1
|
Rocchetti G, Leni G, Errico M, Sigolo S, Lolli V, Scansani A, Froldi F, Rebecchi A, Caligiani A, Bertuzzi T, Lucini L, Prandini A. An integrated approach based on UHPLC-HRMS, 1H-NMR and sensory analysis reveals the exclusive lipid fingerprint of long-ripened protected designation of origin Coppa Piacentina. Food Chem 2025; 469:142612. [PMID: 39729664 DOI: 10.1016/j.foodchem.2024.142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
In this study, an integrated approach combining UHPLC-HRMS, 1H NMR spectroscopy, and sensory analysis unveiled the unique lipid fingerprint of long-ripened Protected Designation of Origin (PDO) Coppa Piacentina. Lipidomic profiling revealed significant alterations in lipid classes, including triacylglycerols, sphingolipids, and their oxidation products, which likely contribute to the distinctive flavor, texture, and nutritional properties of this traditional Italian product. UHPLC-HRMS analysis identified various lipid species, highlighting dynamic changes occurring throughout the 240-day ripening process. Concurrently, 1H NMR provided detailed structural insights into the primary lipid classes, with triglycerides emerging as the most abundant. Sensory analysis linked these lipidomic changes to the organoleptic properties perceived by consumers, establishing a clear relationship between lipid composition and sensory quality. These findings deepen our understanding of the biochemical transformations during ripening, underscoring the value of lipid profiling-based approaches in preserving authenticity and enhancing the quality of PDO meat products.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Giulia Leni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Michela Errico
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Samantha Sigolo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Veronica Lolli
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze, 27/A, 43124 Parma, Italy
| | - Alessandra Scansani
- Consorzio Tutela Salumi DOP Piacentini, Via Tirotti 11, 29122 Piacenza, Italy
| | - Federico Froldi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze, 27/A, 43124 Parma, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Aldo Prandini
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
2
|
Frydrych A, Kulita K, Jurowski K, Piekoszewski W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025; 14:473. [PMID: 39942064 PMCID: PMC11816940 DOI: 10.3390/foods14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Lipids are essential components of human health, serving as critical structural elements of cell membranes, energy sources, and precursors for bioactive molecules. This narrative review aims to examine the multifaceted roles of lipids in clinical nutrition and health, focusing on their impact on chronic disease prevention, management, and the potential of lipid-based therapies. A narrative review was conducted utilizing Scopus, Google Scholar, and Web of Science databases. Key terms such as lipids, dietary fats, and cholesterol were used to identify and analyze relevant studies. A total of 145 articles meeting inclusion criteria were reviewed for their insights into lipid metabolism, dietary sources, and clinical implications. The analysis highlighted the metabolic significance of various lipid classes-saturated, monounsaturated, and polyunsaturated fatty acids-along with evidence-based recommendations for their dietary intake. Lipids were shown to play a pivotal role in managing chronic diseases such as cardiovascular disease, obesity, and metabolic syndrome. Emerging therapies, including omega-3 fatty acids and medium-chain triglycerides, demonstrated potential benefits in clinical practice. By synthesizing current knowledge, this narrative review provides healthcare professionals with an updated understanding of the roles of lipids in clinical nutrition. The findings emphasize the importance of tailored dietary interventions and lipid-based therapies in optimizing health and managing chronic diseases effectively. Additionally, this review successfully presents practical dietary recommendations to guide clinical practice.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
| | - Kamil Kulita
- Toxicological Science Club ‘Paracelsus’, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland;
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Wojciech Piekoszewski
- Laboratory of High Resolution of Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
3
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Rojo-López MI, Barranco-Altirriba M, Rossell J, Antentas M, Castelblanco E, Yanes O, Weber RJM, Lloyd GR, Winder C, Dunn WB, Julve J, Granado-Casas M, Mauricio D. The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients 2024; 16:1805. [PMID: 38931159 PMCID: PMC11206394 DOI: 10.3390/nu16121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid functions can be influenced by genetics, age, disease states, and lifestyle factors, particularly dietary patterns, which are crucial in diabetes management. Lipidomics is an expanding field involving the comprehensive exploration of lipids from biological samples. In this cross-sectional study, 396 participants from a Mediterranean region, including individuals with type 1 diabetes (T1D), type 2 diabetes (T2D), and non-diabetic individuals, underwent lipidomic profiling and dietary assessment. Participants completed validated food frequency questionnaires, and lipid analysis was conducted using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC/MS). Multiple linear regression models were used to determine the association between lipid features and dietary patterns. Across all subjects, acylcarnitines (AcCa) and triglycerides (TG) displayed negative associations with the alternate Healthy Eating Index (aHEI), indicating a link between lipidomic profiles and dietary habits. Various lipid species (LS) showed positive and negative associations with dietary carbohydrates, fats, and proteins. Notably, in the interaction analysis between diabetes and the aHEI, we found some lysophosphatidylcholines (LPC) that showed a similar direction with respect to aHEI in non-diabetic individuals and T2D subjects, while an opposite direction was observed in T1D subjects. The study highlights the significant association between lipidomic profiles and dietary habits in people with and without diabetes, particularly emphasizing the role of healthy dietary choices, as reflected by the aHEI, in modulating lipid concentrations. These findings underscore the importance of dietary interventions to improve metabolic health outcomes, especially in the context of diabetes management.
