1
|
Xue G, Wang G, Shi Q, Wang H, Lv BM, Gao M, Niu X, Zhang HY. Exploring the dynamic pathogenesis of Parkinson's disease by case-control and longitudinal blood transcriptome analyses. Neurobiol Dis 2025; 209:106891. [PMID: 40210007 DOI: 10.1016/j.nbd.2025.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The pathogenesis of Parkinson's disease (PD) was recently hypothesized to change along with the disease course. Given the fact that transcriptional changes in blood can provide insightful clues for PD pathogenesis, we performed case-control and longitudinal whole blood transcriptome analyses to identify the signature genes underlying the hypothesized dynamic pathogenesis of PD. In the case-control study, we compared the gene expression patterns in healthy control (N = 189), prodromal (N = 58) and de novo idiopathic PD subjects (N = 390). The results showed that the prodromal subjects were at the tipping-point stage, which is characterized by the abnormal expression patterns of 414 genes associated with oxygen transport and reactive oxygen species metabolic process. We next performed a longitudinal transcriptome analysis on 255 PD patients from the baseline to the third year, and identified 203 genes related to immune and inflammatory responses during disease progression. These findings not just offer deeper insights into the dynamic pathogenesis of PD, but also help to find potential drugs to prevent the early neurodegeneration process.
Collapse
Affiliation(s)
- Gang Xue
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Basic Medical Laboratory, Hubei Key Laboratory of Central Nervous System Tumor and Intervention, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Tan MM, Iwaki H, Bandres-Ciga S, Sosero Y, Shoai M, Brockmann K, Williams NM, Alcalay RN, Maple-Grødem J, Alves G, Tysnes OB, Auinger P, Eberly S, Heutink P, Simon DK, Kieburtz K, Hardy J, Williams-Gray CH, Grosset DG, Corvol JC, Gan-Or Z, Toft M, Pihlstrøm L. Polygenic scores for disease risk are not associated with clinical outcomes in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321395. [PMID: 39974079 PMCID: PMC11838632 DOI: 10.1101/2025.01.31.25321395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Polygenic risk scores (PRS) in Parkinson's disease (PD) are associated with disease risk. Recently, pathway-specific PRS have been created to take advantage of annotations inking variants to biological pathways or cell types. Here, we investigated 8 biological pathways or regions of open chromatin using pathway-specific PRS: alpha-synuclein pathway, adaptive immunity, innate immunity, lysosomal pathway1, endocytic membrane-trafficking pathway, mitochondrial pathway, microglial open chromatin single nucleotide polymorphisms (SNPs), and monocyte open chromatin SNPs. We analysed 7,402 PD patients across 18 'in-person' PD cohorts, and 6,717 patients from the online Fox Insight study. We did not find any significant associations between the 8 pathway-specific PRSs and 8 clinical outcomes in PD. Though this may be due to a lack of statistical power and limited sample size, it may also suggest that the genetic architecture of sporadic PD risk is different from the genetics of PD progression and clinical outcomes.
Collapse
Affiliation(s)
- Manuela Mx Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Yuri Sosero
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Jodi Maple-Grødem
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
| | - Guido Alves
- Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University in Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Peggy Auinger
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases-Tubingen, Tuebingen, Germany
- HIH Tuebingen, Tubingen, Tuebingen, Germany
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karl Kieburtz
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, New York, USA
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Decet M, Scott P, Kuenen S, Meftah D, Swerts J, Calatayud C, Gallego SF, Kaempf N, Nachman E, Praschberger R, Schoovaerts N, Tang CC, Eidelberg D, Al Adawi S, Al Asmi A, Nandhagopal R, Verstreken P. A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism. Cell Rep Med 2024; 5:101749. [PMID: 39332416 PMCID: PMC11513836 DOI: 10.1016/j.xcrm.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Synaptic dysfunction is recognized as an early step in the pathophysiology of parkinsonism. Several genetic mutations affecting the integrity of synaptic proteins cause or increase the risk of developing disease. We have identified a candidate causative mutation in synaptic "SH3GL2 Interacting Protein 1" (SGIP1), linked to early-onset parkinsonism in a consanguineous Arab family. Additionally, affected siblings display intellectual, cognitive, and behavioral dysfunction. Metabolic network analysis of [18F]-fluorodeoxyglucose positron emission tomography scans shows patterns very similar to those of idiopathic Parkinson's disease. We show that the identified SGIP1 mutation causes a loss of protein function, and analyses in newly created Drosophila models reveal movement defects, synaptic transmission dysfunction, and neurodegeneration, including dopaminergic synapse loss. Histology and correlative light and electron microscopy reveal the absence of synaptic multivesicular bodies and the accumulation of degradative organelles. This research delineates a putative form of recessive parkinsonism, converging on defective synaptic proteostasis and opening avenues for diagnosis, genetic counseling, and treatment.
