1
|
Sapkal GT, Anjum F, Salam A, Mukherjee B, Chandra S, Bala P, Garg R, Sharma S, Kaushik K, Nandi CK. NIR emissive probe for fluorescence turn-on based dead cell sorting and in vivo viscosity mapping in C. elegans. J Mater Chem B 2024; 13:184-194. [PMID: 39530775 DOI: 10.1039/d4tb01945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dead cell sorting is pivotal and plays a very significant role in homeostasis. Apoptosis and ferroptosis are the two major regulatory cell death processes. Apoptosis is a programmed cell death process, while ferroptosis is a regulatory cell death process. Monitoring the dead cells coming out from these processes is extremely important to stop various cellular dysfunctions. Here, we present a single NIR emissive probe that can observe both apoptotic and ferroptosis regulatory cell deaths. We were able to directly visualize the dead cells in both animal and plant cells upon a significant increase in the fluorescence intensity of the probe. During cell death, the increased cytoplasm viscosity restricted the rotor motion and helped in the fluorescence turn-on of the probe. Lysosomal viscosity was found to play a crucial role in the ferroptosis pathway. On the other hand, the probe was not only efficient in mapping the viscosity in various parts of live Caenorhabditis elegans (C. elegans) bodies but also able to differentiate between live and dead animals.
Collapse
Affiliation(s)
- Goraksha T Sapkal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Bodhidipra Mukherjee
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Shilpa Chandra
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Mandi, HP-175075, India
| | - Purabi Bala
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Richa Garg
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, HP-175075, India.
| |
Collapse
|
2
|
Smith AJ, Hergenrother PJ. Raptinal: a powerful tool for rapid induction of apoptotic cell death. Cell Death Discov 2024; 10:371. [PMID: 39164225 PMCID: PMC11335860 DOI: 10.1038/s41420-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies. Its distinct mechanism of action complements the current arsenal of cytotoxic compounds, making it useful as a probe for the apoptosis pathway and other cellular processes. The rapid induction of cell death by Raptinal and its widespread commercial availability make it the pro-apoptotic agent of choice for many applications.
Collapse
Affiliation(s)
- Amanda J Smith
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Toyohara J, Vugts D, Kiss OC, Todde S, Li XG, Liu Z, Yang Z, Gillings N, Cazzola E, Szymanski W, Meulen NVD, Reilly R, Taddei C, Schirrmacher R, Li Z, Lagebo YJ, Bentaleb N, Souza Albernaz MD, Lapi S, Ramogida C, Mukherjee A, Ajenjo J, Deuther-Conrad W, Bourdeau C. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2024; 9:42. [PMID: 38753262 PMCID: PMC11098975 DOI: 10.1186/s41181-024-00268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.
Collapse
Affiliation(s)
- Jun Toyohara
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Danielle Vugts
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Oliver C Kiss
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - Sergio Todde
- University of Milano-Bicoccia, Tecnomed Foundation, Monza, Italy
| | - Xiang-Guo Li
- Turku PET Centre and Department of Chemistry, and InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | | | - Zhi Yang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Nic Gillings
- Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | - Naoual Bentaleb
- National Center for Nuclear Energy, Science and Technology-CNESTEN, Rabat, Morocco
| | - Marta de Souza Albernaz
- University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzanne Lapi
- University of Alabama at Birmingham, Birmingham, USA
| | - Caterina Ramogida
- Simon Fraser University, Burnaby, Vancouver, Canada
- TRIUMF, Burnaby, Vancouver, Canada
| | - Archana Mukherjee
- Bhabha Atomic Research Center and Homi Bhabha National Institute, Mumbai, India
| | - Javier Ajenjo
- Molecular Imaging Program at Stanford (MIPS), Dept of Radiology, School of Medicine, Stanford University, Stanford, CA), USA
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Leipzig, Germany
| | | |
Collapse
|
4
|
Bulat F, Neves AAA, Brindle KM. Radiosynthesis of [ 18F]FPenM-C2Am: A PET Imaging Agent for Detecting Cell Death. Methods Mol Biol 2024; 2729:221-231. [PMID: 38006499 DOI: 10.1007/978-1-0716-3499-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Imaging agents capable of detecting the extent, timing, and distribution of tumor cell death following treatment could be used in clinical trials of novel cancer therapies to get an early indication of efficacy and subsequently in the clinic to guide treatment in individual patients. We have shown how the C2A domain of synaptotagmin I, which binds the phosphatidylserine exposed by apoptotic and necrotic cells, can be used to image cell death (Bulat et al., EJNMMI Res 10(1):151, 2020; Neves et al. J Nucl Med 58(6):881-887, 2017). We describe here the semi-automated 18F labeling of the single cysteine residue in the protein (C2Am) that had been introduced by site-directed mutagenesis.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - André A A Neves
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Li J, Zheng H, Vega AA, Beverly LJ, Gray BD, Pak KY, Ng CK. Evaluation of 2-deoxy-2-[ 18F]fluoro glucaric acid (FGA) as a potential PET tracer for tumor necrosis. Appl Radiat Isot 2023; 200:110988. [PMID: 37633190 DOI: 10.1016/j.apradiso.2023.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
In this study, [18F]FGA was obtained by a one-step oxidation of [18F]FDG using sodium hypochlorite. The conversion from [18F]FDG to [18F]FGA was confirmed by HPLC to be over 95% using the optimal condition. A549-luciferase NSCLC xenografted mice was used for in vivo PET imaging. Prior to either saline or cisplatin treatment, there was no significant difference on tumor uptake of [18F]FGA in all mice, with an average uptake of (0.21 ± 0.16) %ID/g. After treatment, tumor uptake of [18F]FGA was not changed significantly for saline-treated mice, whereas the tumor uptake of [18F]FGA drastically increased for cisplatin-treated mice, with an average uptake of (1.63 ± 0.16) %ID/g. The ratio of tumor uptake between cisplatin-treated vs. saline-treated mice was 7.8 ± 0.2 within one week of treatment. PET imaging results were consistent with ex vivo biodistribution data. BLI showed significant light intensity suppression after treatment, indicating necrosis. Our data indicate that [18F]FGA uptake was related to tumor necrosis. [18F]FGA PET/CT imaging might be a useful tool to monitor treatment response to chemotherapy by imaging tumor necrosis.