Collapse
Affiliation(s)
- Marina Idalia Rojo-López
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Maria Barranco-Altirriba
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Barcelona, Spain
| | - Joana Rossell
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Antentas
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
| | - Esmeralda Castelblanco
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Oscar Yanes
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Electronic Engineering, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gavin R. Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Warwick B. Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.J.M.W.); (G.R.L.); (C.W.); (W.B.D.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Josep Julve
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Minerva Granado-Casas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Nursing and Physiotherapy, University of Lleida, 25198 Lleida, Spain
- Research Group of Health Care (GreCS), IRBLleida, 25198 Lleida, Spain
| | - Dídac Mauricio
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (M.I.R.-L.); (M.B.-A.); (J.R.); (M.A.); (J.J.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic (UVIC/UCC), 08500 Vic, Spain
| |
Collapse
|
5
|
Ly R, Torres LC, Ly N, Britz-McKibbin P. Expanding Lipidomic Coverage in Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass Spectrometry via a Convenient and Quantitative Methylation Strategy. Anal Chem 2023; 95:17513-17524. [PMID: 37991882 DOI: 10.1021/acs.analchem.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Orthogonal separation techniques coupled to high-resolution mass spectrometry are required for characterizing the human lipidome, given its inherent chemical and structural complexity. However, electrophoretic separations remain largely unrecognized in contemporary lipidomics research compared to established chromatographic and ion mobility methods. Herein, we introduce a novel derivatization protocol based on 3-methyl-1-p-tolyltriazene (MTT) as a safer alternative to diazomethane for quantitative phospholipid (PL) methylation (∼90%), which enables their rapid analysis by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry (MSI-NACE-MS). Isobaric interferences and ion suppression effects were minimized by performing an initial reaction using 9-fluorenylmethyoxycarbonyl chloride prior to MTT and a subsequent back extraction in hexane. This charge-switch derivatization strategy expands lipidome coverage when using MSI-NACE-MS under positive ion mode with improved resolution, greater sensitivity, and higher throughput (∼3.5 min/sample), notably for zwitterionic PLs that are analyzed as their cationic phosphate methyl esters. Our method was validated by analyzing methyl-tert-butyl ether extracts of reference human plasma, which enabled a direct comparison of 48 phosphatidylcholine and 27 sphingomyelin species previously reported in an interlaboratory lipidomics harmonization study. The potential for plasma PL quantification by MSI-NACE-MS via a serial dilution of NIST SRM-1950 was also demonstrated based on estimation of relative response factors using their reported consensus concentrations. Moreover, lipid identification was supported by modeling predictable changes in the electrophoretic mobility for cationic PLs in conjunction with MS/MS. Overall, this work offers a practical derivatization protocol to expand lipidome coverage in CE-MS beyond the analysis of hydrophilic/polar metabolites under aqueous buffer conditions.
Collapse
Affiliation(s)
- Ritchie Ly
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Lucas Christian Torres
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Nicholas Ly
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
6
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Ermolenko EV, Sikorskaya TV, Grigorchuk VP. Crabs Eriocheir japonica and Paralithodes camtschaticus Are a Rich Source of Lipid Molecular Species with High Nutritional Value. Foods 2023; 12:3359. [PMID: 37761068 PMCID: PMC10527590 DOI: 10.3390/foods12183359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Due to their valuable meat and hepatopancreas, the world's most famous delicacies, crabs, have become target species of commercial fisheries and aquaculture. By methods of supercritical fluid and high-performance liquid chromatography, coupled with high resolution mass spectrometry, we analyzed triacylglycerols (TG) and phospholipids (PL)-glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)-in the hepatopancreas and muscles of the Japanese mitten crab Eriocheir japonica and the red king crab Paralithodes camtschaticus inhabiting the Sea of Japan. TGs were the main class of lipids in the crab hepatopancreas, while they were found in trace amounts in muscle. TGs of E. japonica differed from those of P. camtschaticus by a higher content of 16:0, 16:1, 18:2, and 20:4 FA and a lower content of eicosapentaenoic and docosahexaenoic acids. The Japanese mitten crab differed from the red king crab by a lower content of molecular species with eicosapentaenoic acid in PC and PI; an increased content of arachidonic acid in PE, PS, and PI; and a lower content of molecular species with docosahexaenoic acid in PE in the hepatopancreas and muscles. The high nutritional value of the crabs E. japonica and P. camtschaticus was confirmed by a high content of molecular species of lipids with n-3 polyunsaturated fatty acids. The data of the lipid molecular species profile provide new background information for future studies on biochemistry and aquaculture of crabs.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Pr-t 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia;
| |
Collapse
|
8
|
Yao J, Zhu J, Zhao M, Zhou L, Marchioni E. Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. Molecules 2023; 28:molecules28093653. [PMID: 37175063 PMCID: PMC10179896 DOI: 10.3390/molecules28093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, ultra-high-performance liquid chromatography high-resolution accurate mass-mass spectrometry (UHPLC-HRAM/MS) was applied to characterize the lipid profiles of five crab species. A total of 203 lipid molecular species in muscle tissue and 176 in edible viscera were quantified. The results indicate that Cancer pagurus contained high levels of lipids with a docosahexaenoic acid (DHA) and eicosapntemacnioc acid (EPA) structure in the muscle tissue and edible viscera. A partial least squares discriminant analysis (PLS-DA) showed that PE 16:0/22:6, PE P-18:0/20:5, PA 16:0/22:6 and PC 16:0/16:1 could be used as potential biomarkers to discriminate the five kinds of crabs. In addition, some lipids, such as PE 18:0/20:5, PC 16:0/16:1, PE P-18:0/22:6 and SM 12:1;2O/20:0, could be used as characteristic molecules to distinguish between Cancer magister and Cancer pagurus, which are similar in appearance. This study provides a new perspective on discriminating crab species from MS-based lipidomics.
Collapse
Affiliation(s)
- Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| |
Collapse
|
9
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
10
|
Classification of Common Food Lipid Sources Regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int J Mol Sci 2023; 24:ijms24054941. [PMID: 36902372 PMCID: PMC10003363 DOI: 10.3390/ijms24054941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Prospective studies have failed to establish a causal relationship between animal fat intake and cardiovascular diseases in humans. Furthermore, the metabolic effects of different dietary sources remain unknown. In this four-arm crossover study, we investigated the impact of consuming cheese, beef, and pork meat on classic and new cardiovascular risk markers (obtained from lipidomics) in the context of a healthy diet. A total of 33 young healthy volunteers (23 women/10 men) were assigned to one out of four test diets in a Latin square design. Each test diet was consumed for 14 days, with a 2-week washout. Participants received a healthy diet plus Gouda- or Goutaler-type cheeses, pork, or beef meats. Before and after each diet, fasting blood samples were withdrawn. A reduction in total cholesterol and an increase in high density lipoprotein particle size were detected after all diets. Only the pork diet upregulated plasma unsaturated fatty acids and downregulated triglycerides species. Improvements in the lipoprotein profile and upregulation of circulating plasmalogen species were also observed after the pork diet. Our study suggests that, within the context of a healthy diet rich in micronutrients and fiber, the consumption of animal products, in particular pork meat, may not induce deleterious effects, and reducing the intake of animal products should not be regarded as a way of reducing cardiovascular risk in young individuals.
