These fusion genes are thought to be oncogenic drivers of FP-RMS. By contrast, the underlying mechanism of FN-RMS has not been thoroughly investigated. It has recently been shown that HMGA2 is specifically positive in pathological tissue from FN-RMS, but the role of HMGA2 in FN-RMS remains to be clarified. Methods In this study, we used FN-RMS cell lines to investigate the function of HMGA2. Gene expression, cell growth, cell cycle, myogenic differentiation, tumor formation in vivo, and cell viability under drug treatment were assessed. Results We found that HMGA2 was highly expressed in FN-RMS cells compared with FP-RMS cells and that knockdown of HMGA2 in FN-RMS cells inhibited cell growth and induced G1 phase accumulation in the cell cycle and myogenic differentiation. Additionally, we showed using both gain-of-function and loss-of-function assays that HMGA2 was required for tumor formation in vivo. Consistent with these findings, the HMGA2 inhibitor netropsin inhibited the cell growth of FN-RMS. Conclusions Our results suggest that HMGA2 has important role in the oncogenicity of FP-RMS and may be a potential therapeutic target in patients with FN-RMS.
Collapse
Affiliation(s)
- Kazutaka Ouchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Yasumichi Kuwahara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan.,Department of Molecular Biochemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| |
Collapse
|
28
|
Heilmann T, Vondung F, Borzikowsky C, Krüger S, Elessawy M, Alkatout I, Wenners A, Bauer M, Klapper W, Röcken C, Maass N, Schem C, Trauzold A. Cytoplasmic levels of high mobility group A2 determine survival prognoses in breast cancer patients. Int J Biol Markers 2020; 35:20-28. [PMID: 32394766 DOI: 10.1177/1724600820917990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND High mobility group A proteins are involved in chromatin remodeling, thereby influencing multiple fundamental biological processes. HMGA2 has been linked to oncogenic traits among a variety of malignancies. OBJECTIVE To determine the prognostic implications of subcellular distribution patterns of HMGA2 in breast cancer. METHODS Nuclear and cytoplasmic HMGA2 was evaluated in 342 breast cancer specimens and matched with clinico-pathological parameters. RESULTS Overall and cytoplasmic, but not nuclear, levels of HMGA2 correlated with better survival prognoses in our collective (hazard ratio (HR) 0.34, P = 0.001 and HR 0.34, P < 0.001, respectively). The protective effect of cytoplasmic HMGA2 persisted in the Luminal A and triple negative breast cancer subgroups. Evaluating Luminal A and B subgroups jointly, only cytoplasmic, but not overall or nuclear HMGA2 levels were associated with better survival (HR 0.42, 95% confidence interval 0.21, 0.86, P = 0.017), irrespective of tumor size and node status. The addition of HMGA2 overall and cytoplasmic scores strengthened the prognostic selectivity in a model of conventional breast cancer risk factors. No predictive significance with regard to endocrine or chemoendocrine therapies was observed. CONCLUSION Unexpectedly, we found a favorable survival probability upon overall levels of HMGA2 in our breast cancer collective, which was predominantly determined by the presence of HMGA2 in the cytoplasm.
Collapse
Affiliation(s)
- Thorsten Heilmann
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Florian Vondung
- Department of Pathology, General Pathology and Hematopathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, General Pathology and Hematopathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mohamed Elessawy
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | - Wolfram Klapper
- Department of Pathology, General Pathology and Hematopathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, General Pathology and Hematopathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Mansoori B, Duijf PHG, Mohammadi A, Najafi S, Roshani E, Shanehbandi D, Hajiasgharzadeh K, Shirjang S, Ditzel HJ, Kazemi T, Mokhtarzadeh A, Gjerstorff MF, Baradaran B. Overexpression of HMGA2 in breast cancer promotes cell proliferation, migration, invasion and stemness. Expert Opin Ther Targets 2020; 24:255-265. [PMID: 32172636 DOI: 10.1080/14728222.2020.1736559] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Despite improved therapeutic strategies for early-stage breast cancer, the most common cancer type in women, relapse remains common and the underlying mechanisms for this progression remain poorly understood. To gain more insight, we studied the DNA-binding protein HMGA2 in breast cancer development and stemness. We demonstrated that HMGA2 is overexpressed in breast cancer tissues at the mRNA and protein levels (P value <0.0001). HMGA2 knockdown and overexpression in breast cancer cells revealed that HMGA2 promotes cell proliferation and protects against apoptosis via the intrinsic pathway. HMGA2 knockdown also causes cell cycle arrest in G2/M phase. In addition, we found that HMGA2 increases breast cancer cell migration and invasion (P value <0.001) and promotes the acquisition of cancer stem cell features, both in vitro, in colony formation (P value <0.01) and spheroid assays, and in breast cancer tissues. Overexpression of HMGA2 in breast cancer spurs the acquisition of several hallmarks of cancer, including increased cell proliferation, migration, invasion and stemness, and decreased apoptosis. Thus, targeting HMGA2 could represent an effective strategy to block breast cancer progression.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute for Clinical Research, Odense University Hospital, Odense, Denmark