Collapse
Affiliation(s)
- Junling Li
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA; Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA
| | - Levi J Beverly
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Chin K Ng
- Department of Radiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
An Y, Gu W, Miao M, Miao J, Zhou H, Zhao M, Jiang Y, Li Q, Miao Q. A Self-Assembled Organic Probe with Activatable Near-Infrared Fluoro-Photoacoustic Signals for In Vivo Evaluation of the Radiotherapy Effect. Anal Chem 2023; 95:13984-13991. [PMID: 37672619 DOI: 10.1021/acs.analchem.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Early evaluation and prediction of the radiotherapy effect against tumors are crucial for effective radiotherapy management. The clinical approach generally relies on anatomical changes in tumor size, which is unable to promptly reflect clinical outcomes and guide a timely adjustment of therapy regimens. To resolve it, we herein develop a self-assembled organic probe (dCyFFs) with caspase-3 (Casp-3)-activatable near-infrared (NIR) fluoro-photoacoustic signals for early evaluation and prediction of radiotherapy efficacy. The probe contains an NIR dye that is caged with a Casp-3-cleavable substrate and linked to a self-assembly initiating moiety. In the presence of Casp-3, the self-assembled probe can undergo secondary assembly into larger nanoparticles and simultaneously activate NIR fluoro-photoacoustic signals. Such a design endows a superior real-time longitudinal imaging capability of Casp-3 generated by radiotherapy as it facilitates the passive accumulation of the probe into tumors, activated signal output with enhanced optical stability, and retention capacity relative to a nonassembling small molecular control probe (dCy). As a result, the probe enables precise prediction of the radiotherapy effect as early as 3 h posttherapy, which is further evidenced by the changes in tumor size after radiotherapy. Overall, the probe with Casp-3-mediated secondary assembly along with activatable NIR fluoro-photoacoustic signals holds great potential for evaluating and predicting the response of radiotherapy in a timely manner, which can also be explored for utilization in other therapeutic modalities.
Collapse
Affiliation(s)
- Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hui Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Metelerkamp Cappenberg T, De Schepper S, Vangestel C, De Lombaerde S, Wyffels L, Van den Wyngaert T, Mattis J, Gray B, Pak K, Stroobants S, Elvas F. First-in-human study of a novel cell death tracer [ 99mTc]Tc-Duramycin: safety, biodistribution and radiation dosimetry in healthy volunteers. EJNMMI Radiopharm Chem 2023; 8:20. [PMID: 37646865 PMCID: PMC10468453 DOI: 10.1186/s41181-023-00207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Imaging of cell death can provide an early indication of treatment response in cancer. [99mTc]Tc-Duramycin is a small-peptide SPECT tracer that recognizes both apoptotic and necrotic cells by binding to phosphatidylethanolamine present in the cell membrane. Preclinically, this tracer has shown to have favorable pharmacokinetics and selective tumor accumulation early after the onset of anticancer therapy. In this first-in-human study, we report the safety, biodistribution and internal radiation dosimetry of [99mTc]Tc-Duramycin in healthy human volunteers. RESULTS Six healthy volunteers (3 males, 3 females) were injected intravenously with [99mTc]Tc-Duramycin (dose: 6 MBq/kg; 473 ± 36 MBq). [99mTc]Tc-Duramycin was well tolerated in all subjects, with no serious adverse events reported. Following injection, a 30-min dynamic planar imaging of the abdomen was performed, and whole-body (WB) planar scans were acquired at 1, 2, 3, 6 and 23 h post-injection (PI), with SPECT acquisitions after each WB scan and one low-dose CT after the first SPECT. In vivo 99mTc activities were determined from semi-quantitative analysis of the images, and time-activity curves were generated. Residence times were calculated from the dynamic and WB planar scans. The mean effective dose was 7.61 ± 0.75 µSv/MBq, with the kidneys receiving the highest absorbed dose (planar analysis: 43.82 ± 4.07 µGy/MBq, SPECT analysis: 19.72 ± 3.42 μGy/MBq), followed by liver and spleen. The median effective dose was 3.61 mSv (range, 2.85-4.14). The tracer cleared slowly from the blood (effective half-life of 2.0 ± 0.4 h) due to high plasma protein binding with < 5% free tracer 3 h PI. Excretion was almost exclusively renal. CONCLUSION [99mTc]Tc-Duramycin demonstrated acceptable dosimetry (< 5 mSv) and a favorable safety profile. Due to slow blood clearance, optimal target-to-background ratios are expected 5 h PI. These data support the further assessment of [99mTc]Tc-Duramycin for clinical treatment response evaluation. TRIAL REGISTRATION NCT05177640, Registered April 30, 2021, https://clinicaltrials.gov/study/NCT05177640 .
