1
|
Hutami IR, Arinawati DY, Rahadian A, Dewi RC, Rochmah YS, Christiono S, Afroz S. Roles of calcium in ameloblasts during tooth development: A scoping review. J Taibah Univ Med Sci 2025; 20:25-39. [PMID: 39839572 PMCID: PMC11745948 DOI: 10.1016/j.jtumed.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Calcium ions (Ca2+) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation. This review synthesizes current knowledge, focusing on preclinical data elucidating the molecular mechanisms of calcium transport in ameloblasts, during normal tooth development and in response to external stimuli. Methods This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search, conducted in December 2023, spanned multiple databases including PubMed (8.363 records), Google Scholar (5.630 records), and Science Direct (21.810 records). The primary aim was to examine the influence of calcium ion regulation on ameloblast development, with a focus on preclinical studies. Results After an initial screening of 396 titles and abstracts, 11 full-text articles (four in vitro studies and seven animal studies) met the inclusion and exclusion criteria. The studies, assessed for quality using the CAMRADES tool, ranged from low to moderate. Calcium deficiency, nutritional supplements, fluoride exposure, TRPM7, STIM proteins, and the SOCE pathway were found to influence amelogenesis. Conclusion Calcium transport mechanisms play a critical role in enamel formation, with factors such as TRPM7, Kir 4.2, CRAC channels, and the SOCE pathway supporting enamel mineralization, while disruptions like hypoxia, fluoride exposure, and circadian imbalances negatively impact amelogenesis. Understanding the interplay between calcium, environmental, and nutritional factors provides valuable insights into ameloblast function and offers potential avenues for improving enamel quality and addressing defects.
Collapse
Affiliation(s)
- Islamy R. Hutami
- Department of Orthodontics, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
- Master Program of Dental Sciences, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Dian Y. Arinawati
- Department of Oral Biology, Faculty of Dentistry, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Arief Rahadian
- Department of Biochemical, Faculty of Medicine, Universitas Islam Sultan Agung, Indonesia
| | - Rizqa C. Dewi
- Master Program of Dental Sciences, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Yayun S. Rochmah
- Department of Oral Surgery, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Sandy Christiono
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Shaista Afroz
- Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India
| |
Collapse
|
2
|
Deepthi B, Krishnasamy S, Krishnamurthy S, Khandelwal P, Sinha A, Hari P, Jaikumar R, Agrawal P, Saha A, Deepthi RV, Agarwal I, Sinha R, Venkatachari M, Shah MA, Bhatt GC, Krishnan B, Vasudevan A, Bagga A, Krishnamurthy S. Clinical characteristics and genetic profile of children with WDR72-associated distal renal tubular acidosis: a nationwide experience. Pediatr Nephrol 2025; 40:407-416. [PMID: 39150521 DOI: 10.1007/s00467-024-06478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Limited data, primarily from small case series, exist regarding the clinical profile, genetic variants, and outcomes of WDR72-associated distal renal tubular acidosis (WDR72-dRTA). METHODS Our study enrolled children diagnosed with WDR72-dRTA below 18 years of age from 9 Indian centers and analyzed their clinical characteristics, genetic profiles, and outcomes. Potential genotype-phenotype correlations were explored. RESULTS We report 22 patients (59% female) with WDR72-dRTA who were diagnosed at a median age of 5.3 (3, 8) years with polyuria (n = 17; 77.3%), poor growth (16; 72.7%), and rickets (9; 40.9%). Amelogenesis imperfecta was present in 21 (95.5%) cases. At presentation, all patients had normal anion gap metabolic acidosis; hypokalemia and nephrocalcinosis were seen in 17 (77.3%) patients each. Seven (31.8%) patients had concomitant proximal tubular dysfunction. Genetic analysis identified biallelic nonsense variants in 18 (81.8%) patients, including novel variants in 6 cases. A previously reported variant, c.88C > T, and a novel variant, c.655C > T, were the most frequent variants, accounting for 10 (45.5%) cases. Over a median follow-up of 1.3 (1, 8) years, the height velocity improved by 0.74 (0.2, 1.2) standard deviation scores, while 3 children (13.6%) progressed to chronic kidney disease (CKD) stage 2, with eGFR ranging from 67 to 76 mL/min/1.73 m2, respectively, after 11.3-16 years of follow-up. No specific genotype-phenotype correlation could be established. CONCLUSIONS WDR72-dRTA should be considered in children with typical features of amelogenesis imperfecta and dRTA. Biallelic nonsense variants are common in Asians. While most patients respond well to treatment with improved growth and preserved eGFR, on long-term follow-up, a decline in eGFR may occur.
Collapse
Affiliation(s)
- Bobbity Deepthi
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Sudarsan Krishnasamy
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | | | - Priyanka Khandelwal
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Aditi Sinha
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pankaj Hari
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rohitha Jaikumar
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Prajal Agrawal
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Abhijeet Saha
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - R V Deepthi
- Division of Pediatric Nephrology, Department of Pediatrics, Christian Medical College, Vellore, India
| | - Indira Agarwal
- Division of Pediatric Nephrology, Department of Pediatrics, Christian Medical College, Vellore, India
| | - Rajiv Sinha
- Division of Pediatric Nephrology, Institute of Child Health, Kolkata, India
| | - Mahesh Venkatachari
- Department of Pediatrics, All India Institute of Medical Sciences, Mangalagiri, India
| | - Mehul A Shah
- Little Star Children's Hospital, Hyderabad, India
| | - Girish Chandra Bhatt
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Bhopal, India
| | - Balasubramanian Krishnan
- Department of Dentistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Anil Vasudevan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
- Department of Pediatric Nephrology, St. John's Medical College Hospital, Bangalore, India
| | - Arvind Bagga
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sriram Krishnamurthy
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|
3
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
4
|
Chun YHP, Tan C, Villanueva O, Colley ME, Quintanilla TJ, Basiouny MS, Hartel CA, Critchfield CS, Bach SBH, Fajardo RJ, Pham CD. Overexpression of ameloblastin in secretory ameloblasts results in demarcated, hypomineralized opacities in enamel. Front Physiol 2024; 14:1233391. [PMID: 38274050 PMCID: PMC10808694 DOI: 10.3389/fphys.2023.1233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Developmental defects of the enamel manifest before tooth eruption and include amelogenesis imperfecta, a rare disease of underlying gene mutations, and molar-incisor hypomineralization (MIH), a prevalent disease in children originating from environmental and epigenetic factors. MIH enamel presents as the abnormal enamel marked by loss of translucency, demarcation between the healthy and affected enamel, and reduced mineral content. The pathophysiology of opaque, demarcated enamel lesions is not understood; however, the retention of enamel proteins in the matrix has been suggested. Ameloblastin (Ambn) is an enamel protein of the secreted calcium-binding phosphoproteins (SCPPs) critical for enamel formation. When the Ambn gene is mutated or deleted, teeth are affected by hypoplastic amelogenesis imperfecta. Methods: In this study, enamel formation in mice was analyzed when transgenic Ambn was overexpressed from the amelogenin promoter encoding full-length Ambn. Ambn was under- and overexpressed at six increasing concentrations in separate mouse lines. Results: Mice overexpressing Ambn displayed opaque enamel at low concentrations and demarcated lesions at high concentrations. The severity of enamel lesions increased starting from the inner enamel close to the dentino-enamel junction (DEJ) to span the entire width of the enamel layer in demarcated areas. Associated with the opaque enamel were 17-kDa Ambn cleavage products, a prolonged secretory stage, and a thin basement membrane in the maturation stage. Ambn accumulations found in the innermost enamel close to the DEJ and the mineralization front correlated with reduced mineral content. Demarcated enamel lesions were associated with Ambn species of 17 kDa and higher, prolonged secretory and transition stages, a thin basement membrane, and shortened maturation stages. Hypomineralized opacities were delineated against the surrounding mineralized enamel and adjacent to ameloblasts detached from the enamel surface. Inefficient Ambn cleavage, loss of contact between ameloblasts, and the altered basement membrane curtailed the endocytic activity; thus, enamel proteins remained unresorbed in the matrix. Ameloblasts have the ability to distinguish between Ambn concentration and Ambn cleavage products through finely tuned feedback mechanisms. The under- or overexpression of Ambn in murine secretory ameloblasts results in either hypoplastic amelogenesis imperfecta or hypomineralization with opaque or sharply demarcated boundaries of lesions, similar to MIH.