Collapse
|
11
|
Zhou E, Wang Q, Li X, Zhu D, Niu Q, Li Q, Wu L. Effects of Bee Pollen Derived from Acer mono Maxim. or Phellodendron amurense Rupr. on the Lipid Composition of Royal Jelly Secreted by Honeybees. Foods 2023; 12:foods12030625. [PMID: 36766159 PMCID: PMC9914857 DOI: 10.3390/foods12030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Royal jelly is a specific product secreted by honeybees, and has been sought after to maintain health because of its valuable bioactive substances, e.g., lipids and vitamins. The lipids in royal jelly come from the bee pollen consumed by honeybees, and different plant source of bee pollen affects the lipid composition of royal jelly. However, the effect of bee pollen consumption on the lipid composition of royal jelly remains unclear. Herein, we examined the influence of two factors on the lipid composition of royal jelly: first, two plant sources of bee pollen, i.e., Acer mono Maxim. (BP-Am) and Phellodendron amurense Rupr. (BP-Pa); secondly, different feeding times. Lipidomic analyses were conducted on the royal jelly produced by honeybees fed BP-Am or BP-Pa using ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap mass spectrometry. The results showed that the phospholipid and fatty acid contents differed in royal jelly produced by honeybees fed BP-Am compared to those fed BP-Pa. There were also differences between timepoints, with many lipid compounds decreasing in abundance soon after single-pollen feeding began, slowly increasing over time, then decreasing again after 30 days of single-pollen feeding. The single bee pollen diet destroyed the nutritional balance of bee colonies and affected the development of hypopharyngeal and maxillary glands, resulting in differences in royal jelly quality. This study provides guidance for optimal selection of honeybee feed for the production of high-quality royal jelly.
Collapse
Affiliation(s)
- Enning Zhou
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qi Wang
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
| | - Xiangxin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Dan Zhu
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
12
|
|
13
|
Bi J, Li Y, Yang Z, Li B, Gao Y, Ping C, Chen Z. Analysis of the effect of steaming times on lipid composition of pork belly based on lipidomics technology. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Optimizing accelerated solvent extraction combined with liquid chromatography-Orbitrap mass spectrometry for efficient lipid profile characterization of mozzarella cheese. Food Chem 2022; 394:133542. [PMID: 35759836 DOI: 10.1016/j.foodchem.2022.133542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
In this study, a novel Accelerated Solvent Extraction (ASE) procedure combined with UHPLC-Q-Orbitrap-MS was developed for detailed untargeted lipid profile of mozzarella cheese. Response Surface Methodology and Pareto front, using a Central Composite Design (CCD), were employed to define the optimised combination of extraction temperature, number of extraction cycles and mix of solvents. LipidSearch™ software was used for a reliable and accurate lipid identification. A total of 13 subclasses, including ceramides, diacylglycerols, triacylglycerols, lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, sphingomyelins, bismethyl phosphatidic acids, cholesterol ester, zymosterol ester, hexosyl ceramides were measured. The elaboration of the CCD showed that the solvents ratio was the main factor affecting the extraction efficiency. The optimised ASE method, together with the Folch extraction, synergistically contributed to a complete characterization of lipid profile of mozzarella cheese, confirming ASE technique, associated with high resolution mass spectrometry detection, as an efficient tool for Lipidomics in food science.
Collapse
|
15
|
Shen J, Shao W, Li J, Lu H. Integrated metabolomic and transcriptomic analysis reveals factors underlying differences in fruit quality between Fragaria nilgerrensis and Fragaria pentaphylla. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3287-3296. [PMID: 34799861 DOI: 10.1002/jsfa.11674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Strawberries have become one of the most popular fruits because of their unique flavor and high nutritional value. Fruit quality and price are the most important criteria that determine consumer acceptability. Fragaria nilgerrensis and Fragaria pentaphylla are two wild Asian diploid strawberry species that differ in fruit color, taste, and aroma. To understand the molecular mechanisms involved in the formation of high-quality strawberry fruit, we integrated transcriptomics and metabolomics research methods to compare the metabolic and biosynthetic mechanisms of the two Fragaria species. RESULTS F. nilgerrensis fruit has higher amino acid and lipid contents and a higher sugar-to-acid ratio than F. pentaphylla fruit does, underlying their superior nutritional value, aroma, firmness, and taste. Compared with F. nilgerrensis fruit, F. pentaphylla fruit contained more flavonoids, indicating its enhanced color and health benefits. In addition, candidate structural genes that regulate the biosynthesis of flavonoids, amino acids, and glycerophospholipids in the two strawberry fruit were screened. CONCLUSIONS The differences in aroma, firmness, and taste between F. nilgerrensis fruit and F. pentaphylla fruit are probably due to differences in their amino acid and lipid contents, as well as the difference in their sugar-to-acid ratios. Eight key structural genes that may play important roles in the biosynthesis of amino acids, lipids, and flavonoids were identified. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jincheng Shen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wanlu Shao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Hongfei Lu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Wang S, Wang W, Mao H, Zhu M, Xu Z, Wang J, Zhang X, Li B, Xiang X, Wang Z. Lipidomics Reveals That Rice or Flour as a Single Source of Carbohydrates Cause Adverse Health Effects in Rats. Front Nutr 2022; 9:887757. [PMID: 35673359 PMCID: PMC9167423 DOI: 10.3389/fnut.2022.887757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The type of diet is very important for the maintenance of health and nutrition. How the sole source of carbohydrates from rice- or flour-based diet affect blood sugar has not been elucidated for a long time. In order to explore the effects of these diets, sixty SD rats were randomly divided into three groups: control group (C group, AIN-93, standard diet), rice diet group (R group), and flour diet group (F group). All the rats were fed for 7 weeks in total by the assigned diets for 4 weeks (stage 1, S1) and all by the AIN-93 diet for 3 weeks (stage 2, S2). The body weights of all the rats were monitored and serum samples were taken for testing blood glucose, biochemical