Collapse
Affiliation(s)
| | - Stijn De Schepper
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christel Vangestel
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Stef De Lombaerde
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Leonie Wyffels
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Jeffrey Mattis
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium.
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
8
|
Hosseini E, Kianifard D. Effect of prenatal stress and extremely low-frequency electromagnetic fields on anxiety-like behavior in female rats: With an emphasis on prefrontal cortex and hippocampus. Brain Behav 2023; 13:e2949. [PMID: 36942730 PMCID: PMC10097060 DOI: 10.1002/brb3.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Prenatal stress (PS) is a problematic situation resulting in psychological implications such as social anxiety. Ubiquitous extremely low-frequency electromagnetic fields (ELF-EMF) have been confirmed as a potential physiological stressor; however, useful neuroregenerative effect of these types of electromagnetic fields has also frequently been reported. The aim of the present study was to survey the interaction of PS and ELF-EMF on anxiety-like behavior. METHOD A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, stress (their mothers were exposed to stress), EMF (their mothers underwent to ELF-EMF), and EMF/stress (their mothers concurrently underwent to stress and ELF-EMF). The rats were assayed using elevated plus-maze and open field tests. RESULTS Expressions of the hippocampus GAP-43, BDNF, and caspase-3 (cas-3) were detected by immunohistochemistry in Cornu Ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC). Anxiety-like behavior increased in all treatment groups. Rats in the EMF/stress group presented more serious anxiety-like behavior. In all treatment groups, upregulated expression of cas-3 was seen in PFC, DG, and CA1 and downregulated expression of BDNF and GAP-43 was seen in PFC and DG and the CA1. Histomorphological study showed vast neurodegenerative changes in the hippocampus and PFC. CONCLUSION The results showed ,female rats that underwent PS or/and EMF exhibited critical anxiety-like behavior and this process may be attributed to neurodegeneration in PFC and DG of the hippocampus and possibly decreased synaptic plasticity so-called areas.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Faculty of Veterinary Medicine, Division of Physiology, Department of basic science, Urmia University, Urmia, Iran
| | - Davoud Kianifard
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Jin C, Luo X, Li X, Zhou R, Zhong Y, Xu Z, Cui C, Xing X, Zhang H, Tian M. Positron emission tomography molecular imaging-based cancer phenotyping. Cancer 2022; 128:2704-2716. [PMID: 35417604 PMCID: PMC9324101 DOI: 10.1002/cncr.34228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
During the past several decades, numerous studies have provided insights into biological characteristics of cancer cells and identified various hallmarks of cancer acquired in the tumorigenic processes. However, it is still challenging to image these distinctive traits of cancer to facilitate the management of patients in clinical settings. The rapidly evolving field of positron emission tomography (PET) imaging has provided opportunities to investigate cancer's biological characteristics in vivo. This article reviews the current status of PET imaging on characterizing hallmarks of cancer and discusses the future directions of PET imaging strategies facilitating in vivo cancer phenotyping.