Collapse
Affiliation(s)
- Yong-Hee Patricia Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Chunyan Tan
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Omar Villanueva
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Madeline E. Colley
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Travis J. Quintanilla
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mohamed S. Basiouny
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Caldonia A. Hartel
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Cameron S. Critchfield
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Stephan B. H. Bach
- Department of Chemistry, University of Texas San Antonio, San Antonio, TX, United States
| | - Roberto J. Fajardo
- Department of Clinical and Applied Science Education, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, United States
| | - Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Jimenez-Armijo A, Morkmued S, Ahumada JT, Kharouf N, de Feraudy Y, Gogl G, Riet F, Niederreither K, Laporte J, Birling MC, Selloum M, Herault Y, Hernandez M, Bloch-Zupan A. The Rogdi knockout mouse is a model for Kohlschütter-Tönz syndrome. Sci Rep 2024; 14:445. [PMID: 38172607 PMCID: PMC10764811 DOI: 10.1038/s41598-023-50870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.
Collapse
Affiliation(s)
- Alexandra Jimenez-Armijo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Supawich Morkmued
- Pediatrics Division, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - José Tomás Ahumada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Naji Kharouf
- Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Université de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Gergo Gogl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Marie Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Mohammed Selloum
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Competence Center for Rare Oral and Dental Diseases, Université de Lorraine, Nancy, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Institut d'études Avancées (USIAS), Université de Strasbourg, Strasbourg, France.
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
6
|
Xu K, Li YD, Ren LY, Song HL, Yang QY, Xu DL. Long non-coding RNA X-Inactive Specific Transcript (XIST) interacting with USF2 promotes osteogenic differentiation of periodontal ligament stem cells through regulation of WDR72 transcription. J Periodontal Res 2023; 58:1235-1247. [PMID: 37712743 DOI: 10.1111/jre.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) are the most potential cells in periodontal tissue regeneration and bone tissue regeneration. Our prior work had revealed that WD repeat-containing protein 72 (WDR72) was crucial for osteogenic differentiation of PDLSCs. Here, we further elucidated its underlying mechanism in PDLSC osteogenic differentiation. METHODS Human PDLSCs, isolated and identified by flow cytometry, were prepared for osteogenic differentiation induction. Levels of WDR72, long non-coding RNA X-Inactive Specific Transcript (XIST), upstream stimulatory factor 2 (USF2), and osteogenic marker genes (Runx2, Osteocalcin, and Collagen I) in human PDLSCs and clinical specimens were detected by RT-qPCR. Protein expressions of WDR72, Runx2, Osteocalcin, and Colla1 were tested by Western blot. The interactions among the molecules were verified by RIP, RNA pull-down, ChIP, and luciferase reporter assays. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS WDR72 was decreased in periodontal tissues of periodontitis patients, and overexpression reversed TNF-α-mediated suppressive effects on PDLSC osteogenic differentiation. Mechanically, XIST recruited the enrichment of USF2 to the WDR72 promoter region, thereby positively regulating WDR72. WDR72 silencing overturned XIST-mediated biological effects in PDLSCs. CONCLUSION WDR72, regulated by the XIST/USF2 axis, enhances osteogenic differentiation of PDLSCs, implying a novel strategy for alleviating periodontitis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ya-Dong Li
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liu-Yang Ren
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Long Song
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiao-Yun Yang
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dong-Liang Xu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
7
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Kim YJ, Zhang H, Lee Y, Seymen F, Koruyucu M, Kasimoglu Y, Simmer JP, Hu JCC, Kim JW. Novel WDR72 Mutations Causing Hypomaturation Amelogenesis Imperfecta. J Pers Med 2023; 13:326. [PMID: 36836560 PMCID: PMC9965932 DOI: 10.3390/jpm13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous collection of hereditary enamel defects. The affected enamel can be classified as hypoplastic, hypomaturation, or hypocalcified in form. A better understanding of normal amelogenesis and improvements in our ability to diagnose AI through genetic testing can be realized through more complete knowledge of the genes and disease-causing variants that cause AI. In this study, mutational analysis was performed with whole exome sequencing (WES) to identify genetic etiology underlying the hypomaturation AI condition in affected families. Mutational analyses identified biallelic WDR72 mutations in four hypomaturation AI families. Novel mutations include a homozygous deletion and insertion mutation (NM_182758.4: c.2680_2699delinsACTATAGTT, p.(Ser894Thrfs*15)), compound heterozygous mutations (paternal c.2332dupA, p.(Met778Asnfs*4)) and (maternal c.1287_1289del, p.(Ile430del)) and a homozygous 3694 bp deletion that includes exon 14 (NG_017034.2:g.96472_100165del). A homozygous recurrent mutation variant (c.1467_1468delAT, p.(Val491Aspfs*8)) was also identified. Current ideas on WDR72 structure and function are discussed. These cases expand the mutational spectrum of WDR72 mutations causing hypomaturation AI and improve the possibility of genetic testing to accurately diagnose AI caused by WDR72 defects.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yejin Lee
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Figen Seymen
- Department of Paediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Chan B, Cheng IC, Rozita J, Gorshteyn I, Huang Y, Shaffer I, Chang C, Li W, Lytton J, Den Besten P, Zhang Y. Sodium/(calcium + potassium) exchanger NCKX4 optimizes KLK4 activity in the enamel matrix microenvironment to regulate ECM modeling. Front Physiol 2023; 14:1116091. [PMID: 36814474 PMCID: PMC9939835 DOI: 10.3389/fphys.2023.1116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Enamel development is a process in which extracellular matrix models from a soft proteinaceous matrix to the most mineralized tissue in vertebrates. Patients with mutant NCKX4, a gene encoding a K+-dependent Na+/Ca2+-exchanger, develop a hypomineralized and hypomature enamel. How NCKX4 regulates enamel protein removal to achieve an almost protein-free enamel is unknown. We characterized the upregulation pattern of Nckx4 in the progressively differentiating enamel-forming ameloblasts by qPCR, and as well as confirmed NCKX4 protein to primarily localize at the apical surface of wild-type ruffle-ended maturation ameloblasts by immunostaining of the continuously growing mouse incisors, posing the entire developmental trajectory of enamel. In contrast to the normal mature enamel, where ECM proteins are hydrolyzed and removed, we found significant protein retention in the maturation stage of Nckx4 -/- mouse enamel. The Nckx4 -/- enamel held less Ca2+ and K+ but more Na+ than the Nckx4 +/+ enamel did, as measured by EDX. The alternating acidic and neutral pH zones at the surface of mineralizing Nckx4 +/+ enamel were replaced by a largely neutral pH matrix in the Nckx4 -/- enamel. In situ zymography revealed a reduced kallikrein-related peptidase 4 (KLK4) activity in the Nckx4 -/- enamel. We showed that KLK4 took on 90% of proteinase activity in the maturation stage of normal enamel, and that recombinant KLK4 as well as native mouse enamel KLK4 both performed less effectively in a buffer with increased [Na+] and pH, conditions found in the Nckx4 -/- developing enamel. This study, for the first time to our knowledge, provides evidence demonstrating the impaired in situ KLK4 activity in Nckx4 -/- enamel and suggests a novel function of NCKX4 in facilitating KLK4-mediated hydrolysis and removal of ECM proteins, warranting the completion of enamel matrix modeling.
Collapse
Affiliation(s)
- Barry Chan
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Ieong Cheng Cheng
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Jalali Rozita
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Ida Gorshteyn
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Yulei Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Ida Shaffer
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Chih Chang
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Wu Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Jonathan Lytton
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Pamela Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, San Francisco, United States
| |
Collapse
|
10
|
Ngu J, Bronckers ALJJ, Katsura K, Zhang Y, Den Besten PK. Na + and K + transport and maturation stage ameloblast modulation. Front Physiol 2023; 14:1124444. [PMID: 36814472 PMCID: PMC9939811 DOI: 10.3389/fphys.2023.1124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction: Enamel mineralization requires calcium transport into the extracellular matrix for the synthesis of hydroxyapatite (HA) crystals. Formation of HA releases protons into the matrix, which are then neutralized when ameloblasts modulate from cells with apical invaginations, the so-called ruffle-ended ameloblasts (RE), to smooth-ended ameloblasts (SE). Ameloblast modulation is associated with the translocation of the calcium exchanger Nckx4 to the apical border of RE, to remove Na+ from the enamel matrix in exchange for Ca2+ and K+. As enamel matures, Na+ and K+ in the matrix progressively decrease. However, the transporter to remove K+ from mineralizing enamel has not been identified. Methods: Expression of K+ exchangers and channels in secretory and maturation stage of enamel organs were compared following an RNA-seq analysis. Kcnj15, which encodes the Kir4.2 inwardly rectifying K+ channel, was found to be the most upregulated internalizing K+ transporter in maturation stage of enamel organs. Kir4.2 was immunolocalized in wt, Nckx4-/-, Wdr72-/-, and fluorosed ameloblasts. Regulation of Wdr72 expression by pH was characterized in vitro and in vivo. Results: Kir4.2 immunolocalized to the apical border of wild type (wt) mouse RE and cytosol of SE, a spatial distribution pattern shared by NCKX4. In Nckx4-/- ameloblasts, Kir4.2 also localized to the apical surface of RE and cytosol of SE. However, in fluorosed and Wdr72-/- ameloblasts, in which vesicle trafficking is disrupted, Kir4.2 remained in the cytosol. In vitro, Wdr72 was upregulated in LS8 cells cultured in medium with a pH 6.2, which is the pH of the enamel matrix underlying RE, as compared to pH 7.2 under SE. Conclusion: Taken together these results suggest that Kir4.2 participates in K+ uptake by maturation ameloblasts, and that K+ and Na+ uptake by Kir4.2 and Nckx4, respectively, may be regulated by pH through WDR72-mediated endocytosis and membrane trafficking.