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Wu S, Ai H, Zhang K, Yun H, Xie F. Long Non-Coding RNA EGOT Promotes the Malignant Phenotypes of Hepatocellular Carcinoma Cells and Increases the Expression of HMGA2 via Down-Regulating miR-33a-5p. Onco Targets Ther 2019; 12:11623-11635. [PMID: 32021242 PMCID: PMC6942514 DOI: 10.2147/ott.s218308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Background Chronic hepatitis C virus (HCV) infection is an important risk factor for hepatocellular carcinoma (HCC). EGOT is a long non-coding RNA (lncRNA) induced after HCV infection that increases viral replication by antagonizing the antiviral response. Interestingly, EGOT also acts as a crucial regulator in multiple cancers. However, its role in HCC remains unclear. Methods Real-time PCR (RT-PCR) was used to detect the expression of EGOT in HCC samples and cell lines. CCK-8 assay and colony formation assay were performed to evaluate the effect of EGOT on proliferation. Scratch healing assay and transwell assay were used to detect the changes of migration and invasion. Flow cytometry was used to detect the effect of EGOT on apoptosis. Interaction between EGOT and miR-33a-5p was determined by bioinformatics analysis, RT-PCR, and dual-luciferase reporter assay. Western blot was used to confirm that high mobility group protein A2 (HMGA2) could be modulated by EGOT. Results Compared with normal liver tissues, the expression level of EGOT in HCC tissues was significantly up-regulated. EGOT markedly regulated viability, migration and invasion of HCC cells. The expression level of EGOT was negatively correlated the expression level of miR-33a-5p. It is also confirmed that EGOT could specifically bind to miR-33a-5p and could reduce its expression, in turn, up-regulate the expression of HMGA2. Conclusion Our data imply that EGOT may be a novel therapeutic target for HCC, and highlights the key role of EGOT/miR-33a-5p/HMGA2 in the progression of this deadly disease.
Collapse
Affiliation(s)
- Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan 430030, People's Republic of China
| | - Hongwu Ai
- Center for Clinical Laboratory, Wuhan Kangjian Maternal and Infant Hospital, Wuhan 430050, People's Republic of China
| | - Kehui Zhang
- Wuhan Center for Clinical Laboratory, Wuhan Fourth Hospital, Wuhan 430030, People's Republic of China.,Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, People's Republic of China
| | - Hao Yun
- Wuhan Center for Clinical Laboratory, Wuhan Fourth Hospital, Wuhan 430030, People's Republic of China.,Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, People's Republic of China
| | - Fei Xie
- Wuhan Center for Clinical Laboratory, Wuhan Fourth Hospital, Wuhan 430030, People's Republic of China.,Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, People's Republic of China
| |
Collapse
|
31
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Li W, Wang J, Zhang D, Zhang X, Xu J, Zhao L. MicroRNA-98 targets HMGA2 to inhibit the development of retinoblastoma through mediating Wnt/β-catenin pathway. Cancer Biomark 2019; 25:79-88. [PMID: 31033463 DOI: 10.3233/cbm-182315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the incidence and mortality of retinoblastoma (RB) have gradually increased. Many studies support the pivotal role of microRNAs (miRNAs) in the pathogenesis of RB. Alternation of microRNA-98 (miR-98) expression has been detected in several cancers, excluding RB. This study was designed to assess the regulatory mechanisms of miR-98 in human RB. METHODS RT-qPCR and Western blot analysis were used to detect miR-98 and HMGA2 expression. The effects of miR-98 were explored using the CCK-8 and Transwell assays. Dual-luciferase reporter assay was performed to confirm the relationship between miR-98 and HMGA2. RESULTS In RB, downregulation of miR-98 was identified. Upregulation of miR-98 inhibited proliferation, invasion and migration of RB cells. Further, HMGA2 was confirmed as a direct target gene of miR-98. And knockdown of HMGA2 suppressed the progression of RB. Moreover, upregulation of HMGA2 reversed the suppressive effects in the development of RB. In addition, miR-98 also showed suppressive effect on EMT and Wnt/β-catenin pathway. CONCLUSION MiR-98 targets HMGA2 to act as a tumor suppressor in RB by mediating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Junmei Wang
- Department of Clinical Laboratory, Rizhao Hospital of TCM, Rizhao, Shandong, China
| | - Dongqing Zhang
- Department of Public Health, The People's Hospital of Zhangqiu Area, Jinan, Shandong, China