Collapse
Affiliation(s)
- Chentao Jin
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyun Luo
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoyi Li
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Rui Zhou
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Yan Zhong
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Zhoujiao Xu
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Chunyi Cui
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Xiaoqing Xing
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| | - Hong Zhang
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina
| | - Mei Tian
- Department of Nuclear Medicine and Positron Emission Tomography CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
- Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Jiang C, Zhang J, Hu S, Gao M, Zhang D, Yao N, Jin Q. Target identification and occupancy measurement of necrosis avid agent rhein using bioorthogonal chemistry-enabling probes. RSC Adv 2022; 12:16491-16495. [PMID: 35754899 PMCID: PMC9169075 DOI: 10.1039/d2ra02844a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Necrosis is an important biomarker, which only occurs in pathological situations. Tracking of necrosis avid agents is of crucial importance toward understanding their mechanisms. Herein, we developed a modular probe strategy based on bioorthogonal copper-free click chemistry. Structural modification of rhein with transcyclooctene (TCO) led to the identification of rhein-TCO2 as the most active probe with specific necrosis affinity. In a systematic evaluation, the colocalization of rhein-TCO2 in the nucleus (exposed DNA and rRNA) of necrotic cells was observed. This work provides a foundation for the development of target-identified of rhein compounds, and binding to exposed DNA and rRNA may be an important target of rhein compounds in necrotic cells. Structural modification of rhein with transcyclooctene (TCO) led to the identification of rhein-TCO2 as the most active probe with specific necrosis affinity.![]()
Collapse
Affiliation(s)
- Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Shihe Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Nan Yao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| |
Collapse
|
11
|
Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A "Self-Checking" pH/Viscosity-Activatable NIR-II Molecule for Real-Time Evaluation of Photothermal Therapy Efficacy. Angew Chem Int Ed Engl 2022; 61:e202200025. [PMID: 35170174 DOI: 10.1002/anie.202200025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 02/06/2023]
Abstract
We present a second near-infrared (NIR-II) self-checking molecule, LET-1052, for acidic tumor microenvironment (TME) turn-on photothermal therapy (PTT), followed by viscosity based therapeutic efficacy evaluation by itself in two independent channels, denoted as "self-checking" strategy. In acidic TME, LET-1052 was protonated and turned on NIR-II absorption for PTT under 1064 nm laser irradiation. Subsequently, PTT-induced cellular death increases intracellular viscosity, which inhibited the intramolecular rotation of LET-1052, resulting in the enhancement of NIR-I fluorescence for real-time evaluation of PTT efficacy. After PTT of tumor-bearing mice for different periods of NIR-II laser irradiation, NIR-I fluorescence in the tumor region showed positive correlation with tumor growth inhibition rate, demonstrating reliable and prompt prediction of PTT efficacy. The strategy may be expanded for instant evaluation of other therapeutic modalities for personalized medicine.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yaling He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chen Ge
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
12
|
Qin X, Jiang H, Liu Y, Zhang H, Tian M. Radionuclide imaging of apoptosis for clinical application. Eur J Nucl Med Mol Imaging 2022; 49:1345-1359. [PMID: 34873639 PMCID: PMC8921127 DOI: 10.1007/s00259-021-05641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Apoptosis was a natural, non-inflammatory, energy-dependent form of programmed cell death (PCD) that can be discovered in a variety of physiological and pathological processes. Based on its characteristic biochemical changes, a great number of apoptosis probes for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been developed. Radionuclide imaging with these tracers were potential for the repetitive and selective detection of apoptotic cell death in vivo, without the need for invasive biopsy. In this review, we overviewed molecular mechanism and specific biochemical changes in apoptotic cells and summarized the existing tracers that have been used in clinical trials as well as their potentialities and limitations. Particularly, we highlighted the clinic applications of apoptosis imaging as diagnostic markers, early-response indicators, and prognostic predictors in multiple disease fields.
Collapse
Affiliation(s)
- Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A “Self‐Checking” pH/Viscosity‐Activatable NIR‐II Molecule for Real‐Time Evaluation of Photothermal Therapy Efficacy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Yaling He
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Chen Ge
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
14
|
Zhang D, Gao M, Jin Q, Ni Y, Li H, Jiang C, Zhang J. Development of Duramycin-Based Molecular Probes for Cell Death Imaging. Mol Imaging Biol 2022; 24:612-629. [PMID: 35142992 DOI: 10.1007/s11307-022-01707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cell death is involved in numerous pathological conditions such as cardiovascular disorders, ischemic stroke and organ transplant rejection, and plays a critical role in the treatment of cancer. Cell death imaging can serve as a noninvasive means to detect the severity of tissue damage, monitor the progression of diseases, and evaluate the effectiveness of treatments, which help to provide prognostic information and guide the formulation of individualized treatment plans. The high abundance of phosphatidylethanolamine (PE), which is predominantly confined to the inner leaflet of the lipid bilayer membrane in healthy mammalian cells, becomes exposed on the cell surface in the early stages of apoptosis or accessible to the extracellular milieu when the cell suffers from necrosis, thus representing an attractive target for cell death imaging. Duramycin is a tetracyclic polypeptide that contains 19 amino acids and can bind to PE with excellent affinity and specificity. Additionally, this peptide has several favorable structural traits including relatively low molecular weight, stability to enzymatic hydrolysis, and ease of conjugation and labeling. All these highlight the potential of duramycin as a candidate ligand for developing PE-specific molecular probes. By far, a couple of duramycin-based molecular probes such as Tc-99 m-, F-18-, or Ga-68-labeled duramycin have been developed to target exposed PE for in vivo noninvasive imaging of cell death in different animal models. In this review article, we describe the state of the art with respect to in vivo imaging of cell death using duramycin-based molecular probes, as validated by immunohistopathology.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, 3000, Leuven, Leuven, KU, Belgium
| | - Huailiang Li
- Department of General Surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Garnier Y, Claude L, Hermand P, Sachou E, Claes A, Desplan K, Chahim B, Roger PM, Martino F, Colin Y, Le Van Kim C, Baccini V, Romana M. Plasma microparticles of intubated COVID-19 patients cause endothelial cell death, neutrophil adhesion and netosis, in a phosphatidylserine-dependent manner. Br J Haematol 2021; 196:1159-1169. [PMID: 34962643 DOI: 10.1111/bjh.18019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 urges scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors such as ageing, obesity and diabetes mellitus suggest a central role of endothelial cells (ECs), autopsies revealed clots in the pulmonary microvasculature, which are rich in neutrophils and DNA traps produced by these cells and called NETs. Moreover, submicron extracellular vesicles called microparticles (MPs), are described in several diseases as involved in pro-inflammatory pathways. Therefore, we analyzed 3 patient groups: one for which intubation was not necessary, an intubated group, and the last one after extubating. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered ECs death and overexpression of two adhesion molecules: P-selectin and VCAM-1. Strikingly, neutrophils adhesion and NET production were increased following incubation with these ECs. Importantly, we also showed that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Altogether our results unveil that MPs are a key actor in COVID-19 pathophysiology and point towards a potential therapeutic: annexin A5.