Collapse
Affiliation(s)
- Jake Ngu
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Antonius L. J. J. Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Kaitlin Katsura
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Pamela K. Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Al-Khannaq M, Lytton J. Regulation of K +-Dependent Na +/Ca 2+-Exchangers (NCKX). Int J Mol Sci 2022; 24:ijms24010598. [PMID: 36614039 PMCID: PMC9820825 DOI: 10.3390/ijms24010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Potassium-dependent sodium-calcium exchangers (NCKX) have emerged as key determinants of calcium (Ca2+) signaling and homeostasis, especially in environments where ion concentrations undergo large changes, such as excitatory cells and transport epithelia. The regulation of NCKX transporters enables them to respond to the changing cellular environment thereby helping to shape the extent and kinetics of Ca2+ signals. This review examines the current knowledge of the different ways in which NCKX activity can be modulated. These include (i) cellular and dynamic subcellular location (ii); changes in protein expression mediated at the gene, transcript, or protein level (iii); genetic changes resulting in altered protein structure or expression (iv); regulation via changes in substrate concentration (v); and post-translational modification, partner protein interactions, and allosteric regulation. Detailed mechanistic understanding of NCKX regulation is an emerging area of research with the potential to provide important new insights into transporter function, the control of Ca2+ signals, and possible interventions for dysregulated Ca2+ homeostasis.
Collapse
|
12
|
Arai H, Inaba A, Ikezaki S, Kumakami-Sakano M, Azumane M, Ohshima H, Morikawa K, Harada H, Otsu K. Energy metabolic shift contributes to the phenotype modulation of maturation stage ameloblasts. Front Physiol 2022; 13:1062042. [PMID: 36523561 PMCID: PMC9745043 DOI: 10.3389/fphys.2022.1062042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.
Collapse
Affiliation(s)
- Haruno Arai
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Akira Inaba
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Marii Azumane
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
13
|
Liang T, Wang SK, Smith C, Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Kim JW, Zhang C, Saunders TL, Simmer JP, Hu JCC. Enamel defects in Acp4 R110C/R110C mice and human ACP4 mutations. Sci Rep 2022; 12:16477. [PMID: 36183038 PMCID: PMC9526733 DOI: 10.1038/s41598-022-20684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human ACP4 (OMIM*606362) encodes a transmembrane protein that belongs to histidine acid phosphatase (ACP) family. Recessive mutations in ACP4 cause non-syndromic hypoplastic amelogenesis imperfecta (AI1J, OMIM#617297). While ACP activity has long been detected in developing teeth, its functions during tooth development and the pathogenesis of ACP4-associated AI remain largely unknown. Here, we characterized 2 AI1J families and identified a novel ACP4 disease-causing mutation: c.774_775del, p.Gly260Aspfs*29. To investigate the role of ACP4 during amelogenesis, we generated and characterized Acp4R110C mice that carry the p.(Arg110Cys) loss-of-function mutation. Mouse Acp4 expression was the strongest at secretory stage ameloblasts, and the protein localized primarily at Tomes' processes. While Acp4 heterozygous (Acp4+/R110C) mice showed no phenotypes, incisors and molars of homozygous (Acp4R110C/R110C) mice exhibited a thin layer of aplastic enamel with numerous ectopic mineralized nodules. Acp4R110C/R110C ameloblasts appeared normal initially but underwent pathology at mid-way of secretory stage. Ultrastructurally, sporadic enamel ribbons grew on mineralized dentin but failed to elongate, and aberrant needle-like crystals formed instead. Globs of organic matrix accumulated by the distal membranes of defective Tomes' processes. These results demonstrated a critical role for ACP4 in appositional growth of dental enamel probably by processing and regulating enamel matrix proteins around mineralization front apparatus.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Zhongzheng Dist., Taipei City, 100, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, No. 8, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, 100, Taiwan
| | - Charles Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, 34147, Istanbul, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Division of Molecular, Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Wang L, Zhou Z, Yang Y, Gao P, Lin X, Wu Z. A Genetic Polymorphism in the WDR72 Gene is Associated With Calcium Nephrolithiasis in the Chinese Han Population. Front Genet 2022; 13:897051. [PMID: 35910217 PMCID: PMC9333346 DOI: 10.3389/fgene.2022.897051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
A previous genome-wide association study (GWAS) reported several novel loci for nephrolithiasis in British and Japanese population, some of which were predicted to influence CaSR signaling. In this study, we aimed to evaluate the association of these loci with calcium nephrolithiasis in Chinese Han population. We performed a case-control association analysis involving 691 patients with calcium nephrolithiasis and 1008 control subjects. We were able to genotype a total of 17 single-nucleotide polymorphisms (SNPs), which were previously reported to be significantly associated with nephrolithiasis in GWAS. rs578595 at WDR72 was significantly associated with calcium nephrolithiasis in Chinese Han population (p < 0.001, OR = 0.617). Moreover, rs12654812 at SLC34A1 (p = 0.0427, OR = 1.170), rs12539707 at HIBADH (p = 0.0179, OR = 0.734), rs1037271 at DGKH (p = 0.0096, OR = 0.828) and rs12626330 at CLDN14 (p = 0.0080, OR = 1.213) indicated suggestive associations with calcium nephrolithiasis. Our results elucidated the significance of genetic variation at WDR72, DGKH, CLDN14, SLC34A1, and HIBADH in Chinese patients with nephrolithiasis. Since polymorphisms of WDR72, DGKH, and CLDN14 are predicted to influence in CaSR signaling, our results emphasized the role of abnormal calcium homeostasis in calcium nephrolithiasis.