indicators and untargeted lipidome. It was found that both rice and flour-based diets caused weight gain, but the flour diet had a significant increase in blood sugar and low-density lipoprotein (LDL), while a significant decrease in albumin (ALB) and triglycerides (TG). Twenty-three and 148 lipids were changed by lipidomics in the rice diet group and flour diet group, respectively, and two lipids showed the same changes in the two groups, all belonging to TGs, namely TG (16:0/16:0/16:1) and TG (16:0/16:1/18:2), which showed that a single diet source had a significant effect on the health of rats. Fortunately, we can recover this effect through the subsequent standard diet, allowing the rats to return to normal blood sugar, weight and biochemical indicators. A model can predict the diet types through the logistic regression method. Finally, we proposed that a single diet increased blood sugar and weight through a decrease in TGs, and blood sugar and weight returned to normal after a standard diet. Taken together, the short-term negative effects caused by a single diet can be recovered by a standard diet and further proves the importance of diet types.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Wenjun Wang
- Beijing Junfeix Technology Co., Ltd., Beijing, China
| | - Hongmei Mao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Mingyu Zhu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Zihan Xu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Jun Wang
- Shenzhen Polytechnic, School of Food and Drug, Shenzhen, China
| | - Xuesong Zhang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Baolong Li
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Xuesong Xiang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- *Correspondence: Xuesong Xiang
| | - Zhu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- Zhu Wang
| |
Collapse
|
17
|
González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. The Role of Chromatographic and Electromigration Techniques in Foodomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:31-49. [PMID: 34628626 DOI: 10.1007/978-3-030-77252-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques - especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Diana Angélica Varela-Martínez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.,Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Bogotá D.C., Colombia
| | | | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain. .,Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.
| |
Collapse
|
18
|
Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
20
|
Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem 2020; 319:126547. [DOI: 10.1016/j.foodchem.2020.126547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 11/23/2022]
|
21
|
Li Q, Liang X, Xue X, Wang K, Wu L. Lipidomics Provides Novel Insights into Understanding the Bee Pollen Lipids Transepithelial Transport and Metabolism in Human Intestinal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:907-917. [PMID: 31842537 DOI: 10.1021/acs.jafc.9b06531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bee pollen (BP) shows profound gut-protecting potentials. BP lipids (BPLs) mainly composed by phospholipids and polyunsaturated fatty acids might be one of the important contributors, while how BPL exerts gut-protecting effects and is transported through intestinal cell monolayers need to be investigated. Here, we exploited a strategy that combines an UPLC-Q-exactive orbitrap/MS-based lipidomics approach with a human intestinal cell (Caco-2) monolayer transport model, to determine the transepithelial transportation of BPL from Camellia sinensis L. (BPL-Cs), in pathological conditions. The results showed that BPL-Cs protected Caco-2 cells against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction by improving cell viability, maintaining membrane integrity, increasing tight junctions (ZO-1 and Claudin-1), and eliciting the expressions of antioxidative-related genes (NQO1, Nrf2, Txnrd1, and GSTA1). Lipidomics analysis revealed that DSS suppressed the transport and uptake of most of BPL-Cs including glycerophospholipids, sphingomyelins, and glycosylsphingolipids. Pretreatment with BPL-Cs significantly regulated glycerophospholipid and sphingolipid metabolisms, potentially involved in building permeability barriers and alleviating intestinal oxidative stress. Finally, eight classes of lipids were identified as the potential biomarkers for evaluating DSS-induced Caco-2 cell dysfunctions and BPL-intervened modulation. These findings shed light on the development of BPL as gastrointestinal protective food supplements in the future.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xinwen Liang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093 , China
| |
Collapse
|
22
|
Lanza B, Ninfali P. Antioxidants in Extra Virgin Olive Oil and Table Olives: Connections between Agriculture and Processing for Health Choices. Antioxidants (Basel) 2020; 9:E41. [PMID: 31906540 PMCID: PMC7023406 DOI: 10.3390/antiox9010041] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 01/11/2023] Open
Abstract
: This review focuses on the conditions required to increase and maintain the antioxidant nutrients in both extra virgin olive oil (EVOO) and table olives (TOs) from the agronomic and technological practices to the gastronomy. The main antioxidants of TOs and EVOO are phenol alcohols and acids, secoiridoids, lignans and flavones, all of which possess the ability to prolong the oil's shelf-life and exhibit healthy properties for humans. The precise detection of secoiridoid derivatives remains the breakthrough for the nutritional and health quality certification of extra virgin olive oils (EVOOs) required for EFSA health claims. To attain the necessary antioxidant quality in both EVOO and TOs, it is necessary to hard focus on the several steps in the production chain, including olive cultivar, agronomic conditions, harvesting methods, and transformation technology. The quality level is maintained if the storage conditions aim to minimize the oxidative processes that occur due to oxygen and light. In terms of minor polar biophenols, there is disagreement on which between the organic or conventional EVOOs show higher concentration values. The strict disciplinary of production of protected designation EVOOs does not ensure higher phenol values in comparison to the artisanal EVOOs. In gastronomy, the EVOOs are preferable to seed oils, particularly during frying vegetable. The EVOOs show higher heat stability, linked both to the fatty acid composition and the phenol content, that is important for preventing fatty acids oxidation. Concerning TOs, the commercial presentation includes olives and olive paste. Both products show a remarkable loss of natural antioxidants after pasteurization and during storage as the thermal treatment mostly impacts on TOs secoiridoids.