Collapse
Affiliation(s)
- Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrick Scott
- Laboratory of Molecular Biology, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Douja Meftah
- Laboratory of Pulmonary Physiology, Department of Pediatrics, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Eliana Nachman
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Samir Al Adawi
- Department of Behavioral Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Abdullah Al Asmi
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, Zaccagnini L, Celikag M, Sandoe J, Sanz RL, Vahdatshoar A, Martin TD, Morshed N, Ichihashi T, Tripathi A, Ramalingam N, Oettgen-Suazo C, Bartels T, Boussouf M, Schäbinger M, Hallacli E, Jiang X, Verma A, Tea C, Wang Z, Hakozaki H, Yu X, Hyles K, Park C, Wang X, Theunissen TW, Wang H, Jaenisch R, Lindquist S, Stevens B, Stefanova N, Wenning G, van de Berg WDJ, Luk KC, Sanchez-Pernaute R, Gómez-Esteban JC, Felsky D, Kiyota Y, Sahni N, Yi SS, Chung CY, Stahlberg H, Ferrer I, Schöneberg J, Elledge SJ, Dettmer U, Halliday GM, Bartels T, Khurana V. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron 2024; 112:2886-2909.e16. [PMID: 39079530 PMCID: PMC11377155 DOI: 10.1016/j.neuron.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 09/07/2024]
Abstract
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amanda J Lewis
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - YuHong Fu
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Giselle T Sagredo
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Anastasia Kuzkina
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Meral Celikag
- Dementia Research Institute, University College London, London, UK
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ricardo L Sanz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy D Martin
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nader Morshed
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charlotte Oettgen-Suazo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Bartels
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Manel Boussouf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Max Schäbinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xin Jiang
- Yumanity Therapeutics, Cambridge, MA, USA
| | - Amrita Verma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Challana Tea
- University of California, San Diego, San Diego, CA, USA
| | - Zichen Wang
- University of California, San Diego, San Diego, CA, USA
| | | | - Xiao Yu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly Hyles
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chansaem Park
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xinyuan Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kelvin C Luk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosario Sanchez-Pernaute
- BioBizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Nidhi Sahni
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - S Stephen Yi
- The University of Texas at Austin, Austin, TX, USA
| | | | - Henning Stahlberg
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isidro Ferrer
- The University of Barcelona, Institut d'Investigacio Biomedica de Bellvitge IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Glenda M Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tim Bartels
- Dementia Research Institute, University College London, London, UK
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
6
|
Bartl M, Nilsson J, Dakna M, Weber S, Schade S, Xylaki M, Fernandes Gomes B, Ernst M, Muntean ML, Sixel-Döring F, Trenkwalder C, Zetterberg H, Brinkmalm A, Mollenhauer B. Lysosomal and synaptic dysfunction markers in longitudinal cerebrospinal fluid of de novo Parkinson's disease. NPJ Parkinsons Dis 2024; 10:102. [PMID: 38760408 PMCID: PMC11101466 DOI: 10.1038/s41531-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Lysosomal and synaptic dysfunctions are hallmarks in neurodegeneration and potentially relevant as biomarkers, but data on early Parkinson's disease (PD) is lacking. We performed targeted mass spectrometry with an established protein panel, assessing autophagy and synaptic function in cerebrospinal fluid (CSF) of drug-naïve de novo PD, and sex-/age-matched healthy controls (HC) cross-sectionally (88 PD, 46 HC) and longitudinally (104 PD, 58 HC) over 10 years. Multiple markers of autophagy, synaptic plasticity, and secretory pathways were reduced in PD. We added samples from prodromal subjects (9 cross-sectional, 12 longitudinal) with isolated REM sleep behavior disorder, revealing secretogranin-2 already decreased compared to controls. Machine learning identified neuronal pentraxin receptor and neurosecretory protein VGF as most relevant for discriminating between groups. CSF levels of LAMP2, neuronal pentraxins, and syntaxins in PD correlated with clinical progression, showing predictive potential for motor- and non-motor symptoms as a valid basis for future drug trials.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany.
| | - Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bárbara Fernandes Gomes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ann Brinkmalm
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
7
|
Brooker SM, Naylor GE, Krainc D. Cell biology of Parkinson's disease: Mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol 2024; 85:102841. [PMID: 38306948 DOI: 10.1016/j.conb.2024.102841] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is a growing cause of disability worldwide and there is a critical need for the development of disease-modifying therapies to slow or stop disease progression. Recent advances in characterizing the genetics of PD have expanded our understanding of the cell biology of this disorder. Mitochondrial oxidative stress, defects in synaptic function, and impaired lysosomal activity have been shown to be linked in PD, resulting in a pathogenic feedback cycle involving the accumulation of toxic oxidized dopamine and alpha-synuclein. In this review, we will highlight recent data on a subset of PD-linked genes which have key roles in these pathways and the pathogenic cycle. We will furthermore discuss findings highlighting the importance of dynamic mitochondria-lysosome contact sites that mediate direct inter-organelle cross-talk in the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/BrookerSarahM
| | - Grace E Naylor
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/GENaylor
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Nazeen S, Wang X, Zielinski D, Lam I, Hallacli E, Xu P, Ethier E, Strom R, Zanella CA, Nithianandam V, Ritter D, Henderson A, Saurat N, Afroz J, Nutter-Upham A, Benyamini H, Copty J, Ravishankar S, Morrow A, Mitchel J, Neavin D, Gupta R, Farbehi N, Grundman J, Myers RH, Scherzer CR, Trojanowski JQ, Van Deerlin VM, Cooper AA, Lee EB, Erlich Y, Lindquist S, Peng J, Geschwind DH, Powell J, Studer L, Feany MB, Sunyaev SR, Khurana V. Deep sequencing of proteotoxicity modifier genes uncovers a Presenilin-2/beta-amyloid-actin genetic risk module shared among alpha-synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583145. [PMID: 38496508 PMCID: PMC10942362 DOI: 10.1101/2024.03.03.583145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aβ) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aβ modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aβ toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dina Zielinski
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Isabel Lam
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erinc Hallacli
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ping Xu
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Alexander Henderson
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Hadar Benyamini
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Joseph Copty
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Autumn Morrow
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jonathan Mitchel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA
| | - Drew Neavin
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Renuka Gupta
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jennifer Grundman
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Clemens R Scherzer
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Antony A Cooper
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaniv Erlich
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan Lindquist
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Powell
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vikram Khurana
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Kim JJ, Vitale D, Otani DV, Lian MM, Heilbron K, Iwaki H, Lake J, Solsberg CW, Leonard H, Makarious MB, Tan EK, Singleton AB, Bandres-Ciga S, Noyce AJ, Blauwendraat C, Nalls MA, Foo JN, Mata I. Multi-ancestry genome-wide association meta-analysis of Parkinson's disease. Nat Genet 2024; 56:27-36. [PMID: 38155330 PMCID: PMC10786718 DOI: 10.1038/s41588-023-01584-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.
Collapse
Affiliation(s)
- Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Diego Véliz Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | | | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, UCSF, San Francisco, CA, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Duke NUS Medical School, Singapore, Singapore
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore.