Collapse
Affiliation(s)
- Lujia Wang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zijian Zhou
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Gao
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| | - Zhong Wu
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| |
Collapse
|
15
|
Suzuki A, Yoshioka H, Liu T, Gull A, Singh N, Le T, Zhao Z, Iwata J. Crucial Roles of microRNA-16-5p and microRNA-27b-3p in Ameloblast Differentiation Through Regulation of Genes Associated With Amelogenesis Imperfecta. Front Genet 2022; 13:788259. [PMID: 35401675 PMCID: PMC8990915 DOI: 10.3389/fgene.2022.788259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Amelogenesis imperfecta is a congenital disorder within a heterogeneous group of conditions characterized by enamel hypoplasia. Patients suffer from early tooth loss, social embarrassment, eating difficulties, and pain due to an abnormally thin, soft, fragile, and discolored enamel with poor aesthetics and functionality. The etiology of amelogenesis imperfecta is complicated by genetic interactions. To identify mouse amelogenesis imperfecta-related genes (mAIGenes) and their respective phenotypes, we conducted a systematic literature review and database search and found and curated 70 mAIGenes across all of the databases. Our pathway enrichment analysis indicated that these genes were enriched in tooth development-associated pathways, forming four distinct groups. To explore how these genes are regulated and affect the phenotype, we predicted microRNA (miRNA)-gene interaction pairs using our bioinformatics pipeline. Our miRNA regulatory network analysis pinpointed that miR-16-5p, miR-27b-3p, and miR-23a/b-3p were hub miRNAs. The function of these hub miRNAs was evaluated through ameloblast differentiation assays with/without the candidate miRNA mimics using cultured mouse ameloblast cells. Our results revealed that overexpression of miR-16-5p and miR-27b-3p, but not miR-23a/b-3p, significantly inhibited ameloblast differentiation through regulation of mAIGenes. Thus, our study shows that miR-16-5p and miR-27b-3p are candidate pathogenic miRNAs for amelogenesis imperfecta.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Teng Liu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Aania Gull
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naina Singh
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thanh Le
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Husein D, Alamoudi A, Ohyama Y, Mochida H, Ritter B, Mochida Y. Identification of the C-terminal region in Amelogenesis Imperfecta causative protein WDR72 required for Golgi localization. Sci Rep 2022; 12:4640. [PMID: 35301423 PMCID: PMC8930991 DOI: 10.1038/s41598-022-08719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Amelogenesis Imperfecta (AI) represents a group of hereditary conditions that manifest tooth enamel defects. Several causative mutations in the WDR72 gene have been identified and patients with WDR72 mutations have brown (or orange-brown) discolored enamel, rough enamel surface, early loss of enamel after tooth eruption, and severe attrition. Although the molecular function of WDR72 is not yet fully understood, a recent study suggested that WDR72 could be a facilitator of endocytic vesicle trafficking, which appears inconsistent with the previously reported cytoplasmic localization of WDR72. Therefore, the aims of our study were to investigate the tissues and cell lines in which WDR72 was expressed and to further determine the sub-cellular localization of WDR72. The expression of Wdr72 gene was investigated in mouse tissues and cell lines. Endogenous WDR72 protein was detected in the membranous fraction of ameloblast cell lines in addition to the cytosolic fraction. Sub-cellular localization studies supported our fractionation data, showing WDR72 at the Golgi apparatus, and to a lesser extent, in the cytoplasmic area. In contrast, a WDR72 AI mutant form that lacks its C-terminal region was exclusively detected in the cytoplasm. In addition, our studies identified a putative prenylation/CAAX motif within the last four amino acids of human WDR72 and generated a WDR72 variant, called CS mutant, in which the putative motif was ablated by a point mutation. Interestingly, mutation of the putative CAAX motif impaired WDR72 recruitment to the Golgi. Cell fractionation assays confirmed subcellular distribution of wild-type WDR72 in both cytosolic and membranous fractions, while the WDR72 AI mutant and CS mutant forms were predominantly detected in the cytosolic fraction. Our studies provide new insights into the subcellular localization of WDR72 and demonstrate a critical role for the C-terminal CAAX motif in regulating WDR72 recruitment to the Golgi. In accordance with structural modelling studies that classified WDR72 as a potential vesicle transport protein, our findings suggest a role for WDR72 in vesicular Golgi transport that may be key to understanding the underlying cause of AI.
Collapse
Affiliation(s)
- Dina Husein
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Brigitte Ritter
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Katsura K, Nakano Y, Zhang Y, Shemirani R, Li W, Den Besten P. WDR72 regulates vesicle trafficking in ameloblasts. Sci Rep 2022; 12:2820. [PMID: 35181734 PMCID: PMC8857301 DOI: 10.1038/s41598-022-06751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.
Collapse
Affiliation(s)
- Kaitlin Katsura
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yukiko Nakano
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Yan Zhang
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Rozana Shemirani
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Wu Li
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA
| | - Pamela Den Besten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, 521 Parnasus Ave, Box 0422, San Francisco, CA, 04143-0422, USA.
| |
Collapse
|
18
|
The synergistic effects of TGF-β1 and RUNX2 on enamel mineralization through regulating ODAPH expression during the maturation stage. J Mol Histol 2022; 53:483-492. [PMID: 35165792 DOI: 10.1007/s10735-022-10060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Transforming growth factor β1 (TGF-β1) and Runt-related transcription factor 2 (RUNX2) are critical factors promoting enamel development and maturation. Our previous studies reported that absence of TGF-β1 or RUNX2 resulted in abnormal secretion and absorption of enamel matrix proteins. However, the mechanism remained enigmatic. In this study, TGF-β1-/-Runx2-/- and TGF-β1+/-Runx2+/- mice were successfully generated to clarify the relationship between TGF-β1 and RUNX2 during amelogenesis. Lower mineralization was observed in TGF-β1-/-Runx2-/- and TGF-β1+/-Runx2+/- mice than single gene deficient mice. Micro-computed tomography (μCT) revealed a lower ratio of enamel to dentin density in TGF-β1-/-Runx2-/- mice. Although μCT elucidated a relatively constant enamel thickness, variation was identified by scanning electron microscopy, which revealed that TGF-β1-/-Runx2-/- mice were more vulnerable to acid etching with lower degree of enamel mineralization. Furthermore, the double gene knock-out mice exhibited more serious enamel dysplasia than the single gene deficient mice. Hematoxylin-eosin staining revealed abnormalities in ameloblast morphology and arrangement in TGF-β1-/-Runx2-/- mice, which was accompanied by the absence of atypical basal lamina (BL) and the ectopic of enamel matrix. Odontogenesis-associated phosphoprotein (ODAPH) has been identified as a component of an atypical BL. The protein and mRNA expression of ODAPH were down-regulated. In summary, TGF-β1 and RUNX2 might synergistically regulate enamel mineralization through the downstream target gene Odaph. However, the specific mechanism by which TGF-β1 and RUNX2 promote mineralization remains to be further studied.
Collapse
|
19
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
20
|
Patel V, Klootwijk E, Whiting G, Bockenhauer D, Siew K, Walsh S, Bleich M, Himmerkus N, Jaureguiberry G, Issler N, Godovac‐Zimmermann J, Kleta R, Wheeler J. Quantification of FAM20A in human milk and identification of calcium metabolism proteins. Physiol Rep 2021; 9:e15150. [PMID: 34957696 PMCID: PMC8711012 DOI: 10.14814/phy2.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues. FAM20A is a low-abundant protein that is difficult to detect in biofluids such as blood, saliva, and urine. Thus, we speculated the abundance of FAM20A to be high in human milk, since the secretory epithelium of lactating mammary tissue is involved in the secretion of highly concentrated calcium. Therefore, the primary aim of this research is to describe the processes/methodology taken to quantify FAM20A in human milk and identify other proteins involved in calcium metabolism. METHOD This study used mass spectrometry-driven quantitative proteomics: (1) to quantify FAM20A in human milk of three women and (2) to identify proteins associated with calcium regulation by bioinformatic analyses on whole and milk fat globule membrane fractions. RESULTS Shotgun MS/MS driven proteomics identified FAM20A in whole milk, and subsequent analysis using targeted proteomics also successfully quantified FAM20A in all samples. Combination of sample preparation, fractionation, and LC-MS/MS proteomics analysis generated 136 proteins previously undiscovered in human milk; 21 of these appear to be associated with calcium metabolism. CONCLUSION Using mass spectrometry-driven proteomics, we successfully quantified FAM20A from transitional to mature milk and obtained a list of proteins involved in calcium metabolism. Furthermore, we show the value of using a combination of both shotgun and targeted driven proteomics for the identification of this low abundant protein in human milk.
Collapse
Affiliation(s)
- Vaksha Patel
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Gail Whiting
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| | | | - Keith Siew
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Stephen Walsh
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Markus Bleich
- Institute of PhysiologyUniversity of KielKielGermany
| | | | | | - Naomi Issler
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Robert Kleta
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Jun Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| |
Collapse
|
21
|
Gene Expression Profiling of Skeletal Muscles. Genes (Basel) 2021; 12:genes12111718. [PMID: 34828324 PMCID: PMC8621074 DOI: 10.3390/genes12111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches.