Collapse
Affiliation(s)
- Barbara Lanza
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale 38, I-65012 Cepagatti (PE), Italy
| | - Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino (PU), Italy;
| |
Collapse
|
23
|
Feng K, Zhu X, Liu G, Kan Q, Chen T, Chen Y, Cao Y. Dietary citrus peel essential oil ameliorates hypercholesterolemia and hepatic steatosis by modulating lipid and cholesterol homeostasis. Food Funct 2020; 11:7217-7230. [DOI: 10.1039/d0fo00810a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of lipidomics and gene expression analysis provided new insights into in-depth mechanistic understanding of the effects of dietary CPEO.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Tong Chen
- Shenzhen Agricultural Product Quality Safety Inspection Testing Center
- Shenzhen
- China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|
24
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
25
|
Parchem K, Kusznierewicz B, Chmiel T, Maciołek P, Bartoszek A. Profiling and Qualitative Assessment of Enzymatically and Thermally Oxidized Egg Yolk Phospholipids using a Two‐Step High‐Performance Liquid Chromatography Protocol. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Tomasz Chmiel
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Paulina Maciołek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| |
Collapse
|
26
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
27
|
Barrilero R, Gil M, Amigó N, Dias CB, Wood LG, Garg ML, Ribalta J, Heras M, Vinaixa M, Correig X. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling. Anal Chem 2018; 90:2031-2040. [PMID: 29293319 DOI: 10.1021/acs.analchem.7b04148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural similarity among lipid species and the low sensitivity and spectral resolution of nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1H NMR lipid profiling of complex biological samples in metabolomics, which remains mostly manual and lacks freely available bioinformatics tools. However, 1H NMR lipid profiling provides fast quantitative screening of major lipid classes (fatty acids, glycerolipids, phospholipids, and sterols) and some individual species and has been used in several clinical and nutritional studies, leading to improved risk prediction models. In this Article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1H NMR lipid profiling. LipSpin implements a constrained line shape fitting algorithm based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids in serum lipid samples by 1H NMR to date. Moreover, analytical and clinical results using LipSpin quantifications conform with other techniques commonly used for lipid analysis.
Collapse
Affiliation(s)
- Rubén Barrilero
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Miriam Gil
- Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Núria Amigó
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Cintia B Dias
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Josep Ribalta
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Mercedes Heras
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Maria Vinaixa
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| |
Collapse
|
28
|
Barbosa BS, Martins LG, Costa TBBC, Cruz G, Tasic L. Qualitative and Quantitative NMR Approaches in Blood Serum Lipidomics. Methods Mol Biol 2018; 1735:365-379. [PMID: 29380328 DOI: 10.1007/978-1-4939-7614-0_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics can be applied in the analysis of complex biological samples in many ways. For example, we can analyze lipids, elucidate their structures, determine their nutritional values, and determine their distribution in blood serum. As lipids are not soluble in water, they are transported in blood as lipid-rich self-assembled particles, divided into different density assemblies from high- to very-low-density lipoproteins (HDL to VLDL), or by combining with serum proteins, such as albumins (human serum albumins (HSA)). Therefore, serum lipids can be analyzed as they are using only a 1:1 (v/v) dilution with a buffer or deuterated water prior to analysis by applying 1H NMR or 1H NMR edited-by-diffusion techniques. Alternatively, lipids can be extracted from the serum using liquid partition equilibrium and then analyzed using liquid-state NMR techniques. Our chapter describes protocols that are used for extraction of blood serum lipids and their quantitative 1H NMR (1H qNMR) analysis in lipid extracts as well as 1H NMR edited by diffusion for direct blood serum lipid analysis.
Collapse
Affiliation(s)
- Banny Silva Barbosa
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lucas Gelain Martins
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Tássia B B C Costa
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Guilherme Cruz
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
29
|
Zhang R, Zhou Q, Cai X, Dong S, Le Z, Cai X, Xiao R, Yu H. Lipidomic analysis reveals the significant increase in diacylglycerophosphocholines in umbilical cord blood from pregnant women with gestational hypercholesterolemia. Placenta 2017; 59:39-45. [DOI: 10.1016/j.placenta.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/22/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
|
30
|
Lim DK, Long NP, Mo C, Dong Z, Cui L, Kim G, Kwon SW. Combination of mass spectrometry-based targeted lipidomics and supervised machine learning algorithms in detecting adulterated admixtures of white rice. Food Res Int 2017; 100:814-821. [PMID: 28873754 DOI: 10.1016/j.foodres.2017.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/22/2023]
Abstract
The mixing of extraneous ingredients with original products is a common adulteration practice in food and herbal medicines. In particular, authenticity of white rice and its corresponding blended products has become a key issue in food industry. Accordingly, our current study aimed to develop and evaluate a novel discrimination method by combining targeted lipidomics with powerful supervised learning methods, and eventually introduce a platform to verify the authenticity of white rice. A total of 30 cultivars were collected, and 330 representative samples of white rice from Korea and China as well as seven mixing ratios were examined. Random forests (RF), support vector machines (SVM) with a radial basis function kernel, C5.0, model averaged neural network, and k-nearest neighbor classifiers were used for the classification. We achieved desired results, and the classifiers effectively differentiated white rice from Korea to blended samples with high prediction accuracy for the contamination ratio as low as five percent. In addition, RF and SVM classifiers were generally superior to and more robust than the other techniques. Our approach demonstrated that the relative differences in lysoGPLs can be successfully utilized to detect the adulterated mixing of white rice originating from different countries. In conclusion, the present study introduces a novel and high-throughput platform that can be applied to authenticate adulterated admixtures from original white rice samples.