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
10
|
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol 2023; 39:409-434. [PMID: 37406299 DOI: 10.1146/annurev-cellbio-120420-014634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Tunold JA, Tan MMX, Koga S, Geut H, Rozemuller AJM, Valentino R, Sekiya H, Martin NB, Heckman MG, Bras J, Guerreiro R, Dickson DW, Toft M, van de Berg WDJ, Ross OA, Pihlstrøm L. Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain 2023; 146:4077-4087. [PMID: 37247383 PMCID: PMC10545498 DOI: 10.1093/brain/awad183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-β and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-β and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Rebecca Valentino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas B Martin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
12
|
Yang J, Wu X, Song Y. Recent advances in novel mutation genes of Parkinson's disease. J Neurol 2023:10.1007/s00415-023-11781-4. [PMID: 37222843 DOI: 10.1007/s00415-023-11781-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
With increasing life expectancy, a growing number of individuals are being affected by Parkinson's Disease (PD), a Neurodegenerative Disease (ND). Approximately, 5-10% of PD is explained by genetic causes linked to known PD genes. With improvements in genetic testing and high-throughput technologies, more PD-associated susceptibility genes have been reported in recent years. However, a comprehensive review of the pathogenic mechanisms and physiological roles of these genes is still lacking. This article reviews novel genes with putative or confirmed pathogenic mutations in PD reported since 2019, summarizes the physiological functions and potential associations with PD. Newly reported PD-related genes include ANK2, DNAH1, STAB1, NOTCH2NLC, UQCRC1, ATP10B, TFG, CHMP1A, GIPC1, KIF21B, KIF24, SLC25A39, SPTBN1 and TOMM22. However, the evidence for pathogenic effects of many of these genes is inconclusive. A variety of novel PD-associated genes have been identified through clinical cases of PD patients and analysis of Genome-Wide Association Studies (GWAS). However, more evidence is needed in confirm the strong association of novel genes with disease.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| |
Collapse
|
13
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
14
|
Zhang J, Xie S, Xiao R, Yang D, Zhan Z, Li Y. Identification of mitophagy-related biomarkers and immune infiltration in major depressive disorder. BMC Genomics 2023; 24:216. [PMID: 37098514 PMCID: PMC10131417 DOI: 10.1186/s12864-023-09304-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a life-threatening and debilitating mental health condition. Mitophagy, a form of selective autophagy that eliminates dysfunctional mitochondria, is associated with depression. However, studies on the relationship between mitophagy-related genes (MRGs) and MDD are scarce. This study aimed to identify potential mitophagy-related biomarkers for MDD and characterize the underlying molecular mechanisms. METHODS The gene expression profiles of 144 MDD samples and 72 normal controls were retrieved from the Gene Expression Omnibus database, and the MRGs were extracted from the GeneCards database. Consensus clustering was used to determine MDD clusters. Immune cell infiltration was evaluated using CIBERSORT. Functional enrichment analyses were performed to determine the biological significance of mitophagy-related differentially expressed genes (MR-DEGs). Weighted gene co-expression network analysis, along with a network of protein-protein interactions (PPI), was used to identify key modules and hub genes. Based on the least absolute shrinkage and selection operator analysis and univariate Cox regression analysis, a diagnostic model was constructed and evaluated using receiver operating characteristic curves and validated with training data and external validation data. We reclassified MDD into two molecular subtypes according to biomarkers and evaluated their expression levels. RESULTS In total, 315 MDD-related MR-DEGs were identified. Functional enrichment analyses revealed that MR-DEGs were mainly enriched in mitophagy-related biological processes and multiple neurodegenerative disease pathways. Two distinct clusters with diverse immune infiltration characteristics were identified in the 144 MDD samples. MATR3, ACTL6A, FUS, BIRC2, and RIPK1 have been identified as potential biomarkers of MDD. All biomarkers showed varying degrees of correlation with immune cells. In addition, two molecular subtypes with distinct mitophagy gene signatures were identified. CONCLUSIONS We identified a novel five-MRG gene signature that has excellent diagnostic performance and identified an association between MRGs and the immune microenvironment in MDD.
Collapse
Affiliation(s)
- Jing Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shujun Xie
- Department of Hematology and Oncology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Rong Xiao
- Department of Rehabilitation, The Eighth People's Hospital of Hefei, Hefei, 238000, China
| | - Dongrong Yang
- Department of Psychological Sleep, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Zhi Zhan
- Department of Psychological Sleep, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Li
- Department of Psychological Sleep, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
16
|
Nilsson J, Constantinescu J, Nellgård B, Jakobsson P, Brum WS, Gobom J, Forsgren L, Dalla K, Constantinescu R, Zetterberg H, Hansson O, Blennow K, Bäckström D, Brinkmalm A. Cerebrospinal Fluid Biomarkers of Synaptic Dysfunction are Altered in Parkinson's Disease and Related Disorders. Mov Disord 2023; 38:267-277. [PMID: 36504237 DOI: 10.1002/mds.29287] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. OBJECTIVE To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. METHODS Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort. RESULTS Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25-0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; β-estimate = -0.025 to -0.038, P < 0.05) and cognitive decline (NPTX2; β-estimate = 0.32, P = 0.021). CONCLUSIONS These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Julius Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Protik Jakobsson
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Wagner S Brum
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Johan Gobom
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Radu Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
17
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
18
|
Riboldi GM, Vialle RA, Navarro E, Udine E, de Paiva Lopes K, Humphrey J, Allan A, Parks M, Henderson B, Astudillo K, Argyrou C, Zhuang M, Sikder T, Oriol Narcis J, Kumar SD, Janssen W, Sowa A, Comi GP, Di Fonzo A, Crary JF, Frucht SJ, Raj T. Transcriptome deregulation of peripheral monocytes and whole blood in GBA-related Parkinson's disease. Mol Neurodegener 2022; 17:52. [PMID: 35978378 PMCID: PMC9386994 DOI: 10.1186/s13024-022-00554-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations in beta-glucocerebrosidase (GBA) represent the major genetic risk factor for Parkinson's disease (PD). GBA participates in both the endo-lysosomal pathway and the immune response, two important mechanisms involved in the pathogenesis of PD. However, modifiers of GBA penetrance have not yet been fully elucidated. METHODS We characterized the transcriptomic profiles of circulating monocytes in a population of patients with PD and healthy controls (CTRL) with and without GBA variants (n = 23 PD/GBA, 13 CTRL/GBA, 56 PD, 66 CTRL) and whole blood (n = 616 PD, 362 CTRL, 127 PD/GBA, 165 CTRL/GBA). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Ultrastructural characterization of isolated CD14+ monocytes in the four groups was also performed through electron microscopy. RESULTS We observed hundreds of differentially expressed genes and dysregulated pathways when comparing manifesting and non-manifesting GBA mutation carriers. Specifically, when compared to idiopathic PD, PD/GBA showed dysregulation in genes involved in alpha-synuclein degradation, aging and amyloid processing. Gene-based outlier analysis confirmed the involvement of lysosomal, membrane trafficking, and mitochondrial processing in manifesting compared to non-manifesting GBA-carriers, as also observed at the ultrastructural levels. Transcriptomic results were only partially replicated in an independent cohort of whole blood samples, suggesting cell-type specific changes. CONCLUSIONS Overall, our transcriptomic analysis of primary monocytes identified gene targets and biological processes that can help in understanding the pathogenic mechanisms associated with GBA mutations in the context of PD.