Collapse
Affiliation(s)
- Yohann Garnier
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Livia Claude
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Patricia Hermand
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Evely Sachou
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Aurélie Claes
- Institut Pasteur, 75015, Paris, France.,CNRS ERL9195, 75015, Paris, France.,INSERM U1201, 75015, Paris, France
| | - Kassandra Desplan
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Bassel Chahim
- Service de post-urgences, CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Pierre-Marie Roger
- Service d'infectiologie CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Frédéric Martino
- Service de réanimation, CHU Pointe à Pitre-Abymes, Pointe à Pitre, Guadeloupe, France
| | - Yves Colin
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Institut National de la Transfusion Sanguine, 75015, Paris, France
| | - Véronique Baccini
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| | - Marc Romana
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-à-Pitre, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,CHU de Pointe-à-Pitre, 97110, Guadeloupe, France
| |
Collapse
|
16
|
Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular Imaging of Apoptosis: The Case of Caspase-3 Radiotracers. Int J Mol Sci 2021; 22:ijms22083948. [PMID: 33920463 PMCID: PMC8069194 DOI: 10.3390/ijms22083948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials.
Collapse
Affiliation(s)
- Lucas Beroske
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
17
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
18
|
Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. Blood 2021; 136:247-256. [PMID: 32285120 DOI: 10.1182/blood.2020004853] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are submicron extracellular vesicles exposing phosphatidylserine (PS), detected at high concentration in the circulation of sickle cell anemia (SS) patients. Several groups studied the biological effects of MPs generated ex vivo. Here, we analyzed for the first time the impact of circulating MPs on endothelial cells (ECs) from 60 sickle cell disease (SCD) patients. MPs were collected from SCD patients and compared with MPs isolated from healthy individuals (AA). Other plasma MPs were purified from SS patients before and 2 years after the onset of hydroxyurea (HU) treatment or during a vaso-occlusive crisis and at steady-state. Compared with AA MPs, SS MPs increased EC ICAM-1 messenger RNA and protein levels, as well as neutrophil adhesion. We showed that ICAM-1 overexpression was primarily caused by MPs derived from erythrocytes, rather than from platelets, and that it was abolished by MP PS capping using annexin V. MPs from SS patients treated with HU were less efficient to induce a proinflammatory phenotype in ECs compared with MPs collected before therapy. In contrast, MPs released during crisis increased ICAM-1 and neutrophil adhesion levels, in a PS-dependent manner, compared with MPs collected at steady-state. Furthermore, neutrophil adhesion was abolished by a blocking anti-ICAM-1 antibody. Our study provides evidence that MPs play a key role in SCD pathophysiology by triggering a proinflammatory phenotype of ECs. We also uncover a new mode of action for HU and identify potential therapeutics: annexin V and anti-ICAM-1 antibodies.