Collapse
Affiliation(s)
- Dong Kyu Lim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Changyeun Mo
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Ziyuan Dong
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lingmei Cui
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Giyoung Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Sung Won Kwon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
31
|
|
32
|
Effect of Storage and Extraction Protocols on the Lipid and Fatty Acid Profiles of Dicentrarchus labrax Brain. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0967-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci 2016; 41:954-969. [PMID: 27663237 DOI: 10.1016/j.tibs.2016.08.010] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
Lipidomics is a newly emerged discipline that studies cellular lipids on a large scale based on analytical chemistry principles and technological tools, particularly mass spectrometry. Recently, techniques have greatly advanced and novel applications of lipidomics in the biomedical sciences have emerged. This review provides a timely update on these aspects. After briefly introducing the lipidomics discipline, we compare mass spectrometry-based techniques for analysis of lipids and summarize very recent applications of lipidomics in health and disease. Finally, we discuss the status of the field, future directions, and advantages and limitations of the field.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
34
|
Fitó M, Melander O, Martínez JA, Toledo E, Carpéné C, Corella D. Advances in Integrating Traditional and Omic Biomarkers When Analyzing the Effects of the Mediterranean Diet Intervention in Cardiovascular Prevention. Int J Mol Sci 2016; 17:E1469. [PMID: 27598147 PMCID: PMC5037747 DOI: 10.3390/ijms17091469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Intervention with Mediterranean diet (MedDiet) has provided a high level of evidence in primary prevention of cardiovascular events. Besides enhancing protection from classical risk factors, an improvement has also been described in a number of non-classical ones. Benefits have been reported on biomarkers of oxidation, inflammation, cellular adhesion, adipokine production, and pro-thrombotic state. Although the benefits of the MedDiet have been attributed to its richness in antioxidants, the mechanisms by which it exercises its beneficial effects are not well known. It is thought that the integration of omics including genomics, transcriptomics, epigenomics, and metabolomics, into studies analyzing nutrition and cardiovascular diseases will provide new clues regarding these mechanisms. However, omics integration is still in its infancy. Currently, some single-omics analyses have provided valuable data, mostly in the field of genomics. Thus, several gene-diet interactions in determining both intermediate (plasma lipids, etc.) and final cardiovascular phenotypes (stroke, myocardial infarction, etc.) have been reported. However, few studies have analyzed changes in gene expression and, moreover very few have focused on epigenomic or metabolomic biomarkers related to the MedDiet. Nevertheless, these preliminary results can help to better understand the inter-individual differences in cardiovascular risk and dietary response for further applications in personalized nutrition.
Collapse
Affiliation(s)
- Montserrat Fitó
- Cardiovascular Risk and Nutrition Research (REGICOR Group), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 22100 Lund, Sweden.
- Department of Internal Medicine, Skåne University Hospital, 22241 Lund, Sweden.
| | - José Alfredo Martínez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Nutrition and Food Sciences, University of Navarra, 31009 Pamplona, Spain.
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Navarra, 31009 Pamplona, Spain.
| | - Christian Carpéné
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Rangueil Hospital, 31442 Toulouse, France.
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
35
|
Kohlmeier M, De Caterina R, Ferguson LR, Görman U, Allayee H, Prasad C, Kang JX, Nicoletti CF, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2 - Ethics, Challenges and Endeavors of Precision Nutrition. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:28-46. [PMID: 27286972 DOI: 10.1159/000446347] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutrigenetics considers the influence of individual genetic variation on differences in response to dietary components, nutrient requirements and predisposition to disease. Nutrigenomics involves the study of interactions between the genome and diet, including how nutrients affect the transcription and translation process plus subsequent proteomic and metabolomic changes, and also differences in response to dietary factors based on the individual genetic makeup. Personalized characteristics such as age, gender, physical activity, physiological state and social status, and special conditions such as pregnancy and risk of disease can inform dietary advice that more closely meets individual needs. Precision nutrition has a promising future in treating the individual according to their phenotype and genetic characteristics, aimed at both the treatment and prevention of disease. However, many aspects are still in progress and remain as challenges for the future of nutrition. The integration of the human genotype and microbiome needs to be better understood. Further advances in data interpretation tools are also necessary, so that information obtained through newer tests and technologies can be properly transferred to consumers. Indeed, precision nutrition will integrate genetic data with phenotypical, social, cultural and personal preferences and lifestyles matters to provide a more individual nutrition, but considering public health perspectives, where ethical, legal and policy aspects need to be defined and implemented.
Collapse
Affiliation(s)
- Martin Kohlmeier
- Department of Nutrition, School of Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, de Luis DA, Gil Á, Kang JX, Martin RL, Milagro FI, Nicoletti CF, Nonino CB, Ordovas JM, Parslow VR, Portillo MP, Santos JL, Serhan CN, Simopoulos AP, Velázquez-Arellano A, Zulet MA, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. Lifestyle Genom 2016; 9:12-27. [DOI: 10.1159/000445350] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
O'Gorman A, Brennan L. Metabolomic applications in nutritional research: a perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2567-2570. [PMID: 25640072 DOI: 10.1002/jsfa.7070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Metabolomics focuses on the global study of metabolites in cells, tissues and biofluids. Analytical technologies such as nuclear magnetic resonance (NMR) spectroscopy and hyphenated mass spectrometry (MS) combined with advanced multivariate statistical methods allow us to study perturbations in metabolism. The close link between metabolism and nutrition has seen the application of metabolomics in nutritional research increase in recent times. Such applications can be divided into three main categories, namely (1) the area of dietary biomarker identification, (2) diet-related diseases and (3) nutritional interventions. The present perspective gives an overview of these applications and an outlook to the future.
Collapse
Affiliation(s)
- Aoife O'Gorman
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD Conway Institute, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
38
|
(1)H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab (Eriphia verrucosa), and edible crab (Cancer pagurus). Food Chem 2015; 196:601-9. [PMID: 26593533 DOI: 10.1016/j.foodchem.2015.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
The metabolomic profile of blue crab (Callinectes sapidus) captured in the Acquatina lagoon (SE Italy) was compared to an autochthonous (Eriphia verrucosa) and to a commercial crab species (Cancer pagurus). Both lipid and aqueous extracts of raw claw muscle were analyzed by (1)H NMR spectroscopy and MVA (multivariate data analysis). Aqueous extracts were characterized by a higher inter-specific discriminating power compared to lipid fractions. Specifically, higher levels of glutamate, alanine and glycine characterized the aqueous extract of C. sapidus, while homarine, lactate, betaine and taurine characterized E. verrucosa and C. pagurus. On the other hand, only the signals of monounsaturated fatty acids distinguished the lipid profiles of the three crab species. These results support the commercial exploitation and the integration of the blue crab in human diet of European countries as an healthy and valuable seafood.