Collapse
Affiliation(s)
- Giulietta Maria Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders, New York University Langone Health, 222 East 41st street, New York, NY 10017 USA
| | - Ricardo A. Vialle
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Elisa Navarro
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
- Department of Biochemistry and Molecular Biology (Universidad Complutense de Madrid) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Evan Udine
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Katia de Paiva Lopes
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Amanda Allan
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Madison Parks
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Brooklyn Henderson
- The Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders, New York University Langone Health, 222 East 41st street, New York, NY 10017 USA
| | - Kelly Astudillo
- The Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders, New York University Langone Health, 222 East 41st street, New York, NY 10017 USA
| | - Charalambos Argyrou
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Maojuan Zhuang
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Tamjeed Sikder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15th Floor, New York, NY 10029 USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 9-22, New York, NY 10029 USA
| | - J. Oriol Narcis
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
| | - Shilpa Dilip Kumar
- Microscopy Core and Advanced Bioimaging Center at the Icahn School of Medicine at Mount Sinai Center, 1468 Madison Avenue, Room 18-250, New York, NY 10029 USA
| | - William Janssen
- Microscopy Core and Advanced Bioimaging Center at the Icahn School of Medicine at Mount Sinai Center, 1468 Madison Avenue, Room 18-250, New York, NY 10029 USA
| | - Allison Sowa
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15th Floor, New York, NY 10029 USA
| | - Giacomo P. Comi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 35, 20122 Milano, MI Italy
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 35, 20122 Milano, MI Italy
| | - John F. Crary
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15th Floor, New York, NY 10029 USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 9-22, New York, NY 10029 USA
| | - Steven J. Frucht
- The Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders, New York University Langone Health, 222 East 41st street, New York, NY 10017 USA
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029 USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029 USA
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, ICAHN 10-70E, New York, NY 10029–6574 USA
| |
Collapse
|
19
|
Langston RG, Beilina A, Reed X, Kaganovich A, Singleton AB, Blauwendraat C, Gibbs JR, Cookson MR. Association of a common genetic variant with Parkinson's disease is mediated by microglia. Sci Transl Med 2022; 14:eabp8869. [PMID: 35895835 PMCID: PMC9809150 DOI: 10.1126/scitranslmed.abp8869] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies of multiple neurodegenerative disorders have identified many genetic variants that are associated with risk of disease throughout a lifetime. For example, Parkinson's disease (PD) risk is attributed in part to both coding mutations in the leucine-rich repeat kinase 2 (LRRK2) gene and to a common noncoding variation in the 5' region of the LRRK2 locus, as identified by genome-wide association studies (GWAS). However, the mechanisms linking GWAS variants to pathogenicity are largely unknown. Here, we found that the influence of PD-associated noncoding variation on LRRK2 expression is specifically propagated through microglia and not by other cell types that express LRRK2 in the human brain. We find microglia-specific regulatory chromatin regions that modulate the LRRK2 expression in human frontal cortex and substantia nigra and confirm these results in a human-induced pluripotent stem cell-derived microglia model. We showed, using a large-scale clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen, that a regulatory DNA element containing the single-nucleotide variant rs6581593 influences the LRRK2 expression in microglia. Our study demonstrates that cell type should be considered when evaluating the role of noncoding variation in disease pathogenesis and sheds light on the mechanism underlying the association of the 5' region of LRRK2 with PD risk.
Collapse
Affiliation(s)
- R. G. Langston
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A. Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - X. Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - C. Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. R. Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - M. R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
21
|
Marchand A, Sarchione A, Athanasopoulos PS, Roy HBL, Goveas L, Magnez R, Drouyer M, Emanuele M, Ho FY, Liberelle M, Melnyk P, Lebègue N, Thuru X, Nichols RJ, Greggio E, Kortholt A, Galli T, Chartier-Harlin MC, Taymans JM. A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells 2022; 11:cells11061018. [PMID: 35326469 PMCID: PMC8946913 DOI: 10.3390/cells11061018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson’s disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2’s heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Panagiotis S. Athanasopoulos
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | | | - Liesel Goveas
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, Platform of Integrative Chemical Biology, F-59000 Lille, France; (R.M.); (X.T.)
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Marco Emanuele
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Franz Y. Ho
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Patricia Melnyk
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, Platform of Integrative Chemical Biology, F-59000 Lille, France; (R.M.); (X.T.)
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Elisa Greggio
- Physiology, Genetics and Behavior Unit, Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (P.S.A.); (F.Y.H.); (A.K.)
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Cité, INSERM U1266, F-75014 Paris, France;
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
- Correspondence: (M.-C.C.-H.); (J.-M.T.)
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (A.M.); (A.S.); (L.G.); (M.D.); (M.E.); (M.L.); (P.M.); (N.L.)
- Correspondence: (M.-C.C.-H.); (J.-M.T.)
| |
Collapse
|
22
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
24
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021; 65:859-872. [PMID: 34897411 DOI: 10.1042/ebc20210013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex GTPase/kinase orchestrating cytoskeletal dynamics and multiple steps of the endolysosomal pathway through interaction with a host of partners and phosphorylation of a subset of Rab GTPases. Mutations in LRRK2 cause late-onset Parkinson's disease (PD) and common variants in the locus containing LRRK2 have been associated with sporadic PD, progressive supranuclear palsy as well as a number of inflammatory diseases. This review encompasses the major discoveries in the field of LRRK2 pathobiology, from the initial gene cloning to the latest progress in LRRK2 inhibition as a promising therapeutic approach to fight neurodegeneration.
Collapse
|
26
|
Schilder BM, Navarro E, Raj T. Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiol Dis 2021; 163:105580. [PMID: 34871738 PMCID: PMC10101343 DOI: 10.1016/j.nbd.2021.105580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-Wide Association Studies (GWAS) have elucidated the genetic components of Parkinson's Disease (PD). However, because the vast majority of GWAS association signals fall within non-coding regions, translating these results into an interpretable, mechanistic understanding of the disease etiology remains a major challenge in the field. In this review, we provide an overview of the approaches to prioritize putative causal variants and genes as well as summarise the primary findings of previous studies. We then discuss recent efforts to integrate multi-omics data to identify likely pathogenic cell types and biological pathways implicated in PD pathogenesis. We have compiled full summary statistics of cell-type, tissue, and phentoype enrichment analyses from multiple studies of PD GWAS and provided them in a standardized format as a resource for the research community (https://github.com/RajLabMSSM/PD_omics_review). Finally, we discuss the experimental, computational, and conceptual advances that will be necessary to fully elucidate the effects of functional variants and genes on cellular dysregulation and disease risk.