| | - Xiting Zhang
- Department of Ward, The People's Hospital of Zhangqiu Area, Jinan, Shandong, China
| | - Jumei Xu
- Department of Hepatobiliary Gastrointestinal, The People's Hospital of Zhangqiu Area, Jinan, Shandong, China
| | - Li Zhao
- Department of Ophthalmology, Yankuang New Journey General Hospital, Zoucheng, Shandong, China
| |
Collapse
|
33
|
West RC, Russ JE, Bouma GJ, Winger QA. BRCA1 regulates HMGA2 levels in the Swan71 trophoblast cell line. Mol Reprod Dev 2019; 86:1663-1670. [PMID: 31410930 DOI: 10.1002/mrd.23255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/20/2019] [Indexed: 11/09/2022]
Abstract
During early placental development, tumor suppressors and oncogenes work synergistically to regulate cell proliferation and differentiation in a restrained manner compared with the uncontrollable growth in cancer. One example of this partnership is the regulation of the oncofetal protein HMGA2 by BRCA1. BRCA1 forms a repressor complex with ZNF350 and CtIP to bind to the promoter of HMGA2, preventing transcription. Chromatin immunoprecipitation determined BRCA1 forms this repressor complex in human trophoblast cells, suggesting a role in the placenta. Furthermore, miR-182 has been shown to target BRCA1 mRNA in ovarian cancer cells, blocking the formation of the BRCA1 repressor complex and allowing increased transcription of HMGA2. miR-182 was one of the first miRNAs described as elevated in the serum and placentas of preeclamptic women. Therefore, we hypothesized that BRCA1 is essential for normal trophoblast cell development. We used CRISPR-Cas9 genome editing and miR-182 overexpression to decrease BRCA1 protein in the Swan71 cell line. HMGA2 was significantly increased in the BRCA1 KO and miR-182 overexpressing cells compared to controls. We also determined that BRCA1 repressor complex binding to HMGA2 was significantly reduced in BRCA1 KO and miR-182 overexpressing cells compared with controls, leading us to conclude that increased HMGA2 was because of decreased binding of the BRCA1 repressor complex. Finally, we found that the caspase activity was significantly higher in BRCA1 KO and miR-182 overexpressing cells suggesting an increased amount of apoptosis. These data suggest that BRCA1 is an important regulator of the oncofetal protein HMGA2 and promotes cell survival in human placental cells.
Collapse
Affiliation(s)
- Rachel C West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Jennifer E Russ
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Quinton A Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
34
|
Cheng Y, Huang C, Mo Y, Wu W, Liang L. WITHDRAWN: Long non-coding RNA UCA1 regulates tumor growth by impairing let-7e-dependent HMGA2 repression in bladder cancer. Cancer Biomark 2019:CBM182296. [PMID: 31306103 DOI: 10.3233/cbm-182296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Urology, Fifth People's Hospital of Dongguan, Dongguan, Guangdong 523900, China
| | - Chunliu Huang
- Department of Otorhinolaryngology, Fifth People's Hospital of Dongguan, Dongguan, Guangdong 523900, China
| | - Yongxuan Mo
- Department of Urology, Fifth People's Hospital of Dongguan, Dongguan, Guangdong 523900, China
| | - Weiwu Wu
- Department of Urology, Fifth People's Hospital of Dongguan, Dongguan, Guangdong 523900, China
| | - Lu Liang
- Department of Traditional Chinese Medicine, Fifth People's Hospital of Dongguan, Dongguan, Guangdong 523900, China
| |
Collapse
|
35
|
HMGA2 Contributes to Distant Metastasis and Poor Prognosis by Promoting Angiogenesis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20102473. [PMID: 31109142 PMCID: PMC6566167 DOI: 10.3390/ijms20102473] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022] Open
Abstract
The highly malignant phenotype of oral squamous cell carcinoma (OSCC), including the presence of nodal and distant metastasis, reduces patient survival. High-mobility group A protein 2 (HMGA2) is a non-histone chromatin factor that is involved in advanced malignant phenotypes and poor prognosis in several human cancers. However, its biological role in OSCC remains to be elucidated. The purpose of this study was to determine the clinical significance and role of HMGA2 in the malignant potential of OSCC. We first investigated the expression pattern of HMGA2 and its clinical relevance in 110 OSCC specimens using immunohistochemical staining. In addition, we examined the effects HMGA2 on the regulation of vascular endothelial growth factor (VEGF)-A, VEGF-C, and fibroblast growth factor (FGF)-2, which are related to angiogenesis, in vitro. High expression of HMGA2 was significantly correlated with distant metastasis and poor prognosis. Further, HMGA2 depletion in OSCC cells reduced the expression of angiogenesis genes. In OSCC tissues with high HMGA2 expression, angiogenesis genes were increased and a high proportion of blood vessels was observed. These findings suggest that HMGA2 plays a significant role in the regulation of angiogenesis and might be a potential biomarker to predict distant metastasis and prognosis in OSCC.