Collapse
|
19
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bulat F, Hesse F, Hu DE, Ros S, Willminton-Holmes C, Xie B, Attili B, Soloviev D, Aigbirhio F, Leeper FJ, Brindle KM, Neves AA. 18F-C2Am: a targeted imaging agent for detecting tumor cell death in vivo using positron emission tomography. EJNMMI Res 2020; 10:151. [PMID: 33296043 PMCID: PMC7726082 DOI: 10.1186/s13550-020-00738-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an 18F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET. METHODS A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide (60 min synthesis time, > 98% radiochemical purity) has been developed, which was used to label the single cysteine residue in C2Am within 30 min at room temperature. Binding of 18F-C2Am to apoptotic and necrotic tumor cells was assessed in vitro, and also in vivo, by dynamic PET and biodistribution measurements in mice bearing human tumor xenografts treated with a TRAILR2 agonist or with conventional chemotherapy. C2Am detection of tumor cell death was validated by correlation of probe binding with histological markers of cell death in tumor sections obtained immediately after imaging. RESULTS 18F-C2Am showed a favorable biodistribution profile, with predominantly renal clearance and minimal retention in spleen, liver, small intestine, bone and kidney, at 2 h following probe administration. 18F-C2Am generated tumor-to-muscle (T/m) ratios of 6.1 ± 2.1 and 10.7 ± 2.4 within 2 h of probe administration in colorectal and breast tumor models, respectively, following treatment with the TRAILR2 agonist. The levels of cell death (CC3 positivity) following treatment were 12.9-58.8% and 11.3-79.7% in the breast and colorectal xenografts, respectively. Overall, a 20% increase in CC3 positivity generated a one unit increase in the post/pre-treatment tumor contrast. Significant correlations were found between tracer uptake post-treatment, at 2 h post-probe administration, and histological markers of cell death (CC3: Pearson R = 0.733, P = 0.0005; TUNEL: Pearson R = 0.532, P = 0.023). CONCLUSION The rapid clearance of 18F-C2Am from the blood pool and low kidney retention allowed the spatial distribution of cell death in a tumor to be imaged during the course of therapy, providing a rapid assessment of tumor treatment response. 18F-C2Am has the potential to be used in the clinic to assess early treatment response in tumors.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Susana Ros
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Bangwen Xie
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Bala Attili
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
21
|
Bertucci A, Bertucci F, Zemmour C, Lerebours F, Pierga JY, Levy C, Dalenc F, Grenier J, Petit T, Berline M, Gonçalves A. PELICAN-IPC 2015-016/Oncodistinct-003: A Prospective, Multicenter, Open-Label, Randomized, Non-Comparative, Phase II Study of Pembrolizumab in Combination With Neo Adjuvant EC-Paclitaxel Regimen in HER2-Negative Inflammatory Breast Cancer. Front Oncol 2020; 10:575978. [PMID: 33330051 PMCID: PMC7732675 DOI: 10.3389/fonc.2020.575978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive entity with a poor outcome and relative resistance to treatment. Despite progresses achieved during the last decades, the survival remains significantly lower than non-IBC. Recent clinical trials assessing PD-1/PD-L1 inhibitors showed promising results in non-IBC. Pembrolizumab, an anti-PD-1 monoclonal antibody, revolutionized the treatment of different cancers. Several recent studies suggested a potential interest of targeting the immune system in IBC by revealing a more frequent PD-L1 expression and an enriched immune microenvironment when compared with non-IBC. Here, we describe the rationale and design of PELICAN-IPC 2015-016/Oncodistinct-003 trial, an open-label, randomized, non-comparative, phase II study assessing efficacy, and safety of pembrolizumab in combination with anthracycline-containing neoadjuvant chemotherapy in HER2-negative IBC. The trial is ongoing. The primary endpoint is the pCR rate (ypT0/Tis, ypN0) in overall population and the co-primary endpoint is safety profile during a run-in phase. Key secondary objectives include tolerability, invasive disease-free, event-free and overall survivals, as well as collection of tumor and blood samples for translational research. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ (NCT03515798).
Collapse
Affiliation(s)
- Alexandre Bertucci
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Christophe Zemmour
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | | | - Jean-Yves Pierga
- Département d’Oncologie Médicale, Institut Curie, Saint-Cloud, France
- Département d’Oncologie Médicale, Institut Curie, Université de Paris, Paris, France
| | - Christelle Levy
- Breast Cancer Unit, François Baclesse Cancer Centre, Caen, France
| | - Florence Dalenc
- Département d’Oncologie Médicale, Institut Claudius Regaud, Institut Universitaire du Cancer, Oncopole Toulouse, France
| | - Julien Grenier
- Département d’Oncologie Médicale, Institut Sainte Catherine, Avignon, France
| | - Thierry Petit
- Département d’Oncologie Médicale, Centre Paul-Strauss, Strasbourg, France
| | - Marguerite Berline
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | - Anthony Gonçalves
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
- Oncodistinct Network, Bruxelles, Belgium
| |
Collapse
|
22
|
Liang X, Wang K, Du J, Tian J, Zhang H. The first visualization of chemotherapy-induced tumor apoptosis via magnetic particle imaging in a mouse model. Phys Med Biol 2020; 65:195004. [PMID: 32764190 DOI: 10.1088/1361-6560/abad7c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging technologies that allow non-radiative visualization and quantification of apoptosis have a great potential for assessing therapy response, early diagnosis, and disease monitoring. Magnetic particle imaging (MPI), the direct imaging of magnetic nanoparticles as positive contrast agent and sole signal source, enables high image contrast (no tissue background signal), potential high sensitivity, and quantifiable signal intensity. These properties confer a great potential for application to tumor apoptosis monitoring. In this study, a simple and robust method was used to conjugate Alexa Fluor 647-AnnexinV (AF647-Anx), which can avidly bind to apoptotic cells, to superparamagnetic iron oxide (SPIO) nanoparticles, termed AF647-Anx-SPIO, which serves as an MPI-detectable tracer. Based on this apoptosis-specific tracer, MPI can accurately and unambiguously detect and quantify apoptotic tumor cells. AF647-Anx-SPIO showed relatively high affinity for apoptotic cells, and differences in binding between treated (apoptotic rate 67.21% ± 1.36%) and untreated (apoptotic rate 10.12 ± 0.11%) cells could be detected by MPI in vitro (P < 0.05). Moreover, the imaging signal was almost proportional to the number of apoptotic cells determined using an MPI scanner (R 2 = 0.99). There was a greater accumulation of AF647-Anx-SPIO in tumors of drug-treated animals than in tumors of untreated animals (P < 0.05), and the difference could be detected by MPI ex vivo, while for in vivo imaging, no MPI imaging signal was detected in either group. Overall, this preliminary study demonstrates that MPI could be a potential imaging modality for tumor apoptosis imaging.