Collapse
Affiliation(s)
- Brian M Schilder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; UK Dementia Research Institute at Imperial College London, London, United Kingdom.
| | - Elisa Navarro
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Sección Departamental de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
27
|
Szegö EM, Van den Haute C, Höfs L, Baekelandt V, Van der Perren A, Falkenburger BH. Rab7 reduces α-synuclein toxicity in rats and primary neurons. Exp Neurol 2021; 347:113900. [PMID: 34695425 DOI: 10.1016/j.expneurol.2021.113900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 11/04/2022]
Abstract
During the pathogenesis of Parkinson's disease (PD), aggregation of alpha-synuclein (αSyn) induces a vicious cycle of cellular impairments that lead to neurodegeneration. Consequently, removing toxic αSyn aggregates constitutes a plausible strategy against PD. In this work, we tested whether stimulating the autolysosomal degradation of αSyn aggregates through the Ras-related in brain 7 (Rab7) pathway can reverse αSyn-induced cellular impairment and prevent neurodegeneration in vivo. The disease-related A53T mutant of αSyn was expressed in primary neurons and in dopaminergic neurons of the rat brain simultaneously with wild type (WT) Rab7 or the T22N mutant as negative control. The cellular integrity was quantified by morphological and biochemical analyses. In primary neurons, WT Rab7 rescued the αSyn-induced loss of neurons and neurites. Furthermore, Rab7 decreased the amount of reactive oxygen species and the amount of Triton X-100 insoluble αSyn. In rat brain, WT Rab7 reduced αSyn-induced loss of dopaminergic axon terminals in the striatum and the loss of dopaminergic dendrites in the substantia nigra pars reticulata. Further, WT Rab7 lowered αSyn pathology as quantified by phosphorylated αSyn staining. Finally, WT Rab7 attenuated αSyn-induced DNA damage in primary neurons and rat brain. In brief, Rab7 reduced αSyn-induced pathology, ameliorated αSyn-induced neuronal degeneration, oxidative stress and DNA damage. These findings indicate that Rab7 is able to disrupt the vicious cycle of cellular impairment, αSyn pathology and neurodegeneration present in PD. Stimulation of Rab7 and the autolysosomal degradation pathway could therefore constitute a beneficial strategy for PD.
Collapse
Affiliation(s)
- Eva M Szegö
- Department of Neurology, TU Dresden, Dresden, Germany.
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium.
| | - Lennart Höfs
- Department of Neurology, TU Dresden, Dresden, Germany.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium.
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
Polygenic Risk Scores Contribute to Personalized Medicine of Parkinson's Disease. J Pers Med 2021; 11:jpm11101030. [PMID: 34683174 PMCID: PMC8539098 DOI: 10.3390/jpm11101030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by the loss of dopaminergic neurons. The vast majority of PD patients develop the disease sporadically and it is assumed that the cause lies in polygenic and environmental components. The overall polygenic risk is the result of a large number of common low-risk variants discovered by large genome-wide association studies (GWAS). Polygenic risk scores (PRS), generated by compiling genome-wide significant variants, are a useful prognostic tool that quantifies the cumulative effect of genetic risk in a patient and in this way helps to identify high-risk patients. Although there are limitations to the construction and application of PRS, such as considerations of limited genetic underpinning of diseases explained by SNPs and generalizability of PRS to other populations, this personalized risk prediction could make a promising contribution to stratified medicine and tailored therapeutic interventions in the future.
Collapse
|
29
|
Guadagnolo D, Piane M, Torrisi MR, Pizzuti A, Petrucci S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front Neurol 2021; 12:648588. [PMID: 34630269 PMCID: PMC8494251 DOI: 10.3389/fneur.2021.648588] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| |
Collapse
|
30
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
31
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
32
|
Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021; 1765:147503. [PMID: 33915162 PMCID: PMC8212912 DOI: 10.1016/j.brainres.2021.147503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/06/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Mutations in LRRK2 are the most frequent cause of familial Parkinson's disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted treatments given that LRRK2 is expressed in diverse tissues including the brain, kidney and lungs. This presents challenges to treatment in terms of effects on peripheral organ functioning, thus, protein interactors of LRRK2 could be targeted in lieu to optimize therapeutic effects. Herein an in-silico analysis of LRRK2 direct interactors in brain tissue from various brain regionswas conducted along with a comparative analysis of the LRRK2 interactome in the brain, kidney, and lung tissues. This was carried out based on curated protein-protein interaction (PPI) data from protein interaction databases such as HIPPIE, human gene/protein expression databases and Gene ontology (GO) enrichment analysis using Bingo. Seven targets (MAP2K6, MATK, MAPT, PAK6, SH3GL2, CDC42EP3 and CHGB) were found to be viable objectives for LRRK2 based investigations for PD that would have minimal impact on optimal functioning within peripheral organs. Specifically, MAPT, CHGB, PAK6, and SH3GL2 interacted with LRRK2 in the brain and kidney but not in lung tissue whilst LRRK2-MAP2K6 interacted only in the cerebellum and MATK-LRRK2 interaction was absent in kidney tissues. CDC42EP3 expression levels were low in brain tissues compared to kidney/lung. The results of this computational analysis suggest new avenues for experimental investigations towards LRRK2-targeted therapeutics.
Collapse
Affiliation(s)
- Amrita Verma
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Kirsten Ebanks
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Chi-Yee Fok
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Patrick A Lewis
- Royal Veterinary College, Royal College Street, London NW10TV, United Kingdom; Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Conceicao Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom.
| |
Collapse
|
33
|
Liu Q, Bautista-Gomez J, Higgins DA, Yu J, Xiong Y. Dysregulation of the AP2M1 phosphorylation cycle by LRRK2 impairs endocytosis and leads to dopaminergic neurodegeneration. Sci Signal 2021; 14:14/693/eabg3555. [PMID: 34315807 DOI: 10.1126/scisignal.abg3555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutations in the kinase LRRK2 and impaired endocytic trafficking are both implicated in the pathogenesis of Parkinson's disease (PD). Expression of the PD-associated LRRK2 mutant in mouse dopaminergic neurons was shown to disrupt clathrin-mediated endocytic trafficking. Here, we explored the molecular mechanism linking LRRK2 to endocytosis and found that LRRK2 bound to and phosphorylated the μ2 subunit of the adaptor protein AP2 (AP2M1), a core component of the clathrin-mediated endocytic machinery. Analysis of human SH-SY5Y cells and mouse neurons and tissues revealed that loss of LRRK2 abundance or kinase function resulted in decreased phosphorylation of AP2M1, which is required for the initial formation of clathrin-coated vesicles (CCVs). In contrast, overexpression of LRRK2 or expression of a Parkinson's disease-associated gain-of-function mutant LRRK2 (G2019S) inhibited the uncoating of AP2M1 from CCVs at later stages and prevented new cycles of CCV formation. Thus, the abundance and activity of LRRK2 must be calibrated to ensure proper endocytosis. Dysregulated phosphorylation of AP2M1 from the brain but not thyroid tissues of LRRK2 knockout and G2019S-knockin mice suggests a tissue-specific regulatory mechanism of endocytosis. Furthermore, we found that LRRK2-dependent phosphorylation of AP2M1 mediated dopaminergic neurodegeneration in a Drosophila model of PD. Together, our findings provide a mechanistic link between LRRK2, AP2, and endocytosis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | | | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhong Yu
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA. .,Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA. .,Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| |
Collapse
|
34
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Goveas L, Mutez E, Chartier-Harlin MC, Taymans JM. Mind the Gap: LRRK2 Phenotypes in the Clinic vs. in Patient Cells. Cells 2021; 10:981. [PMID: 33922322 PMCID: PMC8145309 DOI: 10.3390/cells10050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Parkinson's disease (PD) protein Leucine Rich Repeat Kinase 2 (LRRK2) have been under study for more than 15 years and our understanding of the cellular phenotypes for the pathogenic mutant forms of LRRK2 has significantly advanced. In parallel to research on LRRK2 mutations in experimental systems, clinical characterization of patients carrying LRRK2 mutations has advanced, as has the analysis of cells that are derived from these patients, including fibroblasts, blood-derived cells, or cells rendered pluripotent. Under the hypothesis that patient clinical phenotypes are a consequence of a cascade of underlying molecular mechanisms gone astray, we currently have a unique opportunity to compare findings from patients and patient-derived cells to ask the question of whether the clinical phenotype of LRRK2 Parkinson's disease and cellular phenotypes of LRRK2 patient-derived cells may be mutually informative. In this review, we aim to summarize the available information on phenotypes of LRRK2 mutations in the clinic, in patient-derived cells, and in experimental models in order to better understand the relationship between the three at the molecular and cellular levels and identify trends and gaps in correlating the data.