Collapse
|
36
|
Mansoori B, Mohammadi A, Asadzadeh Z, Shirjang S, Minouei M, Abedi Gaballu F, Shajari N, Kazemi T, Gjerstorff MF, Duijf PHG, Baradaran B. HMGA2 and Bach-1 cooperate to promote breast cancer cell malignancy. J Cell Physiol 2019; 234:17714-17726. [PMID: 30825204 DOI: 10.1002/jcp.28397] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
During breast cancer progression, tumor cells acquire multiple malignant features. The transcription factors and cell cycle regulators high mobility group A2 (HMGA2) and BTB and CNC homology 1 (Bach-1) are overexpressed in several cancers, but the mechanistic understanding of how HMGA2 and Bach-1 promote cancer development has been limited. We found that HMGA2 and Bach-1 are overexpressed in breast cancer tissues and their expression correlates positively in tumors but not in normal tissues. Individual HMGA2 or Bach-1 knockdown downregulates expression of both proteins, suggesting a mutual stabilizing effect between the two proteins. Importantly, combined HMGA2 and Bach-1 knockdown additively decrease cell proliferation, migration, epithelial-to-mesenchymal transition, and colony formation, while promoting apoptotic cell death via upregulation of caspase-3 and caspase-9. First the first time, we show that HMGA2 and Bach-1 overexpression in tumors correlate positively and that the proteins cooperatively suppress a broad range of malignant cellular properties, such as proliferation, migration, clonogenicity, and evasion of apoptotic cell death. Thus, our observations suggest that combined targeting of HMGA2 and Bach1 may be an effective therapeutic strategy to treat breast cancer.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Minouei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Zhang Y, Su Z, An L, Li L, Wei M, Ge D, Liu H. miR‐98 acts as an inhibitor in chronic constriction injury‐induced neuropathic pain via downregulation of high‐mobility group AT‐hook 2. J Cell Biochem 2019; 120:10363-10369. [PMID: 30659647 DOI: 10.1002/jcb.28320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Zhen Su
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Li‐Jun An
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Lin Li
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Meng Wei
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Dong‐Jian Ge
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| | - Hai‐Lin Liu
- Department of Anesthesiology The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University Huai'an Jiangsu China
| |
Collapse
|
38
|
Sun J, Qiao Y, Song T, Wang H. MiR‑495 suppresses cell proliferation by directly targeting HMGA2 in lung cancer. Mol Med Rep 2018; 19:1463-1470. [PMID: 30569167 PMCID: PMC6390076 DOI: 10.3892/mmr.2018.9773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to investigate the expression of microRNA-495 (miR-495) in non-small cell lung cancer (NSCLC) tissues and cells, as well as its function on the proliferation of lung cancer cells. The expression of miR-495 in 122 pairs of NSCLC tissues and matched paracarcinoma tissues, as well as in human lung cancer cell lines (A549, H460, H1650, H520 and SK-MES-1) and the normal human pulmonary bronchial epithelial cell line 16HBE was determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR). As predicted by bioinformatics analysis, high mobility group A2 (HMGA2) may be a potential target gene of miR-495. In addition, the regulatory function of miR-495 on its target gene HMGA2 was evaluated using a dual-luciferase reporter assay, RT-qPCR and western blotting. Furthermore, the effect of miR-495 on the proliferation of A549 lung cancer cells was investigated using a Cell Counting Kit-8 (CCK-8) assay. The results demonstrated that the expression of miR-495 in NSCLC tissues and cells was significantly downregulated compared with the control. In addition, downregulated expression of miR-495 was associated with tumor differentiation, lymph node metastasis and tumor, node and metastasis staging. Additionally, a dual-luciferase reporter assay revealed that miR-495 could directly associated with the 3′-untranslated region of HMGA2. Upregulated expression of miR-495 significantly downregulated the mRNA and protein expression levels of HMGA2 in A549 cells. Furthermore, the results of CCK-8 assay revealed that upregulated expression of miR-495 significantly suppressed the proliferation of A549 cells; HMGA2 overexpression reversed this inhibition. In summary, the findings of the present study demonstrated that miR-495 was downregulated in NSCLC tissues and cells. In addition, miR-495 suppressed the proliferation of lung cancer cells by directly targeting HMGA2.
Collapse
Affiliation(s)
- Jiangtao Sun
- Department of Oncology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Yanping Qiao
- Department of Hematology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Tao Song
- Department of Endocrinology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Haiwen Wang
- Department of Cardio‑Thoracic Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
39
|
Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Sci Rep 2018; 8:14008. [PMID: 30228296 PMCID: PMC6143627 DOI: 10.1038/s41598-018-32159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance.