Collapse
|
22
|
Qin W, Wan QQ, Ma YX, Wang CY, Wan MC, Ma S, Wang YR, Wang WR, Gu JT, Tay FR, Niu LN. Manifestation and Mechanisms of Abnormal Mineralization in Teeth. ACS Biomater Sci Eng 2021; 9:1733-1756. [PMID: 34436861 DOI: 10.1021/acsbiomaterials.1c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
23
|
Jaskolka MC, Winkley SR, Kane PM. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Front Cell Dev Biol 2021; 9:698190. [PMID: 34249946 PMCID: PMC8264551 DOI: 10.3389/fcell.2021.698190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The yeast RAVE (Regulator of H+-ATPase of Vacuolar and Endosomal membranes) complex and Rabconnectin-3 complexes of higher eukaryotes regulate acidification of organelles such as lysosomes and endosomes by catalyzing V-ATPase assembly. V-ATPases are highly conserved proton pumps consisting of a peripheral V1 subcomplex that contains the sites of ATP hydrolysis, attached to an integral membrane Vo subcomplex that forms the transmembrane proton pore. Reversible disassembly of the V-ATPase is a conserved regulatory mechanism that occurs in response to multiple signals, serving to tune ATPase activity and compartment acidification to changing extracellular conditions. Signals such as glucose deprivation can induce release of V1 from Vo, which inhibits both ATPase activity and proton transport. Reassembly of V1 with Vo restores ATP-driven proton transport, but requires assistance of the RAVE or Rabconnectin-3 complexes. Glucose deprivation triggers V-ATPase disassembly in yeast and is accompanied by binding of RAVE to V1 subcomplexes. Upon glucose readdition, RAVE catalyzes both recruitment of V1 to the vacuolar membrane and its reassembly with Vo. The RAVE complex can be recruited to the vacuolar membrane by glucose in the absence of V1 subunits, indicating that the interaction between RAVE and the Vo membrane domain is glucose-sensitive. Yeast RAVE complexes also distinguish between organelle-specific isoforms of the Vo a-subunit and thus regulate distinct V-ATPase subpopulations. Rabconnectin-3 complexes in higher eukaryotes appear to be functionally equivalent to yeast RAVE. Originally isolated as a two-subunit complex from rat brain, the Rabconnectin-3 complex has regions of homology with yeast RAVE and was shown to interact with V-ATPase subunits and promote endosomal acidification. Current understanding of the structure and function of RAVE and Rabconnectin-3 complexes, their interactions with the V-ATPase, their role in signal-dependent modulation of organelle acidification, and their impact on downstream pathways will be discussed.
Collapse
Affiliation(s)
- Michael C Jaskolka
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Samuel R Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
24
|
Khandelwal P, Mahesh V, Mathur VP, Raut S, Geetha TS, Nair S, Hari P, Sinha A, Bagga A. Phenotypic variability in distal acidification defects associated with WDR72 mutations. Pediatr Nephrol 2021; 36:881-887. [PMID: 33033857 DOI: 10.1007/s00467-020-04747-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Distal renal tubular acidosis (RTA) is typically caused by defects in ATP6V0A4, ATP6V1B1, and SLC4A1, accounting for 60-80% of patients. Genes recently implicated include FOXI1, ATP6V1C2, and WDR72, of which WDR72 is associated with dental enamel defects. METHODS We describe 4 patients, from three unrelated consanguineous families, with RTA and amelogenesis imperfecta. Distal tubular acidification was evaluated by furosemide-fludrocortisone test, urine-to-blood PCO2 gradient and fractional excretion of bicarbonate. Exome sequencing was performed using a panel of genes implicated in human disease. RESULTS Patients had polyuria, hypokalemia, hypercalciuria, and nephrocalcinosis, but metabolic acidosis varied in severity. Although all patients acidified urine to pH < 5.3 during furosemide-fludrocortisone test, urine-to-blood PCO2 gradient was < 20 mmHg during bicarbonate loading. All patients had transient proximal tubular dysfunction with urinary losses of phosphate and beta-2-microglobulin, and generalized aminoaciduria. Homozygous pathogenic truncating variants in WDR72 was detected in all probands. CONCLUSION Patients with WDR72 mutations show mild rate-dependent distal RTA with variable metabolic acidosis, and intact ability to acidify the urine on provocative testing. Concomitant proximal tubular dysfunction may be present. Mutations in WDR72 should be considered in patients with suspected distal RTA, especially if associated with dental defects.
Collapse
Affiliation(s)
- Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mahesh V
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Vijay Prakash Mathur
- Center for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Sumantra Raut
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | - Pankaj Hari
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, ICMR Center for Advanced Research in Nephrology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
25
|
Ji Y, Li C, Tian Y, Gao Y, Dong Z, Xiang L, Xu Z, Gao Y, Zhang L. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev Dyn 2021; 250:1505-1517. [PMID: 33772937 DOI: 10.1002/dvdy.336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutation in Odontogenesis-associated phosphoprotein (ODAPH) has been reported to cause recessive hypomineralized amelogenesis imperfecta (AI) in human. However, the exact role of ODAPH in amelogenesis is still unknown. RESULTS ODAPH was identified as a novel constituent of the atypical basal lamina located at the interface between maturation ameloblasts and the enamel by dual immunofluorescence staining of ODAPH and LAMC2. Odaph knockout mice were generated to explore the function of ODAPH in amelogenesis. Odaph-/- mice teeth showed severely attrition and reduced enamel mineralization. Histological analysis showed from transition or early-maturation stage, ameloblasts were rapidly shortened, lost cell polarity, and exhibited cell pathology. Abundant enamel matrix marked by amelogenin was retained. Temporary cyst-like structures were formed between flattened epithelial cells and the enamel from maturation stage to eruption. The integrity of the atypical basal lamina was impaired indicated by the reduced diffuse expression of LAMC2 and AMTN. The expression of maturation stage related genes of Amtn, Klk4, Integrinβ6 and Slc24a4 were significantly decreased. CONCLUSIONS Our results suggested Odaph played vital roles during amelogenesis by maintaining the integrity of the atypical basal lamina in maturation stage, which may contribute to a better understanding of the pathophysiology of human AI.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Cong Li
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yuan Tian
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yan Gao
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Zhiheng Dong
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Lili Xiang
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China.,Institute of Stomatology, Binzhou Medical University, Yantai, Shandong, China
| | - Li Zhang
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China.,Institute of Stomatology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
26
|
Liang T, Hu Y, Kawasaki K, Zhang H, Zhang C, Saunders TL, Simmer JP, Hu JCC. Odontogenesis-associated phosphoprotein truncation blocks ameloblast transition into maturation in Odaph C41*/C41* mice. Sci Rep 2021; 11:1132. [PMID: 33441959 PMCID: PMC7807025 DOI: 10.1038/s41598-020-80912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Mutations of Odontogenesis-Associated Phosphoprotein (ODAPH, OMIM *614829) cause autosomal recessive amelogenesis imperfecta, however, the function of ODAPH during amelogenesis is unknown. Here we characterized normal Odaph expression by in situ hybridization, generated Odaph truncation mice using CRISPR/Cas9 to replace the TGC codon encoding Cys41 into a TGA translation termination codon, and characterized and compared molar and incisor tooth formation in Odaph+/+, Odaph+/C41*, and OdaphC41*/C41* mice. We also searched genomes to determine when Odaph first appeared phylogenetically. We determined that tooth development in Odaph+/+ and Odaph+/C41* mice was indistinguishable in all respects, so the condition in mice is inherited in a recessive pattern, as it is in humans. Odaph is specifically expressed by ameloblasts starting with the onset of post-secretory transition and continues until mid-maturation. Based upon histological and ultrastructural analyses, we determined that the secretory stage of amelogenesis is not affected in OdaphC41*/C41* mice. The enamel layer achieves a normal shape and contour, normal thickness, and normal rod decussation. The fundamental problem in OdaphC41*/C41* mice starts during post-secretory transition, which fails to generate maturation stage ameloblasts. At the onset of what should be enamel maturation, a cyst forms that separates flattened ameloblasts from the enamel surface. The maturation stage fails completely.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Thomas L Saunders
- Department of Internal Medicine, Division of Molecular, Medicine and Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| |
Collapse
|
27
|
Chiba Y, Yoshizaki K, Saito K, Ikeuchi T, Iwamoto T, Rhodes C, Nakamura T, de Vega S, Morell RJ, Boger ET, Martin D, Hino R, Inuzuka H, Bleck CKE, Yamada A, Yamada Y, Fukumoto S. G protein-coupled receptor Gpr115 ( Adgrf4) is required for enamel mineralization mediated by ameloblasts. J Biol Chem 2020; 295:15328-15341. [PMID: 32868297 DOI: 10.1074/jbc.ra120.014281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tomoko Ikeuchi
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Howles SA, Wiberg A, Goldsworthy M, Bayliss AL, Gluck AK, Ng M, Grout E, Tanikawa C, Kamatani Y, Terao C, Takahashi A, Kubo M, Matsuda K, Thakker RV, Turney BW, Furniss D. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat Commun 2019; 10:5175. [PMID: 31729369 PMCID: PMC6858460 DOI: 10.1038/s41467-019-13145-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/16/2019] [Indexed: 01/18/2023] Open
Abstract
Kidney stone disease (nephrolithiasis) is a major clinical and economic health burden with a heritability of ~45–60%. We present genome-wide association studies in British and Japanese populations and a trans-ethnic meta-analysis that include 12,123 cases and 417,378 controls, and identify 20 nephrolithiasis-associated loci, seven of which are previously unreported. A CYP24A1 locus is predicted to affect vitamin D metabolism and five loci, DGKD, DGKH, WDR72, GPIC1, and BCR, are predicted to influence calcium-sensing receptor (CaSR) signaling. In a validation cohort of only nephrolithiasis patients, the CYP24A1-associated locus correlates with serum calcium concentration and a number of nephrolithiasis episodes while the DGKD-associated locus correlates with urinary calcium excretion. In vitro, DGKD knockdown impairs CaSR-signal transduction, an effect rectified with the calcimimetic cinacalcet. Our findings indicate that studies of genotype-guided precision-medicine approaches, including withholding vitamin D supplementation and targeting vitamin D activation or CaSR-signaling pathways in patients with recurrent kidney stones, are warranted. Kidney stones form in the presence of overabundance of crystal-forming substances such as Ca2+ and oxalate. Here, the authors report genome-wide association analyses for kidney stone disease, report seven previously unknown loci and find that some of these loci also associate with Ca2+ concentration and excretion.