Collapse
Affiliation(s)
- Liesel Goveas
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Eugénie Mutez
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
- Neurology and Movement Disorders Department, CHU Lille University Hospital, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Jean-Marc Taymans
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| |
Collapse
|
36
|
Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S. Fibrillar α-synuclein toxicity depends on functional lysosomes. J Biol Chem 2021; 295:17497-17513. [PMID: 33453994 DOI: 10.1074/jbc.ra120.013428] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
Collapse
Affiliation(s)
- Stephanie J Guiney
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Peng Lei
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Center for Biotherapy, Chengdu, China
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia.
| |
Collapse
|
37
|
Advancing Personalized Medicine in Common Forms of Parkinson's Disease through Genetics: Current Therapeutics and the Future of Individualized Management. J Pers Med 2021; 11:jpm11030169. [PMID: 33804504 PMCID: PMC7998972 DOI: 10.3390/jpm11030169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a condition with heterogeneous clinical manifestations that vary in age at onset, rate of progression, disease course, severity, motor and non-motor symptoms, and a variable response to antiparkinsonian drugs. It is considered that there are multiple PD etiological subtypes, some of which could be predicted by genetics. The characterization and prediction of these distinct molecular entities provides a growing opportunity to use individualized management and personalized therapies. Dissecting the genetic architecture of PD is a critical step in identifying therapeutic targets, and genetics represents a step forward to sub-categorize and predict PD risk and progression. A better understanding and separation of genetic subtypes has immediate implications in clinical trial design by unraveling the different flavors of clinical presentation and development. Personalized medicine is a nascent area of research and represents a paramount challenge in the treatment and cure of PD. This manuscript summarizes the current state of precision medicine in the PD field and discusses how genetics has become the engine to gain insights into disease during our constant effort to develop potential etiological based interventions.
Collapse
|
38
|
Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, St George-Hyslop P, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Van Deerlin VM, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Krüger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodríguez-Rodríguez E, Infante J, Lage C, González-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, et alChia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, St George-Hyslop P, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Van Deerlin VM, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Krüger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodríguez-Rodríguez E, Infante J, Lage C, González-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, Beach TG, McKeith IG, Thomas AJ, Attems J, Morris CM, Palmer L, Love S, Troakes C, Al-Sarraj S, Hodges AK, Aarsland D, Klein G, Kaiser SM, Woltjer R, Pastor P, Bekris LM, Leverenz JB, Besser LM, Kuzma A, Renton AE, Goate A, Bennett DA, Scherzer CR, Morris HR, Ferrari R, Albani D, Pickering-Brown S, Faber K, Kukull WA, Morenas-Rodriguez E, Lleó A, Fortea J, Alcolea D, Clarimon J, Nalls MA, Ferrucci L, Resnick SM, Tanaka T, Foroud TM, Graff-Radford NR, Wszolek ZK, Ferman T, Boeve BF, Hardy JA, Topol EJ, Torkamani A, Singleton AB, Ryten M, Dickson DW, Chiò A, Ross OA, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 2021; 53:294-303. [PMID: 33589841 PMCID: PMC7946812 DOI: 10.1038/s41588-021-00785-3] [Show More Authors] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Marya S Sabir
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Emil Gustavsson
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sarah Ahmed
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Coralie Viollet
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mary B Makarious
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Monica Diez-Fairen
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Makayla K Portley
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yevgeniya Abramzon
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dena G Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - John Eicher
- Genetics and Pharmacogenomics, Merck & Co., Inc., West Point, PA, USA
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Lorraine Clark
- Taub Institute for Alzheimer Disease and the Aging Brain, and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Lawrence S Honig
- Taub Institute for Alzheimer Disease and the Aging Brain, G. H. Sergievsky Center and Department of Neurology, Columbia University, New York, NY, USA
| | - Karen Marder
- Taub Institute for Alzheimer Disease and the Aging Brain, G. H. Sergievsky Center and Department of Neurology, Columbia University, New York, NY, USA
| | - Afina Lemstra
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elisabet Londos
- Clinical Memory Research Unit, Institution of Clinical Sciences Malmo, Lund University, Lund, Sweden
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Isabel Santana
- Neurology Service, University of Coimbra Hospital, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Pentti J Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Oinas
- Department of Clinical Medicine, Faculty of Health, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Grassano
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Antonio Canosa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gianluca Floris
- Department of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Francesca Brett
- Dublin Brain Bank, Neuropathology Department, Beaumont Hospital, Dublin, Ireland
| | - Ziv Gan-Or
- Montreal Neurological Institute and Hospital, Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Joshua T Geiger
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew Perkins
- Michigan Brain Bank, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Francesco Landi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cusi
- Bio4Dreams-Business Nursery for Life, Milan, Italy
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ronald C Kim
- Department of Neuropathology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Chad A Caraway
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Maura Brunetti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eloy Rodríguez-Rodríguez
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Carmen Lage
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Isabel González-Aramburu
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Pascual Sanchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Charles Duyckaerts
- Department of Neuropathology Escourolle, Paris Brain Institute, Sorbonne Universités, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, University of Thessalia, Larissa, Greece
| | - Matthew J Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bension S Tilley
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Steve Gentleman
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Giancarlo Logroscino