Collapse
|
40
|
High mobility group A2 (HMGA2) promotes EMT via MAPK pathway in prostate cancer. Biochem Biophys Res Commun 2018; 504:196-202. [PMID: 30177390 DOI: 10.1016/j.bbrc.2018.08.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Studies have shown that High mobility group A2 (HMGA2), a non-histone protein, can promote epithelial-mesenchymal transition (EMT), which plays a critical role in prostate cancer progression and metastasis. Interestingly, full-length or wild-type HMGA2 and truncated (lacking the 3'UTR) HMGA2 isoforms are overexpressed in several cancers. However, there are no studies investigating the expression and differential roles of WT vs truncated HMGA2 isoforms in prostate cancer. Immunohistochemical staining of prostate tissue microarray revealed low membrane expression in normal epithelial prostate cells, and that expression increased with tumor grade as well as a switch from predominantly cytoplasmic HMGA2 in lower tumor grades, to mostly nuclear in high grade and bone metastatic tissue. LNCaP cells stably overexpressing wild-type HMGA2 displayed nuclear localization of HMGA2 and induction of EMT associated with increased Snail, Twist and vimentin expression compared to LNCaP Neo control cells, as shown by immunofluorescence and western blot analyses. This was associated with increased cell migration on collagen shown using boyden chamber assay. Conversely, LNCaP cells overexpressing truncated HMGA2 showed cytoplasmic HMGA2 expression that did not induce EMT yet displayed increased cell proliferation and migration compared to LNCaP Neo. Both wild-type and truncated HMGA2 increased levels of phospho-ERK, and interestingly, treatment with U0126, MAPK inhibitor, antagonized wild-type HMGA2-mediated EMT and cell migration, but did not affect truncated HMGA2-mediated cell proliferation or migration. Therefore, although both wild-type and truncated HMGA2 may promote prostate tumor progression, wild-type HMGA2 acts by inducing EMT via MAPK pathway.
Collapse
|
41
|
Guo X, Shi J, Wen Y, Li M, Li Q, Li X, Li J. Increased high-mobility group A2 correlates with lymph node metastasis and prognosis of non-small cell lung cancer. Cancer Biomark 2018; 21:547-555. [PMID: 29278873 DOI: 10.3233/cbm-170401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-mobility group A2 (HMGA2) has been investigated to be associated with tumorigenesis; however, the expression pattern and clinical significance of HMGA2 in non-small cell lung cancer (NSCLC) remains poorly understood. The purpose of this study is to examine the expression of HMGA2 and to analyze its relationships with respect to clinico-pathological features and patient survival in NSCLC. METHODS The expression level of HMGA2 was examined by Western blot and immunohistochemistry in NSCLC cells and tissues. The relationship between HMGA2 expression and survival of NSCLC patients was calculated by a Kaplan-Meier method and the evaluation of risk factor was determined by the multiple regression analysis. RESULTS NSCLC tissues exhibited a higher expression level of HMGA2 compared to normal tissues (p< 0.05) and the expression level of HMGA2 was significantly associated with poor differentiation of NSCLC (p< 0.05), lymph node metastasis (p< 0.05) and advanced clinical stage (p< 0.05). Besides, HMGA2 was also confirmed to be elevated in NSCLC cells by Western blot. Moreover, increased expression of HMGA2 correlated with decreased survival of NSCLC patients (p< 0.05). CONCLUSIONS HMGA2 was highly expressed in NSCLC tissues and cells and its overexpression was correlated with low-grade differentiation, lymph node metastasis, advanced clinical stage and poor survival time of NSCLC, which suggested that it could serve as a potential molecular marker and prognostic index for NSCLC.
Collapse
|
42
|
Tian Y, Zhang N, Chen S, Ma Y, Liu Y. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2. Cell Cycle 2018; 17:1188-1198. [PMID: 29883241 DOI: 10.1080/15384101.2018.1467675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.
Collapse
Affiliation(s)
- Yuheng Tian
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Nali Zhang
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Shuwen Chen
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Yuan Ma
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Yanyan Liu
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| |
Collapse
|
43
|
Xu L, Du B, Lu Q, Fan X, Tang K, Yang L, Liao W. miR-541 suppresses proliferation and invasion of squamous cell lung carcinoma cell lines via directly targeting high-mobility group AT-hook 2. Cancer Med 2018; 7:2581-2591. [PMID: 29659195 PMCID: PMC6010725 DOI: 10.1002/cam4.1491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have demonstrated that micro-ribonucleic acids (miRNAs) are important tumor suppressors during carcinogenesis. However, the function of miRNA-541 (miR-541) in malignancies, especially lung cancer, has not been widely reported. In this study, miR-541 expression was significantly decreased in squamous cell lung carcinoma (SCLC) cancerous tissue and SCLC cell lines. To analyze miR-541 function in SCLC, we overexpressed miR-541 in SCLC cell lines (SK-MES-1 and H226). According to the CCK8, wound scratch, and transwell invasion assay results, miR-541 overexpression significantly inhibited SCLC cell proliferation, migration, and invasion ability. Next, using RT-PCR, Western blotting, immunocytochemistry, and luciferase assays, HMGA2 was identified, for the first time, as a direct regulatory target of miR-541 in SK-MES-1 and H226 cells. Furthermore, upregulating HMGA2 expression significantly alleviated the suppressive effects of miR-541 on SK-MES-1 and H226 cell proliferation, migration, and invasion. In summary, our study revealed that miR-541 inhibited SCLC proliferation and invasion by directly targeting HMGA2.