Collapse
|
39
|
Groessl M, Graf S, Knochenmuss R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 2015; 140:6904-11. [PMID: 26312258 DOI: 10.1039/c5an00838g] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipidomics is a particularly difficult analytical challenge due to the number and importance of isomeric species that are known or postulated in biological samples. Current separation and identification techniques are too often insufficiently powerful, slow or ambiguous. High resolution, low field ion mobility coupled to mass spectrometry is shown here to have sufficient performance to represent a new alternative for lipidomics. For the first time, drift-tube ion mobility separation of lipid isomers that differ only in position of the acyl chain, position of the double bond or double bond geometry is demonstrated. Differences in collision cross sections of less than 1% are sufficient for baseline separation. The same level of performance is maintained in complex biological mixtures. More than 130 high-precision reduced mobility and collision cross section values were also determined for a range of lipids. Such data can be the basis of a new lipidomics workflow, as the appropriate libraries are developed.
Collapse
Affiliation(s)
- M Groessl
- Tofwerk AG, Uttigenstr. 22, 3600 Thun, Switzerland.
| | | | | |
Collapse
|
40
|
Surma MA, Herzog R, Vasilj A, Klose C, Christinat N, Morin-Rivron D, Simons K, Masoodi M, Sampaio JL. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. EUR J LIPID SCI TECH 2015; 117:1540-1549. [PMID: 26494980 PMCID: PMC4606567 DOI: 10.1002/ejlt.201500145] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/05/2015] [Accepted: 07/01/2015] [Indexed: 11/15/2022]
Abstract
Blood plasma has gained protagonism in lipidomics studies due to its availability, uncomplicated collection and preparation, and informative readout of physiological status. At the same time, it is also technically challenging to analyze due to its complex lipid composition affected by many factors, which can hamper the throughput and/or lipidomics coverage. To tackle these issues, we developed a comprehensive, high throughput, and quantitative mass spectrometry-based shotgun lipidomics platform for blood plasma lipid analyses. The main hallmarks of this technology are (i) it is comprehensive, covering 22 quantifiable different lipid classes encompassing more than 200 lipid species; (ii) it is amenable to high-throughput, with less than 5 min acquisition time allowing the complete analysis of 200 plasma samples per day; (iii) it achieves absolute quantification, by inclusion of internal standards for every lipid class measured; (iv) it is highly reproducible, achieving an average coefficient of variation of <10% (intra-day), approx. 10% (inter-day), and approx. 15% (inter-site) for most lipid species; (v) it is easily transferable allowing the direct comparison of data acquired in different sites. Moreover, we thoroughly assessed the influence of blood stabilization with different anticoagulants and freeze-thaw cycles to exclude artifacts generated by sample preparation. Practical applications: This shotgun lipidomics platform can be implemented in different laboratories without compromising reproducibility, allowing multi-site studies and inter-laboratory comparisons. This possibility combined with the high-throughput, broad lipidomic coverage and absolute quantification are important aspects for clinical applications and biomarker research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mojgan Masoodi
- Nestlé Institute of Health Sciences S.A. Lausanne, Switzerland
| | | |
Collapse
|
41
|
Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L. Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study. Lipids Health Dis 2015; 14:65. [PMID: 26123789 PMCID: PMC4489019 DOI: 10.1186/s12944-015-0062-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. Methods 214 healthy adults aged 18–60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS. Results Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides. Conclusion This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work. Trial registration Data, clinicaltrials.gov, NCT01172951 Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ciara Morris
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Colm M O'Grada
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Miriam F Ryan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael J Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry. Talanta 2015; 137:161-6. [DOI: 10.1016/j.talanta.2015.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
|
43
|
Lamaziere A, Richard D, Bausero P, Barbe U, Kefi K, Wolf C, Visioli F. Comparison of docosahexaenoic acid uptake in murine cardiomyocyte culture and tissue: significance to physiologically relevant studies. Prostaglandins Leukot Essent Fatty Acids 2015; 94:49-54. [PMID: 25481335 DOI: 10.1016/j.plefa.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
Long-chain n-3 (or omega 3) fatty acids, namely docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have been attributed cardioprotective properties. In this study, we evaluated the incorporation of DHA into cardiomyocytes and the shift in the omega 3/omega 6 ratio after supplementation of primary cardiomyocyte culture. Results are compared with atrial tissue concentrations attained after prolonged feeding of rats. The major difference between in vitro vs. in vivo supplementation is the paradoxical accumulation of arachidonic acid in cultured cardiomyocyte. However, this increase does not give rise to a higher PGE2 production after cellular stimulation, as compared with controls, possibly because of the associated inhibition of sPLA2 by DHA. Notably, in vitro supplementations with DHA 10 to 25μM approximate in vivo pharmacological treatments.
Collapse
Affiliation(s)
- Antonin Lamaziere
- Laboratory of Mass Spectrometry, ERL INSERM U 1057/UMR 7203, Université Pierre et Marie Curie, Paris, France
| | - Doriane Richard
- UPMC Univ Paris 06, CNRS UMR8256/INSERM ERL U1164, Institut de Biologie Paris Seine, Paris, France
| | - Pedro Bausero
- UPMC Univ Paris 06, CNRS UMR8256/INSERM ERL U1164, Institut de Biologie Paris Seine, Paris, France
| | - Ullah Barbe
- UPMC Univ Paris 06, CNRS UMR8256/INSERM ERL U1164, Institut de Biologie Paris Seine, Paris, France
| | - Kaouthar Kefi
- UPMC Univ Paris 06, CNRS UMR8256/INSERM ERL U1164, Institut de Biologie Paris Seine, Paris, France
| | - Claude Wolf
- Laboratory of Mass Spectrometry, ERL INSERM U 1057/UMR 7203, Université Pierre et Marie Curie, Paris, France
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, Madrid, Spain; Department of Molecular Medicine, University of Padua, Italy
| |
Collapse
|
44
|
Abstract
Due to the incidence of type-2 diabetes and hypertension, chronic kidney disease (CKD) has emerged as a major public health problem worldwide. CKD results in premature death from accelerated cardiovascular disease and various other complications. Early detection, careful monitoring of renal function, and response to therapeutic intervention are critical for prevention of CKD progression and its complications. Unfortunately, traditional biomarkers of renal function are insufficiently sensitive or specific to detect early stages of disease when therapeutic intervention is most effective. Therefore, more sensitive biomarkers of kidney disease are needed for early diagnosis, monitoring, and effective treatment. CKD results in profound changes in lipid and lipoprotein metabolism that, in turn, contribute to progression of CKD and its cardiovascular complications. Lipids and lipid-derived metabolites play diverse and critically important roles in the structure and function of cells, tissues, and biofluids. Lipidomics is a branch of metabolomics, which encompasses the global study of lipids and their biologic function in health and disease including identification of biomarkers for diagnosis, prognosis, prevention, and therapeutic response for various diseases. This review summarizes recent developments in lipidomics and its application to various kidney diseases including chronic glomerulonephritis, IgA nephropathy, chronic renal failure, renal cell carcinoma, diabetic nephropathy, and acute renal failure in clinical and experimental research. Analytical technologies, data analysis, as well as currently known metabolic biomarkers of kidney diseases are addressed. Future perspectives and potential limitations of lipidomics are discussed.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, PR China; Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, California, USA.