Collapse
Affiliation(s)
- Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK. .,Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michelle Goldsworthy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Asha L Bayliss
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anna K Gluck
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Emily Grout
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Centre, University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Chikashi Terao
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Takahashi
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiaki Kubo
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, University of Tokyo, Tokyo, Japan
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin W Turney
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Jobst-Schwan T, Klämbt V, Tarsio M, Heneghan JF, Majmundar AJ, Shril S, Buerger F, Ottlewski I, Shmukler BE, Topaloglu R, Hashmi S, Hafeez F, Emma F, Greco M, Laube GF, Fathy HM, Pohl M, Gellermann J, Milosevic D, Baum MA, Mane S, Lifton RP, Kane PM, Alper SL, Hildebrandt F. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney Int 2019; 97:567-579. [PMID: 31959358 DOI: 10.1016/j.kint.2019.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis.
Collapse
Affiliation(s)
- Tilman Jobst-Schwan
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Klämbt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - John F Heneghan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J Majmundar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Ottlewski
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris E Shmukler
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Farkhanda Hafeez
- Department of Pediatric Nephrology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marcella Greco
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Guido F Laube
- Nephrology Unit, University Children's Hospital, Zürich, Switzerland
| | - Hanan M Fathy
- Pediatric Nephrology Unit, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jutta Gellermann
- Department of Pediatrics, University Children's Hospital of Berlin, University Hospital Berlin Charité, Berlin, Germany
| | - Danko Milosevic
- University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
| | - Michelle A Baum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
30
|
Liu X, Xu C, Tian Y, Sun Y, Zhang J, Bai J, Pan Z, Feng W, Xu M, Li C, Li J, Gao Y. RUNX2 contributes to TGF-β1-induced expression of Wdr72 in ameloblasts during enamel mineralization. Biomed Pharmacother 2019; 118:109235. [DOI: 10.1016/j.biopha.2019.109235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023] Open
|
31
|
Liang T, Hu Y, Smith CE, Richardson AS, Zhang H, Yang J, Lin B, Wang S, Kim J, Chun Y, Simmer JP, Hu JC. AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity. Mol Genet Genomic Med 2019; 7:e929. [PMID: 31402633 PMCID: PMC6732285 DOI: 10.1002/mgg3.929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ameloblastin (AMBN) is a secreted matrix protein that is critical for the formation of dental enamel and is enamel-specific with respect to its essential functions. Biallelic AMBN defects cause non-syndromic autosomal recessive amelogenesis imperfecta. Homozygous Ambn mutant mice expressing an internally truncated AMBN protein deposit only a soft mineral crust on the surface of dentin. METHODS We characterized a family with hypoplastic amelogenesis imperfecta caused by AMBN compound heterozygous mutations (c.1061T>C; p.Leu354Pro/ c.1340C>T; p.Pro447Leu). We generated and characterized Ambn knockout/NLS-lacZ (AmbnlacZ/lacZ ) knockin mice. RESULTS No AMBN protein was detected using immunohistochemistry in null mice. ß-galactosidase activity was specific for ameloblasts in incisors and molars, and islands of cells along developing molar roots. AmbnlacZ/lacZ 7-week incisors and unerupted (D14) first molars showed extreme enamel surface roughness. No abnormalities were observed in dentin mineralization or in nondental tissues. Ameloblasts in the AmbnlacZ/lacZ mice were unable to initiate appositional growth and started to degenerate and deposit ectopic mineral. No layer of initial enamel ribbons formed in the AmbnlacZ/lacZ mice, but pockets of amelogenin accumulated on the dentin surface along the ameloblast distal membrane and within the enamel organ epithelia (EOE). NLS-lacZ signal was positive in the epididymis and nasal epithelium, but negative in ovary, oviduct, uterus, prostate, seminal vesicles, testis, submandibular salivary gland, kidney, liver, bladder, and bone, even after 15 hr of incubation with X-gal. CONCLUSIONS Ameloblastin is critical for the initiation of enamel ribbon formation, and its absence results in pathological mineralization within the enamel organ epithelia.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Amelia S Richardson
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Department of Pediatric Dentistry, School and Hospital of StomatologyPeking UniversityBeijingChina
| | - Brent Lin
- Department of Orofacial SciencesUCSF School of DentistrySan FranciscoCalifornia
| | - Shih‐Kai Wang
- Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C
| | - Jung‐Wook Kim
- Department of Molecular Genetics and Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - Yong‐Hee Chun
- Department of Periodontics and Department of Cell Systems & Anatomy, School of DentistryUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Jan C.‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| |
Collapse
|
32
|
Wang S, Hu Y, Smith CE, Yang J, Zeng C, Kim J, Hu JC, Simmer JP. The Enamel Phenotype in Homozygous Fam83h Truncation Mice. Mol Genet Genomic Med 2019; 7:e724. [PMID: 31060110 PMCID: PMC6565571 DOI: 10.1002/mgg3.724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Truncation FAM83H mutations cause human autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), an inherited disorder characterized by severe hardness defects in dental enamel. No enamel defects were observed in Fam83h null mice suggesting that Fam83h truncation mice would better replicate human mutations. METHODS We generated and characterized a mouse model (Fam83hTr/Tr ) expressing a truncated FAM83H protein (amino acids 1-296), which recapitulated the ADHCAI-causing human FAM83H p.Tyr297* mutation. RESULTS Day 14 and 7-week Fam83hTr/Tr molars exhibited rough enamel surfaces and slender cusps resulting from hypoplastic enamel defects. The lateral third of the Fam83hTr/Tr incisor enamel layer was thinner, with surface roughness and altered enamel rod orientation, suggesting disturbed enamel matrix secretion. Regular electron density in mandibular incisor enamel indicated normal enamel maturation. Only mildly increased posteruption attrition of Fam83hTr/Tr molar enamel was observed at 7-weeks. Histologically, the Fam83hTr/Tr enamel organ, including ameloblasts, and enamel matrices at sequential stages of amelogenesis exhibited comparable morphology without overt abnormalities, except irregular and less evident ameloblast Tomes' processes in specific areas. CONCLUSIONS Considering Fam83h-/- mice showed no enamel phenotype, while Fam83hTr/Tr (p.Tyr297*) mice displayed obvious enamel malformations, we conclude that FAM83H truncation mutations causing ADHCAI in humans disturb amelogenesis through a neomorphic mechanism, rather than haploinsufficiency.
Collapse
Affiliation(s)
- Shih‐Kai Wang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - Charles E. Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Department of Anatomy and Cell BiologyMcGill UniversityQuebecCanada
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of Pediatric Dentistry, School and Hospital of StomatologyPeking UniversityBeijingP. R. China
| | - Chunhua Zeng
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
- Present address:
Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jung‐Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - Jan C‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMichigan
| |
Collapse
|
33
|
Zhang H, Koruyucu M, Seymen F, Kasimoglu Y, Kim JW, Tinawi S, Zhang C, Jacquemont M, Vieira A, Simmer J, Hu J. WDR72 Mutations Associated with Amelogenesis Imperfecta and Acidosis. J Dent Res 2019; 98:541-548. [PMID: 30779877 PMCID: PMC6481005 DOI: 10.1177/0022034518824571] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental enamel malformations, or amelogenesis imperfecta (AI), can be isolated or syndromic. To improve the prospects of making a successful diagnosis by genetic testing, it is important that the full range of genes and mutations that cause AI be determined. Defects in WDR72 (WD repeat-containing protein 72; OMIM *613214) cause AI, type IIA3 (OMIM #613211), which follows an autosomal recessive pattern of inheritance. The defective enamel is normal in thickness, severely hypomineralized, orange-brown stained, and susceptible to attrition. We identified 6 families with biallelic WDR72 mutations by whole exome sequence analyses that perfectly segregated with the enamel phenotype. The novel mutations included 3 stop-gains [NM_182758.2: c.377G>A/p.(Trp126*), c.1801C>T/p.(Arg601*), c.2350A>T/p.(Arg784*)], a missense mutation [c.1265G>T/p.(Gly422Val)], and a 62,138-base pair deletion (NG_017034.2: g.35441_97578del62138) that removed WDR72 coding exons 3 through 13. A previously reported WDR72 frameshift was also observed [c.1467_1468delAT/p.(Val491Aspfs*8)]. Three of the affected patients showed decreased serum pH, consistent with a diagnosis of renal tubular acidosis. Percentiles of stature and body weight varied among 8 affected individuals but did not show a consistent trend. These studies support that WDR72 mutations cause a syndromic form of AI and improve our ability to diagnose AI caused by WDR72 defects.