Collapse
Affiliation(s)
- Li Xu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433China
| | - Bin Du
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Qi‐Jue Lu
- Department of Thoracic SurgeryChanghai HospitalSecond Military Medical UniversityShanghai200438China
| | - Xiao‐Wen Fan
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Ke Tang
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Lie Yang
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Wei‐Lin Liao
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| |
Collapse
|
44
|
Tang W, Xu P, Wang H, Niu Z, Zhu D, Lin Q, Tang L, Ren L. MicroRNA-150 suppresses triple-negative breast cancer metastasis through targeting HMGA2. Onco Targets Ther 2018; 11:2319-2332. [PMID: 29731640 PMCID: PMC5923219 DOI: 10.2147/ott.s161996] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Growing evidence suggests that miR-150 plays an inhibitory role in various types of cancer. However, the function and underlying mechanisms of miR-150 in triple-negative breast cancer (TNBC) remain unknown. Patients and methods miR-150 expression was detected by qRT-PCR and ISH in TNBC tumor and adjacent normal breast tissues. miR-150 function was analyzed by wound healing and transwell assay in vitro and mouse lung metastasis model in vivo. mRNA microarray, qRT-PCR, western blotting and luciferase assay were used to identify the target gene of miR-150. HMGA2 over-expression plasmid was co-transfected with miR-150 to study the role of miR-150 through regulating HMGA2. Results We found that miR-150 was down-regulated in TNBC tumor tissues compared to corresponding adjacent, normal breast tissues, and was correlated with decreased lymph-node metastasis. Ectopic expression of miR-150 suppressed TNBC cell migration in vitro and metastasis in vivo. Mechanistic study revealed that miR-150 down-regulates HMGA2 by directly targeting its mRNA. Moreover, the suppression of cell migration caused by miR-150 is relieved by over-expression of HMGA2, suggesting that miR-150 inhibits migration of TNBC cells by down-regulating HMGA2. Conclusion This work indicates that the miR-150/HMGA2 axis may serve as a treatment marker in TNBC.
Collapse
Affiliation(s)
- Wentao Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pingping Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liming Tang
- Department of General Surgery, Affiliated Changzhou No 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Abstract
microRNAs (miRs) are targets for genomic aberrations and emerging treatments against cancer. It has been demonstrated that targeting miR-569 may potentially benefit patients with ovarian or breast cancer. However, the exact roles of miR-569 remain unclear in human lung cancer cells. Using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was demonstrated that miR-569 expression was consistently decreased in lung cancer cells. As well as cell proliferation and migration inhibition, apoptosis and cell arrest at the G1 phase were induced following reversion of miR-569 expression in lung cancer cells. The present study demonstrated that miR-569 was able to downregulate FOS and high mobility group A2 mRNA and protein expression using RT-qPCR and western blot analysis. The observed role of miRNA-569 in lung cancer cells in the present study suggested that it may be a novel and promising therapeutic target, and a novel biomarker for detecting lung cancer.
Collapse
Affiliation(s)
- Yi Ping Zheng
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Linxia Wu
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Jie Gao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Yanfu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
46
|
Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med 2018; 7:842-855. [PMID: 29473328 PMCID: PMC5852357 DOI: 10.1002/cam4.1353] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
To study the regulatory effect of lncRNA HOTAIR/miR-20a-5p/HMGA2 axis on breast cancer (BC) cell growth, cell mobility, invasiveness, and apoptosis. The microarray data of lncRNAs and mRNAs with differential expression in BC tissues were analyzed in the Cancer Genome Atlas (TCGA) database. LncRNA HOX transcript antisense RNA (lncRNA HOTAIR) expression in BC was assessed by qRT-PCR. Cell viability was confirmed using MTT and colony formation assay. Cell apoptosis was analyzed by TdT-mediated dUTP nick-end labeling (TUNEL) assay. Cell mobility and invasiveness were testified by transwell assay. RNA pull-down and dual luciferase assay were used for analysis of the correlation between lncRNA HOTAIR and miR-20a-5p, as well as relationship of miR-20a-5p with high mobility group AT-hook 2 (HMGA2). Tumor xenograft study was applied to confirm the correlation of lncRNA HOTAIR/miR-20a-5p/HMGA2 axis on BC development in vivo. The expression levels of the lncRNA HOTAIR were upregulated in BC tissues and cells. Knockdown lncRNA HOTAIR inhibited cell propagation and metastasis and facilitated cell apoptosis. MiR-20a-5p was a target of lncRNA HOTAIR and had a negative correlation with lncRNA HOTAIR. MiR-20a-5p overexpression in BC suppressed cell growth, mobility, and invasiveness and facilitated apoptosis. HMGA2 was a target of miR-20a-5p, which significantly induced carcinogenesis of BC. BC cells progression was mediated by lncRNA HOTAIR via affecting miR-20a-5p/HMGA2 in vivo. LncRNA HOTAIR affected cell growth, metastasis, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer.