Collapse
Affiliation(s)
- Xin Liang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China. College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, Mohd Tamrin MI. 10H-3,6-Diazaphenothiazines triggered the mitochondrial-dependent and cell death receptor-dependent apoptosis pathways and further increased the chemosensitivity of MCF-7 breast cancer cells via inhibition of AKT1 pathways. J Biochem Mol Toxicol 2020; 34:e22544. [PMID: 32619082 DOI: 10.1002/jbt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoyan Hao
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kok Pian Ang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Islahuddin Mohd Tamrin
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Barth ND, Subiros-Funosas R, Mendive-Tapia L, Duffin R, Shields MA, Cartwright JA, Henriques ST, Sot J, Goñi FM, Lavilla R, Marwick JA, Vermeren S, Rossi AG, Egeblad M, Dransfield I, Vendrell M. A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat Commun 2020; 11:4027. [PMID: 32788676 PMCID: PMC7423924 DOI: 10.1038/s41467-020-17772-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics. Programmed cell death or apoptosis is an essential biological process that is impaired in some diseases and can be used to assess the effectiveness of drugs. Here the authors design Apo-15 as a fluorogenic peptide for the detection and real-time imaging of apoptotic cells.
Collapse
Affiliation(s)
- Nicole D Barth
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | | | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | - Mario A Shields
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.,School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Jesus Sot
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Campus de Leioa, 48940, Leioa, Spain
| | - Felix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Campus de Leioa, 48940, Leioa, Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry and Institute of Biomedicine U. Barcelona (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - John A Marwick
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Ian Dransfield
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK.
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, Edinburgh, UK.
| |
Collapse
|
25
|
García-Argüello SF, Lopez-Lorenzo B, Cornelissen B, Smith G. Development of [ 18F]ICMT-11 for Imaging Caspase-3/7 Activity during Therapy-Induced Apoptosis. Cancers (Basel) 2020; 12:E2191. [PMID: 32781531 PMCID: PMC7465189 DOI: 10.3390/cancers12082191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Insufficient apoptosis is a recognised hallmark of cancer. A strategy to quantitatively measure apoptosis in vivo would be of immense value in both drug discovery and routine patient management. The first irreversible step in the apoptosis cascade is activation of the "executioner" caspase-3 enzyme to commence cleavage of key structural proteins. One strategy to measure caspase-3 activity is Positron Emission Tomography using isatin-5-sulfonamide radiotracers. One such radiotracer is [18F]ICMT-11, which has progressed to clinical application. This review summarises the design and development process for [18F]ICMT-11, suggesting potential avenues for further innovation.