- Department of Basic Medicine Neurosciences and Sense Organs, University Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain - Department of Clinical Research in Neurology of the University of Bari at 'Pia Fondazione Card G. Panico' Hospital Tricase (Le), Bari, Italy
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Ian G McKeith
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Biomedical Research Building, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Biomedical Research Building, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Biomedical Research Building, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Biomedical Research Building, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Palmer
- South West Dementia Brain Bank, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology and London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College Hospital and King's College London, London, UK
| | - Angela K Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Gregory Klein
- Rush Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Scott M Kaiser
- Department of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy Woltjer
- Department of Neurology, Oregon Health & Sciences University, Portland, OR, USA
| | - Pau Pastor
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Lynn M Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James B Leverenz
- Cleveland Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lilah M Besser
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL, USA
| | - Amanda Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Kelley Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Estrella Morenas-Rodriguez
- Biomedizinisches Centrum, Biochemie, Ludwig-Maximilians-Universität München & Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Juan Fortea
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jordi Clarimon
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Tanis Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute of UCL, UCL Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | | | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
39
|
Sarkar S, Olsen AL, Sygnecka K, Lohr KM, Feany MB. α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genet 2021; 17:e1009359. [PMID: 33556113 PMCID: PMC7895402 DOI: 10.1371/journal.pgen.1009359] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/19/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Vesicular trafficking defects, particularly those in the autophagolysosomal system, have been strongly implicated in the pathogenesis of Parkinson’s disease and related α-synucleinopathies. However, mechanisms mediating dysfunction of membrane trafficking remain incompletely understood. Using a Drosophila model of α-synuclein neurotoxicity with widespread and robust pathology, we find that human α-synuclein expression impairs autophagic flux in aging adult neurons. Genetic destabilization of the actin cytoskeleton rescues F-actin accumulation, promotes autophagosome clearance, normalizes the autophagolysosomal system, and rescues neurotoxicity in α-synuclein transgenic animals through an Arp2/3 dependent mechanism. Similarly, mitophagosomes accumulate in human α-synuclein-expressing neurons, and reversal of excessive actin stabilization promotes both clearance of these abnormal mitochondria-containing organelles and rescue of mitochondrial dysfunction. These results suggest that Arp2/3 dependent actin cytoskeleton stabilization mediates autophagic and mitophagic dysfunction and implicate failure of autophagosome maturation as a pathological mechanism in Parkinson’s disease and related α-synucleinopathies. Vesicle trafficking is a central cell biological pathway perturbed in Parkinson’s disease. Here we use a genetic approach to define an underlying mechanism by demonstrating that the key Parkinson’s disease protein α-synuclein impairs maturation of autophagosomes and mitophagosomes through Arp2/3 dependent excess stabilization of cellular actin networks.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abby L. Olsen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Katja Sygnecka
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kelly M. Lohr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- * E-mail:
| |
Collapse
|
40
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
41
|
Allele-specific expression of Parkinson's disease susceptibility genes in human brain. Sci Rep 2021; 11:504. [PMID: 33436766 PMCID: PMC7804400 DOI: 10.1038/s41598-020-79990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies have identified genetic variation in genomic loci associated with susceptibility to Parkinson’s disease (PD), the most common neurodegenerative movement disorder worldwide. We used allelic expression profiling of genes located within PD-associated loci to identify cis-regulatory variation affecting gene expression. DNA and RNA were extracted from post-mortem superior frontal gyrus tissue and whole blood samples from PD patients and controls. The relative allelic expression of transcribed SNPs in 12 GWAS risk genes was analysed by real-time qPCR. Allele-specific expression was identified for 9 out of 12 genes tested (GBA, TMEM175, RAB7L1, NUCKS1, MCCC1, BCKDK, ZNF646, LZTS3, and WDHD1) in brain tissue samples. Three genes (GPNMB, STK39 and SIPA1L2) did not show significant allele-specific effects. Allele-specific effects were confirmed in whole blood for three genes (BCKDK, LZTS3 and MCCC1), whereas two genes (RAB7L1 and NUCKS1) showed brain-specific allelic expression. Our study supports the hypothesis that changes to the cis-regulation of gene expression is a major mechanism behind a large proportion of genetic associations in PD. Interestingly, allele-specific expression was also observed for coding variants believed to be causal variants (GBA and TMEM175), indicating that splicing and other regulatory mechanisms may be involved in disease development.
Collapse
|
42
|
Proteomic analysis of subcellular compartments containing disseminated alpha-synuclein seeds. Neurosci Res 2020; 170:341-349. [PMID: 33309865 DOI: 10.1016/j.neures.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022]
Abstract
The pathological form of a-synuclein (a-syn) is transmitted through neural circuits in the brains of Parkinson disease (PD) patients and amplifies misfolded a-syn, further forming intracellular deposits. However, the details of a-syn pre-formed fibrils (PFFs) transmission in vivo have not been fully elucidated. By inoculating Quantum dots (QD)-labeled a-syn PFFs (QD-a-syn PFFs) into the unilateral striatum, we detected QD-a-syn PFFs in brain homogenates obtained from the ipsilateral and contralateral sides of the inoculated site and further obtained QD-a-syn PFFs enriched-particles with fluorescence-activated organelle sorting. Proteomic analysis suggested that QD-a-syn PFFs-enriched particles in the contralateral side were associated with component proteins of synapse. In contrast, QD-a-syn PFFs-enriched particles in the ipsilateral side were associated with proteins belonging to ER components. Immunostaining of brain sections confirmed that QD-a-syn PFFs in the contralateral side were co-localized with synaptic vesicle marker proteins in the cortex and striatum. Additionally, QD-a-syn PFFs in the ipsilateral side were more co-localized with ER marker proteins compared to the contralateral side. These results correspond to proteomic analysis. This study provides potential candidates for the subcellular localization of a-syn PFFs in vivo during the dissemination phase of seeds. These subcellular compartments could be involved in the transmission of seeds.