Collapse
Affiliation(s)
- Wenyan Zhao
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Donghua Geng
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Shuqiang Li
- Department of General SurgeryShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Zhaofu Chen
- Department of UrologyShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| | - Ming Sun
- Department of UrologyShengjing Hospital Affiliated China Medical UniversityShenyang110004LiaoningChina
| |
Collapse
|
47
|
Luo Y, Li B, Zhang G, He Y, Bae JH, Hu F, Cui R, Liu R, Wang Z, Wang L. Integrated Oncogenomic Profiling of Copy Numbers and Gene Expression in Lung Adenocarcinomas without EGFR Mutations or ALK Fusion. J Cancer 2018; 9:1096-1105. [PMID: 29581789 PMCID: PMC5868177 DOI: 10.7150/jca.23909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies based on EGFR mutations or on the ALK fusion oncogene have become the standard treatment for certain patients with lung adenocarcinoma (LUAD). However, most LUAD patients have no EGFR mutation or ALK fusion, and their oncogenetic alterations remain to be characterized. Here we conducted an integrated analysis of public datasets to assess the genomic alterations of 23 highly lung cancer-associated genes. The copy numbers of these genes were measured in ten micro-dissected, paired tumors and normal lung tissues of LUAD patients without EGFR mutations or ALK fusion. The copy numbers of PTEN, RB1, HMGA2, and PTPRD were lower in tumors compared with those for normal tissues. Although there were reduced mRNA levels of PTEN and RB1 in tumors, there was a correlation between copy number and expression only for PTEN. In addition, analysis of the copy number alterations of these 23 genes revealed correlations between EMSY/CCND1, EMSY/PIK3CA, CCND1/CDKN2A, and CCND1/PIK3CA. Our exploration of integrated copy number and gene expression analysis gives priority to the PTEN-PIK3CA and RB1-CCND1 pathways in developing therapeutic strategies for LUAD patients without EGFR mutations or ALK fusion.
Collapse
Affiliation(s)
- Yanzhuo Luo
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,Department of Cardiac Surgery, The First Hospital Affiliated to Jiamusi University, Jiamusi, Heilongjiang, 154002, China
| | - Bingjin Li
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Guangxin Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yuxiao He
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110003, China
| | - Jeeyoo Hope Bae
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Fengping Hu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Ranji Cui
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
48
|
Yin J, Kim TH, Park N, Shin D, Choi HI, Cho S, Park JB, Kim JH. TRIM71 suppresses tumorigenesis via modulation of Lin28B-let-7-HMGA2 signaling. Oncotarget 2018; 7:79854-79868. [PMID: 27821801 PMCID: PMC5346756 DOI: 10.18632/oncotarget.13036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023] Open
Abstract
TRIM71 (tripartite motif-containing 71) belongs to the TRIM-NHL protein family, which plays a conserved role in regulating early development and differentiation. However, the molecular functions of TRIM71 have remained largely unknown. Here, we explored the role of TRIM71 together with modulation of Lin28B-let-7-HMGA2 (high-mobility group AT-hook 2) signaling in tumorigenesis. TRIM71 overexpression opposed Lin28B-induced transformation in primary cells and inhibited tumor formation in a mouse model. Specific knockdown of TRIM71 expression increased cancer cell proliferation and invasion. Conversely, overexpression of wild-type TRIM71 in non-small cell lung carcinoma (NSCLC) cells in which Lin28B-let-7-HMGA2 signaling was conserved decreased both cancer cell phenotypes. More importantly, overexpression of an ubiquitin transfer activity-deficient TRIM71 mutant in NSCLC cells had no effect on proliferation or invasion, regardless of the conservation status of Lin28B-let-7-HMGA2 signaling. The tumorigenic inhibitory action of TRIM71 was antagonized by overexpression of the TRIM71 downstream targets, Lin28B and HMGA2. Furthermore, a bioinformatics analysis revealed that TRIM71 expression was downregulated in various types of cancer tissue from patients. Taken together, these data indicate that TRIM71 acts through post-transcriptional repression of Lin28B and subsequent modulation of let-7-HMGA2 signaling during tumorigenesis to potentially function as a tumor suppressor.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Tae-Hoon Kim
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Nayun Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Daye Shin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Hae In Choi
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang, Korea
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Jong Heon Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| |
Collapse
|
49
|