Collapse
Affiliation(s)
- H. Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M. Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J.-W. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S. Tinawi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - C. Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M.L. Jacquemont
- Génétique Médicale, Pôle femme-mère-enfant, CHU la Réunion site GHSR, BP 350-97448 Saint Pierre Cedex
| | - A.R. Vieira
- Departments of Oral Biology and Pediatric Dentistry, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.C.C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Song W, Wang Y, Chu Q, Qi C, Gao Y, Gao Y, Xiang L, Zhenzhen X, Gao Y. Loss of transforming growth factor-β1 in epithelium cells affects enamel formation in mice. Arch Oral Biol 2018; 96:146-154. [PMID: 30243146 DOI: 10.1016/j.archoralbio.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVES In order to understand the specific in vivo function of transforming growth factor-beta1 (TGF-β1), we successfully established aTGF-β1 deficient mouse model using a conditional knockout method. In the present study, we aimed to further understand the potential role of TGF-β1 in enamel formation. DESIGN Transgenic mice withoutTGF-β1 in epithelial cells were generated. Scanning electron microscopy and micro-computed tomography analysis were used to detect the dental appearance, enamel microstructure and tooth density. Histological analysis was used to examine the residual organic matrix of enamel. Quantitative real-time polymerase chain reaction was used to analyze the expressions of enamel matrix proteins at the mRNA level. RESULTS The enamel of mandibular molars and incisors inTGF-β1 conditional knockout mice displayed severe attrition and lower density compared with the wild-type littermates. A slender microstructure of enamel rod was observed, and enamel matrix proteins were retained in the enamel space at the maturation stage in conditional knockout mice. Moreover, the expressions of enamel matrix protein-encoding genes, such as amelogenin (Amelx), ameloblastin (Ambn), Enamelin (Enam) and matrix metalloproteinase-20 (Mmp-20), were increased in enamel organs of conditional knockout mice. On the other hand, the expressions of Amelotin (Amtn), kallikrein-related peptidase-4 (Klk4), C4orf26 and WD repeat-containing protein 72 (Wdr72) were dramatically decreased at the transition and maturation stages. CONCLUSIONS TGF-β1 played an important role in enamel mineralization through decreasing synthesis ofAmelx, Ambn and Enam and increasing synthesis of Klk4, Amtn, Corf26 and Wdr72.
Collapse
Affiliation(s)
- Wenying Song
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yanli Wang
- Binzhou People's Hospital of Shandong Province, Shandong Binzhou 2566610, People's Republic of China
| | - Qing Chu
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Congcong Qi
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yuehua Gao
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yan Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Lili Xiang
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Xu Zhenzhen
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China
| | - Yuguang Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province, 256603, People's Republic of China.
| |
Collapse
|
35
|
Rungroj N, Nettuwakul C, Sawasdee N, Sangnual S, Deejai N, Misgar RA, Pasena A, Khositseth S, Kirdpon S, Sritippayawan S, Vasuvattakul S, Yenchitsomanus PT. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin Genet 2018; 94:409-418. [PMID: 30028003 DOI: 10.1111/cge.13418] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
Abstract
Hereditary distal renal tubular acidosis (dRTA) is a rare genetic disease that is caused by mutations in SLC4A1, ATP6V1B1, or ATP6V0A4. However, there are many families with hereditary dRTA in whom the disease-causing genes are unknown. Accordingly, we performed whole exome sequencing and genetic studies of the members of a family with autosomal recessive dRTA of an unknown genetic etiology. Here, we report compound heterozygous pathogenic variations in tryptophan-aspartate repeat domain 72 (WDR72) (c.1777A>G [p.R593G] and c.2522T>A [p.L841Q]) in three affected siblings of a family with dRTA. Both variants segregated with dRTA in the family and were not observed in normal control subjects. Homologous modeling and in silico mutagenesis indicated that R593G and L841Q alter the H-bond formations in the nearby residues, affecting the WDR72 protein structure. All these evidences indicate that the identified WDR72 variations were probably to have caused hereditary dRTA in the reported family. In addition, homozygous nonsense mutation (c.2686C>T [p.R896X]) was identified in another family, strongly supporting the causal role of WDR72 in dRTA. Based on our literature review, WDR72 mutations associated with dRTA have not been previously described. This is the first identification of pathogenic variations in WDR72 as a cause of hereditary dRTA.
Collapse
Affiliation(s)
- N Rungroj
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - C Nettuwakul
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Sawasdee
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Sangnual
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Deejai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - R A Misgar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - A Pasena
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - S Kirdpon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Sritippayawan
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Vasuvattakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P T Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
37
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
38
|
Eckstein M, Vaeth M, Fornai C, Vinu M, Bromage TG, Nurbaeva MK, Sorge JL, Coelho PG, Idaghdour Y, Feske S, Lacruz RS. Store-operated Ca 2+ entry controls ameloblast cell function and enamel development. JCI Insight 2017; 2:e91166. [PMID: 28352661 DOI: 10.1172/jci.insight.91166] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Cinzia Fornai
- Department of Anthropology, University of Vienna, Vienna, Austria.,Department of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Manikandan Vinu
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Jessica L Sorge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
39
|
Bronckers ALJJ, Jalali R, Lytton J. Reduced Protein Expression of the Na +/Ca 2++K +-Exchanger (SLC24A4) in Apical Plasma Membranes of Maturation Ameloblasts of Fluorotic Mice. Calcif Tissue Int 2017; 100:80-86. [PMID: 27752731 PMCID: PMC5215084 DOI: 10.1007/s00223-016-0197-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Exposure of forming enamel to fluoride results into formation of hypomineralized enamel. We tested whether enamel hypomineralization was caused by lower expression of the NCKX4/SLC24A4 Ca2+-transporter by ameloblasts. Three commercial antibodies against NCKX4 were tested on enamel organs of wild-type and Nckx4-null mice, one of which (a mouse monoclonal) was specific. This antibody gave a prominent staining of the apical plasma membranes of maturation ameloblasts, starting at early maturation. The layer of immuno-positive ameloblasts contained narrow gaps without immunostaining or with reduced staining. In fluorotic mouse incisors, the quantity of NCKX4 protein in ameloblasts as assessed by western blotting was not different from that in non-fluorotic ameloblasts. However, immunostaining of the apical plasma membranes of fluorotic ameloblasts was strongly reduced or absent suggesting that trafficking of NCKX4 to the apical membrane was strongly reduced. Exposure to fluoride may reduce NCKX4-mediated transport of Ca2+ by maturation stage ameloblasts which delays ameloblast modulation and reduces enamel mineralization.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands.
| | - R Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - J Lytton
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
40
|
Hu Y, Smith CE, Cai Z, Donnelly LAJ, Yang J, Hu JCC, Simmer JP. Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 2016; 4:641-661. [PMID: 27896287 PMCID: PMC5118209 DOI: 10.1002/mgg3.252] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. METHODS Amelx+/+, Amelx+/- , and Amelx-/- molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. RESULTS No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx-/- mice. Amelx-/- incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelx-/- incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx+/- incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx-/- enamel and varied levels of amelogenin in Amelx+/- incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelx-/- enamel extending from mineralized dentin collagen to the ameloblast. The Amelx-/- enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx-/- enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx-/- ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx-/- and Amelx+/- molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. CONCLUSION Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Charles E Smith
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Facility for Electron Microscopy ResearchDepartment of Anatomy and Cell BiologyFaculty of DentistryMcGill UniversityMontrealQuebecH3A 2B2Canada
| | - Zhonghou Cai
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave Building 431-B005 Argonne Illinois 60439
| | - Lorenza A-J Donnelly
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210Eisenhower PlaceAnn ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan 48108
| |
Collapse
|
41
|
Núñez SM, Chun YHP, Ganss B, Hu Y, Richardson AS, Schmitz JE, Fajardo R, Yang J, Hu JCC, Simmer JP. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol 2016; 52-54:219-233. [PMID: 26620968 PMCID: PMC4875837 DOI: 10.1016/j.matbio.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (μCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.