Collapse
Affiliation(s)
- Segundo Francisco García-Argüello
- Centro de Investigaciones Médico-Sanitarias, Fundación General Universidad de Málaga, 29010 Málaga, Spain;
- Grupo de Arteriosclerosis, Prevención Cardiovascular y Metabolismo, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Beatriz Lopez-Lorenzo
- Biomedicina, Investigación Traslacional y Nuevas Tecnologías en Salud, Universidad de Málaga, 29016 Málaga, Spain;
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía—Universidad de Málaga), 29590 Málaga, Spain
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7LJ, UK;
| | - Graham Smith
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7LJ, UK;
| |
Collapse
|
26
|
Mosayebnia M, Hajiramezanali M, Shahhosseini S. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Curr Med Chem 2020; 27:7064-7089. [PMID: 32532184 DOI: 10.2174/0929867327666200612152655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Zhang D, Jin Q, Ni Y, Zhang J. Discovery of necrosis avidity of rhein and its applications in necrosis imaging. J Drug Target 2020; 28:904-912. [PMID: 32314601 DOI: 10.1080/1061186x.2020.1759079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necrosis-avid agents possess exploitable theragnostic utilities including evaluation of tissue viability, monitoring of therapeutic efficacy as well as diagnosis and treatment of necrosis-related disorders. Rhein (4,5-dihydroxyl-2-carboxylic-9,10-dihydrodiketoanthracene), a naturally occurring monomeric anthraquinone compound extensively found in medicinal herbs, was recently demonstrated to have a newly discovered necrosis-avid trait and to show promising application in necrosis imaging. In this overview, we present the discovering process of rhein as a new necrosis-avid agent as well as its potential imaging applications in visualisation of myocardial necrosis and early evaluation of tumour response to therapy. Moreover, the molecular mechanism exploration of necrosis avidity behind rhein are also presented. The discovery of necrosis avidity with rhein and the development of rhein-based molecular probes may further expand the scope of necrosis-avid compounds and highlight the potential utility of necrosis-avid molecular probes in necrosis imaging.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
28
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
29
|
A Model In Vitro Study Using Hypericin: Tumor-Versus Necrosis-Targeting Property and Possible Mechanisms. BIOLOGY 2020; 9:biology9010013. [PMID: 31936002 PMCID: PMC7168897 DOI: 10.3390/biology9010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
Hypericin (Hyp) had been explored as a tumor-seeking agent for years; however, more recent studies showed its necrosis-avidity rather than cancer-seeking property. To further look into this discrepancy, we conducted an in vitro study on Hyp retention in vital and dead cancerous HepG2 and normal LO2 cell lines by measuring the fluorescence intensity and concentration of Hyp in cells. To question the DNA binding theory for its necrosis-avidity, the subcellular distribution of Hyp was also investigated to explore the possible mechanisms of the necrosis avidity. The fluorescence intensity and concentration are significantly higher in dead cells than those in vital cells, and this difference did not differ between HepG2 and LO2 cell lines. Hyp was taken up in vital cells in the early phase and excreted within hours, whereas it was retained in dead cells for more than two days. Confocal microscopy showed that Hyp selectively accumulated in lysosomes rather than cell membrane or nuclei. Hyp showed a necrosis-avid property rather than cancer-targetability. The long-lasting retention of Hyp in dead cells may be associated with halted energy metabolism and/or binding with certain degraded cellular substrates. Necrosis-avidity of Hyp was confirmed, which may be associated with halted energy metabolism in dead LO2 or HepG2 cells.
Collapse
|
30
|
García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging 2019; 10:28. [PMID: 30830470 PMCID: PMC6399375 DOI: 10.1186/s13244-019-0703-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England, HA6 2RN, UK
| | - Antonio Luna-Alcalá
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
- MRI Unit, Clínica Las Nieves, Health Time, Jaén, Spain
| | - Juan Antonio Vallejo-Casas
- Unidad de Gestión Clínica de Medicina Nuclear. IMIBIC. Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Evis Sala
- Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona and IDI, Lorenzana 36, 17002, Girona, Spain
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital & Institute of Cancer Research, Fulham Road, London, SW3 6JJ, UK
| | - Michel Herranz-Carnero
- Nuclear Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Galicia, Spain
- Molecular Imaging Program, IDIS, USC, Santiago de Compostela, Galicia, Spain
| | - Herbert Alberto Vargas
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Radiology, 1275 York Av. Radiology Academic Offices C-278, New York, NY, 10065, USA
| |
Collapse
|
31
|
Zhao B, Hu T. JTC-801 inhibits the proliferation and metastasis of the Hep G2 hepatoblastoma cell line by regulating the phosphatidylinositol 3-kinase/protein kinase B signalling pathway. Oncol Lett 2018; 17:1939-1945. [PMID: 30675258 DOI: 10.3892/ol.2018.9780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
The increased worldwide mortality rate due to liver cancer may be attributed to the aggressive nature of the disease. Signal transduction through G-protein-coupled receptors (GPCRs) can affect a number of aspects of cancer biology, including invasion, migration and vascular remodelling. JTC-801, a novel GPCR antagonist, has demonstrated promising anticancer effects in adenocarcinoma and osteosarcoma cells. In the present study, the effect of JTC-801 on the proliferation and migration of hepatoblastoma Hep G2 cells was investigated. The Cell Counting Kit-8 assay revealed that JTC-801 markedly suppressed the growth of the Hep G2 cells. Additionally, JTC-801 significantly inhibited cell invasion and migration in a Transwell assay. Furthermore, the expression of anti-apoptotic protein B-cell lymphoma 2 decreased and the expression of the pro-apoptotic proteins active caspase-3 and apoptosis regulator BAX increased in the Hep G2 cells following JTC-801 treatment. Additionally, JTC-801 suppressed the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway in the Hep G2 cells. Therefore, the present study revealed that JTC-801 can induce the apoptosis of Hep G2 cells by regulating the PI3K/AKT signalling pathway, which suggests that JTC-801 may be a potential novel drug target for clinical liver cancer treatment.
Collapse
Affiliation(s)
- Bufei Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Ting Hu
- Department of Oncology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|