Dom G, Frank S, Floor S, Kehagias P, Libert F, Hoang C, Andry G, Spinette A, Craciun L, de Saint Aubin N, Tresallet C, Tissier F, Savagner F, Majjaj S, Gutierrez-Roelens I, Marbaix E, Dumont JE, Maenhaut C. Thyroid follicular adenomas and carcinomas: molecular profiling provides evidence for a continuous evolution. Oncotarget 2018; 9:10343-10359. [PMID: 29535811 PMCID: PMC5828225 DOI: 10.18632/oncotarget.23130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Non-autonomous thyroid nodules are common in the general population with a proportion found to be cancerous. A current challenge in the field is to be able to distinguish benign adenoma (FA) from preoperatively malignant thyroid follicular carcinoma (FTC), which are very similar both histologically and genetically. One controversial issue, which is currently not understood, is whether both tumor types represent different molecular entities or rather a biological continuum. To gain a better insight into FA and FTC tumorigenesis, we defined their molecular profiles by mRNA and miRNA microarray. Expression data were analyzed, validated by qRT-PCR and compared with previously published data sets. The majority of deregulated mRNAs were common between FA and FTC and were downregulated, however FTC showed additional deregulated mRNA. Both types of tumors share deregulated pathways, molecular functions and biological processes. The additional deregulations in FTC include the lipid transport process that may be involved in tumor progression. The strongest candidate genes which may be able to discriminate follicular adenomas and carcinomas, CRABP1, FABP4 and HMGA2, were validated in independent samples by qRT-PCR and immunohistochemistry. However, they were not able to adequately classify FA or FTC, supporting the notion of continuous evolving tumors, whereby FA and FTC appear to show quantitative rather than qualitative changes. Conversely, miRNA expression profiles showed few dysregulations in FTC, and even fewer in FA, suggesting that miRNA play a minor, if any, role in tumor progression.
Collapse
Affiliation(s)
- Geneviève Dom
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sandra Frank
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sebastien Floor
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Catherine Hoang
- Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | - Guy Andry
- Institut Jules Bordet, Brussels, Belgium
| | | | | | | | | | - Frederique Tissier
- Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | - Ilse Gutierrez-Roelens
- Biolibrary of the King Albert II Institute, Cliniques Universitaires Saint-Luc, and Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne Marbaix
- Biolibrary of the King Albert II Institute, Cliniques Universitaires Saint-Luc, and Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques E. Dumont
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, School of Medicine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
50
|
Wang L, Shen H, Zhu D, Feng B, Yu L, Tian X, Ren C, Gao C, Li X, Ma D, Hu Z, Wang H. Increased high mobility group A 2 expression promotes transition of cervical intraepithelial neoplasm into cervical cancer. Oncotarget 2018; 9:7891-7901. [PMID: 29487700 PMCID: PMC5814267 DOI: 10.18632/oncotarget.24080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022] Open
Abstract
Integration of the high risk human papillomavirus (HR-HPV) genome into host chromatin is an important step in cervical carcinogenesis. We identified HR-HPV integration sites within the human genome through detection of integrated papillomavirus sequences-PCR and assessed the role of high mobility group A 2 (HMGA2) in cervical carcinogenesis in clinical samples and cell lines. HPV integration sites were analyzed in 40 cervical cancer samples, while copy number variation and protein expression were assessed in 19 normal cervixes, 49 cervical intraepithelial neoplasia (CIN), and 52 cervical cancer samples. Overall, 25 HR-HPV integrating loci were detected in 24 cervical samples; HMGA2 was the only recurring integration site. Both HPV copy number and HMGA2 protein expression were higher in cervical cancer than CIN samples. Area under the curve (AUC) values for HMGA2 expression and HPV copy number were 0.910 (95% CI: 0.844–0.976) and 0.848 (95% CI: 0.772–0.923), respectively. Expression of Bcl-2 and Caspase 3 can indicate the cell proliferation and apoptosis. Transfection of HMGA2 siRNA decreased HMGA2 mRNA and protein expression, Bcl-2 expression, inhibited cell proliferation, and increased Caspase 3 expression and apoptosis in SiHa, CaSki and S12 cervical cancer cells. HMGA2 overexpression had the opposite effects. These results suggest that elevated HMGA2 expression is associated with transformation of CIN into cervical cancer and that HMGA2 might be a useful biomarker for assessing the risk of cervical lesion progression.
Collapse
Affiliation(s)
- Liming Wang
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Shen
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bei Feng
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Yu
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xun Tian
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ci Ren
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chun Gao
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Li
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|