Collapse
Affiliation(s)
- Stephanie M Núñez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Yong-Hee P Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78240, USA.
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, Fitzgerald Building, Toronto, ON M5S 3E2, Canada.
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Roberto Fajardo
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Jie Yang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108; Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, 22 South Avenue, Zhongguancun Haidian District, Beijing 100081, PR China.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| |
Collapse
|
42
|
Inactivation of C4orf26 in toothless placental mammals. Mol Phylogenet Evol 2015; 95:34-45. [PMID: 26596502 DOI: 10.1016/j.ympev.2015.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023]
Abstract
Previous studies have reported inactivated copies of six enamel-related genes (AMBN, AMEL, AMTN, ENAM, KLK4, MMP20) and one dentin-related gene (DSPP) in one or more toothless vertebrates and/or vertebrates with enamelless teeth, thereby providing evidence that these genes are enamel or tooth-specific with respect to their critical functions that are maintained by natural selection. Here, we employ available genome sequences for edentulous and enamelless mammals to evaluate the enamel specificity of four genes (WDR72, SLC24A4, FAM83H, C4orf26) that have been implicated in amelogenesis imperfecta, a condition in which proper enamel formation is abrogated during tooth development. Coding sequences for WDR72, SCL24A4, and FAM83H are intact in four edentulous taxa (Chinese pangolin, three baleen whales) and three taxa (aardvark, nine-banded armadillo, Hoffmann's two-toed sloth) with enamelless teeth, suggesting that these genes have critical functions beyond their involvement in tooth development. By contrast, genomic data for C4orf26 reveal inactivating mutations in pangolin and bowhead whale as well as evidence for deletion of this gene in two minke whale species. Hybridization capture of exonic regions and PCR screens provide evidence for inactivation of C4orf26 in eight additional baleen whale species. However, C4orf26 is intact in all three species with enamelless teeth that were surveyed, as well as in 95 additional mammalian species with enamel-capped teeth. Estimates of selection intensity suggest that dN/dS ratios on branches leading to taxa with enamelless teeth are similar to the dN/dS ratio on branches leading to taxa with enamel-capped teeth. Based on these results, we conclude that C4orf26 is tooth-specific, but not enamel-specific, with respect to its essential functions that are maintained by natural selection. A caveat is that an alternative splice site variant, which translates exon 3 in a different reading frame, is putatively functional in Catarrhini and may have evolved an additional role in this primate clade.
Collapse
|
43
|
Bronckers ALJJ, Lyaruu D, Jalali R, Medina JF, Zandieh-Doulabi B, DenBesten PK. Ameloblast Modulation and Transport of Cl⁻, Na⁺, and K⁺ during Amelogenesis. J Dent Res 2015; 94:1740-7. [PMID: 26403673 DOI: 10.1177/0022034515606900] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na(+)K(+)-dependent calcium transporter NCKX4 and the Na(+)-dependent HPO4 (2-) (Pi) cotransporter NaPi-2b. To regulate pH, ameloblasts express anion exchanger 2 (Ae2a,b), chloride channel Cftr, and amelogenins that can bind protons. Exposure to fluoride or null mutation of Cftr, Ae2a,b, or Amelx each results in formation of hypomineralized enamel. We hypothesized that enamel hypomineralization associated with disturbed pH regulation results from reduced ion transport by NCKX4 and NaPi-2b. This was tested by correlation analyses among the levels of Ca, Pi, Cl, Na, and K in forming enamel of mice with null mutation of Cftr, Ae2a,b, and Amelx, according to quantitative x-ray electron probe microanalysis. Immunohistochemistry, polymerase chain reaction analysis, and Western blotting confirmed the presence of apical NaPi-2b and Nckx4 in maturation-stage ameloblasts. In wild-type mice, K levels in enamel were negatively correlated with Ca and Cl but less negatively or even positively in fluorotic enamel. Na did not correlate with P or Ca in enamel of wild-type mice but showed strong positive correlation in fluorotic and nonfluorotic Ae2a,b- and Cftr-null enamel. In hypomineralizing enamel of all models tested, 1) Cl(-) was strongly reduced; 2) K(+) and Na(+) accumulated (Na(+) not in Amelx-null enamel); and 3) modulation was delayed or blocked. These results suggest that a Na(+)K(+)-dependent calcium transporter (likely NCKX4) and a Na(+)-dependent Pi transporter (potentially NaPi-2b) located in ruffle-ended ameloblasts operate in a coordinated way with the pH-regulating machinery to transport Ca(2+), Pi, and bicarbonate into maturation-stage enamel. Acidification and/or associated physicochemical/electrochemical changes in ion levels in enamel fluid near the apical ameloblast membrane may reduce the transport activity of mineral transporters, which results in hypomineralization.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - D Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - R Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - J F Medina
- Division of Gene Therapy and Hepatology, School of Medicine/CIMA, University of Navarra, and CIBERehd, Pamplona, Spain
| | - B Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - P K DenBesten
- Department of Oral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Wang SK, Hu Y, Yang J, Smith CE, Richardson AS, Yamakoshi Y, Lee YL, Seymen F, Koruyucu M, Gencay K, Lee M, Choi M, Kim JW, Hu JCC, Simmer JP. Fam83h null mice support a neomorphic mechanism for human ADHCAI. Mol Genet Genomic Med 2015; 4:46-67. [PMID: 26788537 PMCID: PMC4707031 DOI: 10.1002/mgg3.178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022] Open
Abstract
Truncation mutations in FAM83H (family with sequence similarity 83, member H) cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), but little is known about FAM83H function and the pathogenesis of ADHCAI. We recruited three ADHCAI families and identified two novel (p.Gln457*; p.Lys639*) and one previously documented (p.Q452*) disease‐causing FAM83H mutations. We generated and characterized Fam83h‐knockout/lacZ‐knockin mice. Surprisingly, enamel thickness, density, Knoop hardness, morphology, and prism patterns were similar in Fam83h+/+, Fam83h+/−, and Fam83h−/− mice. The histology of ameloblasts in all stages of development, in both molars and incisors, was virtually identical in all three genotypes and showed no signs of pathology, although the Fam83h−/− mice usually died after 2 weeks and rarely survived to 7 weeks. LacZ expression in the knockin mice was used to report Fam83h expression in the epithelial tissues of many organs, notably in skin and hair follicles, which manifested a disease phenotype. Pull‐down studies determined that FAM83H dimerizes through its N‐terminal phospholipase D‐like (PLD‐like) domain and identified potential FAM83H interacting proteins. Casein kinase 1 (CK1) interacts with the FAM83H PLD‐like domain via an F270‐X‐X‐X‐F274‐X‐X‐X‐F278 motif. CK1 can phosphorylate FAM83H in vitro, and many phosphorylation sites were identified in the FAM83H C‐terminus. Truncation of FAM83H alters its subcellular localization and that of CK1. Our results support the conclusion that FAM83H is not necessary for proper dental enamel formation in mice, but may act as a scaffold protein that localizes CK1. ADHCAI is likely caused by gain‐of‐function effects mediated by truncated FAM83H, which potentially mislocalizes CK1 as part of its pathological mechanism.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower Pl.Ann ArborMichigan48108; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South Avenue ZhongguancunHaidian DistrictBeijing100081China
| | - Charles E Smith
- Facility for Electron Microscopy Research Department of Anatomy and Cell Biology and Faculty of Dentistry McGill University 3640 University Street Montreal Quebec H3A 2C7 Canada
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology School of Dental Medicine Tsurumi University 2-1-3 Tsurumi Tsurumi-ku Yokohama 230-8501 Japan
| | - Yuan-Ling Lee
- Graduate Institute of Clinical Dentistry National Taiwan University No. 1, Chang-Te St Taipei 10048 Taiwan
| | - Figen Seymen
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Mine Koruyucu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Koray Gencay
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Moses Lee
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Murim Choi
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & Dental Research Institute School of Dentistry Seoul National University 275-1 Yongon-dong Chongno-gu Seoul 110-768 Korea
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Pl. Ann Arbor Michigan 48108
| |
Collapse
|