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, California, USA
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
45
|
Zhou XR, Callahan DL, Shrestha P, Liu Q, Petrie JR, Singh SP. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. FRONTIERS IN PLANT SCIENCE 2014; 5:419. [PMID: 25225497 PMCID: PMC4150447 DOI: 10.3389/fpls.2014.00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/05/2014] [Indexed: 05/10/2023]
Abstract
Metabolic engineering of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) in oilseeds has been one of the key targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA) from endogenous α-linolenic acid (ALA), we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS) was used to characterize the triacylglycerol (TAG), diacylglycerol (DAG) and phospholipid (PL) lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC), DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG, and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provided insights into where DHA accumulated and combined with other fatty acids of neutral and phospholipids from the developing and mature seeds.
Collapse
Affiliation(s)
- Xue-Rong Zhou
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
- Plant Industry, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Damien L. Callahan
- Metabolomics Australia, School of Botany, University of MelbourneMelbourne, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin UniversityMelbourne, VIC, Australia
| | - Pushkar Shrestha
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Qing Liu
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - James R. Petrie
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Surinder P. Singh
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
46
|
Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 2014; 55:43-60. [DOI: 10.1016/j.plipres.2014.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
|
47
|
Bondia-Pons I, Pöhö P, Bozzetto L, Vetrani C, Patti L, Aura AM, Annuzzi G, Hyötyläinen T, Rivellese AA, Orešič M. Isoenergetic diets differing in their n-3 fatty acid and polyphenol content reflect different plasma and HDL-fraction lipidomic profiles in subjects at high cardiovascular risk. Mol Nutr Food Res 2014; 58:1873-82. [PMID: 24961394 DOI: 10.1002/mnfr.201400155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 11/06/2022]
Abstract
SCOPE Dysregulation of lipid homeostasis is related to multiple major healthcare problems. The aim of this study was to investigate the effects of n-3 fatty acid (FA) and polyphenol rich diets on plasma and HDL fraction lipidomic profiles in subjects at high cardiovascular risk. METHODS AND RESULTS Ultra performance LC coupled to quadrupole TOF/MS mass spectrometry global lipidomic profiling was applied to plasma and HDL fraction from an 8 wk randomized intervention with four isoenergetic diets, differing in their natural n-3 FA and polyphenols content, in 78 subjects with a high BMI, abdominal obesity, and at least one other feature of the metabolic syndrome. Dependency network analysis showed a different pattern of associations between lipidomics, dietary, and clinical variables after the dietary interventions. The most remarkable associations between variables were observed after the diet high in n-3 FA and polyphenols, as the inverse association between gallic acid intake and LDL cholesterol levels, which was indirectly associated with a HDL cluster exclusively comprised lysophospholipids. CONCLUSION This is the first human randomized controlled trial showing direct and indirect associations with lipid molecular species and clinical variables of interest in the evaluation of the metabolic syndrome after diets naturally rich in polyphenols.
Collapse
Affiliation(s)
- Isabel Bondia-Pons
- VTT Technical Research Centre of Finland, Espoo, Finland; Department of Food Science and Physiology, Research Building, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wallace M, Morris C, O'Grada CM, Ryan M, Dillon ET, Coleman E, Gibney ER, Gibney MJ, Roche HM, Brennan L. Relationship between the lipidome, inflammatory markers and insulin resistance. ACTA ACUST UNITED AC 2014; 10:1586-95. [DOI: 10.1039/c3mb70529c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objectives of the present study were to (1) examine the effects of the phenotypic factors age, gender and BMI on the lipidomic profile and (2) investigate the relationship between the lipidome, inflammatory markers and insulin resistance.
Collapse
Affiliation(s)
- Martina Wallace
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Ciara Morris
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Colm M. O'Grada
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Miriam Ryan
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
| | - Eugene T. Dillon
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Eilish Coleman
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Eileen R. Gibney
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
| | - Michael J. Gibney
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
| | - Helen M. Roche
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| | - Lorraine Brennan
- UCD Institute of Food and Health
- University College Dublin
- Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
| |
Collapse
|
49
|
del Castillo MD, Martinez-Saez N, Amigo-Benavent M, Silvan JM. Phytochemomics and other omics for permitting health claims made on foods. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Wiedmer SK, Hyötyläinen T. Selection of Analytical Methodology for Metabolomics. CHROMATOGRAPHIC METHODS IN METABOLOMICS 2013. [DOI: 10.1039/9781849737272-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The main challenge in metabolomics analysis is the separation, identification and quantification of a large number of known or unknown metabolites in complex samples. The correct selection of sample collection and preparation method, type of separation methodology and detection are all crucial steps in the analysis of metabolomics. This chapter provides an overview of and general guidelines for strategies involved in the analysis of metabolomics, and different chromatographic techniques used in metabolomics studies are briefly presented. The methods are compared and the main features of the separation methods are listed. Finally, general conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Susanne K. Wiedmer
- Department of Chemistry University of Helsinki, P.O. Box 55, 00014 University of Helsinki Finland
| | - Tuulia Hyötyläinen
- VTT Technical Research Centre of Finland Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo Finland
| |
Collapse
|