Collapse
|
43
|
Hanss Z, Larsen SB, Antony P, Mencke P, Massart F, Jarazo J, Schwamborn JC, Barbuti PA, Mellick GD, Krüger R. Mitochondrial and Clearance Impairment in p.D620N VPS35 Patient-Derived Neurons. Mov Disord 2020; 36:704-715. [PMID: 33142012 PMCID: PMC8048506 DOI: 10.1002/mds.28365] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background VPS35 is part of the retromer complex and is responsible for the trafficking and recycling of proteins implicated in autophagy and lysosomal degradation, but also takes part in the degradation of mitochondrial proteins via mitochondria‐derived vesicles. The p.D620N mutation of VPS35 causes an autosomal‐dominant form of Parkinson's disease (PD), clinically representing typical PD. Objective Most of the studies on p.D620N VPS35 were performed on human tumor cell lines, rodent models overexpressing mutant VPS35, or in patient‐derived fibroblasts. Here, based on identified target proteins, we investigated the implication of mutant VPS35 in autophagy, lysosomal degradation, and mitochondrial function in induced pluripotent stem cell‐derived neurons from a patient harboring the p.D620N mutation. Methods We reprogrammed fibroblasts from a PD patient carrying the p.D620N mutation in the VPS35 gene and from two healthy donors in induced pluripotent stem cells. These were subsequently differentiated into neuronal precursor cells to finally generate midbrain dopaminergic neurons. Results We observed a decreased autophagic flux and lysosomal mass associated with an accumulation of α‐synuclein in patient‐derived neurons compared to controls. Moreover, patient‐derived neurons presented a mitochondrial dysfunction with decreased membrane potential, impaired mitochondrial respiration, and increased production of reactive oxygen species associated with a defect in mitochondrial quality control via mitophagy. Conclusion We describe for the first time the impact of the p.D620N VPS35 mutation on autophago‐lysosome pathway and mitochondrial function in stem cell‐derived neurons from an affected p.D620N carrier and define neuronal phenotypes for future pharmacological interventions. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zoé Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pauline Mencke
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A Barbuti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| |
Collapse
|
44
|
Hall A, Bandres-Ciga S, Diez-Fairen M, Quinn JP, Billingsley KJ. Genetic Risk Profiling in Parkinson's Disease and Utilizing Genetics to Gain Insight into Disease-Related Biological Pathways. Int J Mol Sci 2020; 21:E7332. [PMID: 33020390 PMCID: PMC7584037 DOI: 10.3390/ijms21197332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex disorder underpinned by both environmental and genetic factors. The latter only began to be understood around two decades ago, but since then great inroads have rapidly been made into deconvoluting the genetic component of PD. In particular, recent large-scale projects such as genome-wide association (GWA) studies have provided insight into the genetic risk factors associated with genetically ''complex'' PD (PD that cannot readily be attributed to single deleterious mutations). Here, we discuss the plethora of genetic information provided by PD GWA studies and how this may be utilized to generate polygenic risk scores (PRS), which may be used in the prediction of risk and trajectory of PD. We also comment on how pathway-specific genetic profiling can be used to gain insight into PD-related biological pathways, and how this may be further utilized to nominate causal PD genes and potentially druggable therapeutic targets. Finally, we outline the current limits of our understanding of PD genetics and the potential contribution of variation currently uncaptured in genetic studies, focusing here on uncatalogued structural variants.
Collapse
Affiliation(s)
- Ashley Hall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, L69 7BE, UK; (A.H.); (J.P.Q.)
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Monica Diez-Fairen
- Neurogenetics Group, University Hospital MutuaTerrassa, Sant Antoni 19, 08221 Terrassa, Barcelona, Spain;
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, L69 7BE, UK; (A.H.); (J.P.Q.)
| | - Kimberley J. Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
45
|
Heaton GR, Landeck N, Mamais A, Nalls MA, Nixon-Abell J, Kumaran R, Beilina A, Pellegrini L, Li Y, Harvey K, Cookson MR. Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiol Dis 2020; 141:104948. [PMID: 32434048 PMCID: PMC7339134 DOI: 10.1016/j.nbd.2020.104948] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.
Collapse
Affiliation(s)
- George R Heaton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Natalie Landeck
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yan Li
- Mass spectrometry Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 20814, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
46
|
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137:104782. [PMID: 31991247 PMCID: PMC7064061 DOI: 10.1016/j.nbd.2020.104782] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
A substantial proportion of risk for Parkinson's disease (PD) is driven by genetics. Progress in understanding the genetic basis of PD has been significant. So far, highly-penetrant rare genetic alterations in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1 and GBA have been linked with typical familial PD and common genetic variability at 90 loci have been linked to risk for PD. In this review, we outline the journey thus far of PD genetics, highlighting how significant advances have improved our knowledge of the genetic basis of PD risk, onset and progression. Despite remarkable progress, our field has yet to unravel how genetic risk variants disrupt biological pathways and molecular networks underlying the pathobiology of the disease. We highlight that currently identified genetic risk factors only represent a fraction of the likely genetic risk for PD. Identifying the remaining genetic risk will require us to diversify our efforts, performing genetic studies across different ancestral groups. This work will inform us on the varied genetic basis of disease across populations and also aid in fine mapping discovered loci. If we are able to take this course, we foresee that genetic discoveries in PD will directly influence our ability to predict disease and aid in defining etiological subtypes, critical steps for the implementation of precision medicine for PD.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18016, Spain.
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa 08221, Barcelona, Spain
| | - Jonggeol Jeff Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Storm CS, Kia DA, Almramhi M, Wood NW. Using Mendelian randomization to understand and develop treatments for neurodegenerative disease. Brain Commun 2020; 2:fcaa031. [PMID: 32954289 PMCID: PMC7425289 DOI: 10.1093/braincomms/fcaa031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Common neurodegenerative diseases are thought to arise from a combination of environmental and genetic exposures. Mendelian randomization is a powerful way to leverage existing genetic data to investigate causal relationships between risk factors and disease. In recent years, Mendelian randomization has gathered considerable traction in neurodegenerative disease research, providing valuable insights into the aetiology of these conditions. This review aims to evaluate the impact of Mendelian randomization studies on translational medicine for neurodegenerative diseases, highlighting the advances made and challenges faced. We will first describe the fundamental principles and limitations of Mendelian randomization and then discuss the lessons from Mendelian randomization studies of environmental risk factors for neurodegeneration. We will illustrate how Mendelian randomization projects have used novel resources to study molecular pathways of neurodegenerative disease and discuss the emerging role of Mendelian randomization in drug development. Finally, we will conclude with our view of the future of Mendelian randomization in these conditions, underscoring unanswered questions in this field.
Collapse
Affiliation(s)
- Catherine S Storm
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Mona Almramhi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
48
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
49
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
50
|
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson's disease. Lancet Neurol 2020; 19:170-178. [PMID: 31521533 PMCID: PMC8972299 DOI: 10.1016/s1474-4422(19)30287-x] [Citation(s) in RCA: 676] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a complex neurodegenerative disorder for which both rare and common genetic variants contribute to disease risk, onset, and progression. Mutations in more than 20 genes have been associated with the disease, most of which are highly penetrant and often cause early onset or atypical symptoms. Although our understanding of the genetic basis of Parkinson's disease has advanced considerably, much remains to be done. Further disease-related common genetic variability remains to be identified and the work in identifying rare risk alleles has only just begun. To date, genome-wide association studies have identified 90 independent risk-associated variants. However, most of them have been identified in patients of European ancestry and we know relatively little of the genetics of Parkinson's disease in other populations. We have a limited understanding of the biological functions of the risk alleles that have been identified, although Parkinson's disease risk variants appear to be in close proximity to known Parkinson's disease genes and lysosomal-related genes. In the past decade, multiple efforts have been made to investigate the genetic architecture of Parkinson's disease, and emerging technologies, such as machine learning, single-cell RNA sequencing, and high-throughput screens, will improve our understanding of genetic risk.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|